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Abstract

The Estabrook-Wahlquist method for establishing the integrability of partial differential
equations is extended to semi-discrete (lattice) systems. If successful, the method construct the
linear eigenvalue problem associated with the equation.
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1 Introduction

In [1, 2], Estabrook and Wahlquist developed a method to derive in a systematic way the linear
spectral problem associated with a given partial differential equation (PDE). Subsequently, Fordy
and co-workers [3, 4] made the method more algorithmic and put it in an algebraic instead of
a differential geometric framework. If successful, the method finds a linear spectral problem for
integrable 141 PDE. It also indicates nonintegrability of the given PDE. However, because the
method involves some assumptions, its failure does not prove nonintegrability.

Recently there has been interest in integrable systems of infinitely many coupled ordinary
differential equations, either as semi-discrete versions of an integrable PDE [5, 6] or in their own
right ([7, 8, 9, 10]). In this paper, we generalize the Estabrook-Wahlquist method to apply to
certain semi-discrete systems. Given such a semi-discrete system of equations, we demonstrate a
systematic way to find a scattering pair (i.e. an associated linear spectral problem) for it, if it
is integrable. If successful we have not only proven integrability but also constructed a starting
point we can use to integrate the equations, using the inverse scattering transform technique. If
the system is not integrable it may be possible to exclude the existence of scattering pairs in a
certain class, hence providing strong indications for nonintegrability. As a test for integrability, the
method has two big advantages over the Painlevé method: it does not depend on the coordinates
and variables in which we have formulated the semi-discrete system. Also, if successful it provides
a conclusive answer for integrability by constructing the scattering pair for the system.

The method is algorithmic, which we illustrate throughout this paper. The algorithm has seven
steps. These steps are inherently sequential. In order to maintain this clear sequential process,
we did not break some of the larger steps up into smaller steps since these smaller steps are often
better carried out in parallel with the others. If the method is not succesful the algorithm breaks
down during step four. This indicates nonintegrability for the given semi-discrete systems within
the class of scattering pairs we considered.

In the following sections we illustrate the algorithm on two familiar integrable cases (sections
2 and 5). We also provide some theoretical insight into the connections with the corresponding
continuum limit (if there is one) in section 3. Section 4 deals with the Standard Discretization of
NLS, a well-known nonintegrable case. Finally, in section 6 we present scattering pairs for new
systems recently proposed by Y. B. Suris [9, 10].

2 The Ablowitz-Ladik pair for the discrete NLS equation

Consider the Ablowitz-Ladik [11] discretization of the NLS equation
1 qn = d4n+1 — QQH + gn—1+ QH'rn(QH—I—l + QH—I), (1)
4Ty = Tpyl— 2T +7Tp 1+ Qnrn(rn+1 + Tnfl)-

We have rescaled the potentials ¢, and r, and the continuous time variable so that the dis-
cretization parameter does not appear explicitly.

2.1 Compatibility of the scattering pair, functional dependence of the scattering
matrix S,

We want to construct a scattering pair for (1). In other words we want to find matrices S, and T,
which we require to be finite dimensional such that



Vntl = SpUn, (2)
vy, = Thvp,.

Here S, is the scattering matrix of the pair. Since (1) is the nontrivial compatibility condition
of this pair, both S, and T, depend on the potentials ¢; and ;. We also expect the pair to
depend on a scattering parameter, which should express a degree of freedom in choosing the pair.
Isospectrality is then a consequence of the fact that this scattering parameter is time independent
by construction.

Compatibility of (2) (or zero curvature condition) implies

S’n + ST, = n—HSn- (3)

Let’s assume at this point that S, = S;,(gn, 7). In particular we do not include any forward
or backward shifted potentials in the scattering matrix. This assumption fully determines the
spatial and time dependence of S,,, since the scattering parameter is isospectral. Using the above
assumption and (1) we can see that

—ig%(qu —2qn + Gn—1+ @uTn(@ns1 + gu-1))+
i%%('rn—kl —2rp + 11+ @urn(Tne1 + 1m1)) + SpTn = Tht1Sn- (4)

2.2 Explicit form of the time evolution matrix 7,

From (4), T, does not depend on any forward shifts:

T, = Tn(Qnarnaanla'rnfl)- (5)
Taking the partial derivative of (4) with respect to ¢,+1, we find

98,  0Tnp

—t— (14 gprn) = Sn, 6
3%( 4nTn) Oqn+1 " (6)
and three similar equations. From these
o, o, o, o,
2n+1 = 0, 2n+1 = 07 5 = = 0, D) ~o= 07 (7)
04y 41 Ot 04y, 4 Orn 1

since S,, does not depend on any shifts and can be assumed to be non-singular (S, ! describes
going left in space and should hence be defined, we assume the linear problem (2) is well-posed).
Integrating (7) we find that T, has the following functional dependence:

Tn = GnTnGn-17n-1X1 + @uTndn-1X2 + @urarn-1X3 +
GnTn X4 + Gnn- 1701 X5 + Tnn- 171 X6
Gn—17n-1X7 + @nTn_1X1 + Tngn-1X2 + Gndn_1X3 +
TnTn-1X4 + @Y1 + Yo +gn1Ys + 1 1Ys + Z. (8)

Here X;, X j» Yy and Z are constant matrices that show up as integration constants. Their
dimension is unknown and remains to be determined.

Substituting (8) back into (4) shows that X; = 0, for all j. The set of {X;,Y;} are elements of
a Lie algebra under the commutator bracket.



2.3 Constraints on the algebra

The evolution equations (1) impose constraints on the algebra determined by the {X;,Y;}. We
now find these restrictions explicitly in order to determine the simplest, i.e. lowest-dimensional
representation of the algebra. Since the algebra is determined by the commutation table of its
elements we look for the constraints in this form.

We can now separate the dependence on the shifted potentials. This results in a system of five
matrix equations:

08,

_i#(l + Qn'rn) = ('rnXl + ¢ X3+ Yl)Sna (9)
.08,
? or (1 + Qn"'n) = (QnXQ +rp X4+ YZ)Sna (10)
n
.0S,
_Zﬁ(l +qurn) = —Sp(rnXo+ ¢ X3+ Y3), (11)
n
0SS,
? or (1 + Qn'rn) = _Sn(q"Xl +rp Xy + Y4)> (12)
n
and
a8, a8,
2990 _ 9i%%% _ (1, Y3 + 4aYs + Z)Sn — Sul(gaYi +aYa + 7). (13)
Oqn Ory

This last equation will be used to determine Z once the other elements in the algebra and S,
are known.

The first four equations are of the form

S, 05,

aS, oS,

. — “nblmn; = nDn- 1
5o = SnCn, 52 =S (15)

Compatibility conditions for such equations are

A,S, = S,Ch, B,S, = S,D,, (16)
S-SR B, G- S0t (G, a7)
%Sn st s Saa% (18)
%SR =S, gj:, ‘Z%Sn =S, %l::. (19)

This set of compatibility conditions is certainly not complete and for specific examples it might
be necessary to use other ones, obtained from equating higher-order mixed partial derivatives.
Notice that (17) stands out among the other conditions, since it does not involve S,, and depends
only on the matrix coefficients of the system.

Using (17) in our specific case results in equations in which the dependence on the potentials
is explicit, hence we can equate coefficients of different powers of the potential. We get two sets of
commutator relationships:



Xy =1[Xy, X1], X3 = —i[X3,X9], (20)
X1+ Xy =i[V1,Ys],  0=[Xo, X1] +[X4, X3], (21)
Yy =i [ X4, Y] +i[Yo, X1], Y1 =i [Xo, V1] +i[Ys, X3], (22)
and

X4 =1[X4, Xo], X3 = —i[X3,X1], (23)
X1+ Xo =1[Y3,Yy], 0 = [X2, X1] + [X3, X4], (24)
_Y3 :Z.[X35Y4]+'i[YT37X1]a _Yzl :Z[XQ’YZL] +Z[YE$7X4]1 (25)

from which
[Xl,Xg] =0, [X3,X4] = 0. (26)

2.4 Determine the center of the algebra and locate subalgebras. Find the
lowest-dimensional representation of the algebra

Combining (16) and (18) we establish

[X1 — X3,8,] = 0. (27)

Taking derivatives of (27) with respect to both ¢, and 7, and using (27) again with the non-
singularity of Sy, we see that X; — X9 commutes with all the X;,Y;. We require that these elements
determine the algebra, hence we have established that Xo — X is a central element of this algebra.
We then put

X1 - X2 = OéI, (28)

where I is the N x N identity matrix, N being the dimension of our representation. We show in
the next section that we cannot equate all elements in the center of the algebra to the zero matrix,
as is customary in the Estabrook-Wahlquist method [4]. Other conditions can be obtained from
(9) and (11) by taking a g,-derivative of both sides and equating the left hand sides. We obtain

(X3,8,} =0, {X4,5,}=0. (29)

Here {A, B} is the anti-commutator of A and B: {A,B} = AB + BA. The second equality is
obtained the same way from (10) and (12). Taking derivatives of these two equalities we find that
both X3 and X, are in the center of the algebra. As a consequence they also are scalar multiples
of the identity. However, from either (20) or (23) X3 and X, are both traceless. Hence

X3=0=X,. (30)

There are now essentially 5 elements left in the algebra: X; 4+ Xo,Y1,Ys, Y3 and Yy. Their
commutation table is given below.

At this point we could impose a closure assumption on the algebra as one usually does when
using the Estabrook-Wahlquist method to construct scattering pairs [3]. However, this would
be a non-algorithmic step and we will try to avoid it if possible. Rather we attempt to find a
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[ [ [Xi+X] W] Y5 [ % Y,

X1+ Xo 0 —1Y; 1Yo —1Y3 1Yy
Y; 1Y7 0 —’i(Xl + XQ)
Y, —1Yy i(Xl + XQ) 0
Y; 1Y3 0 —’i(Xl + X2)
Y, —1Yy i(Xl + XQ) 0

Table 1: The commutation table for the algebra {X; + X»,Y1,Y>,Ys,Y,}, associated with
the Ablowitz-Ladik system.

representation for the algebra by considering representations for subalgebras. Subalgebras are in
general easily found for these prolongation algebras. This procedure may not work. In this case we
have to either go on to higher dimensional embeddings of the subalgebras or we can try to close
the algebra at this point. We will indicate how to remedy the method if we cannot locate any
subalgebras. The subalgebras we find here are {X; + X9,Y7,Ys2} and {X; + Xo,Y3,Ys}. Using the
well-known commutation relations for sl(2,C) [12] we can identify
. 1 1
X1+ Xo=1h, Yi=pe, Yo= Bhas Y3=nve_, Yi= B (31)
with v and (8 arbitrary constants. h,e_ and e; are the usual raising and lowering basis of
sl(2,C). Their simplest (two-dimensional) representation is

(30 (2 () e

2.5 Determine the scattering matrix S,

We now explicitly know X7, X5 and Y}, for all j. With this information, we can try to find a
two-dimensional representation for the entire algebra. This does indeed work in this case. If this
were not the case, we need to go back to step 4 of the algorithm, as pointed out above. We can
integrate equations (9-12). The result is

1
8, = Ce O (1 ). (33)
Zﬁ‘]n _§

C, being an arbitrary constant, can be set equal to i/(y/), since we can easily accomplish this
using a trivial gauge transformation. Furthermore, if we want to avoid non-algebraic dependence
of the scattering pair on the potentials, we have to choose @ = —i.

2.6 Find 7, the constant part of 7,

With S;, and the other elements in the algebra known, (13) determines Z:

. z1 0
Z - ( 0 24 ) ? (34)
with z; — 24 = —i(\/B/v + /7v/B)?. Only this difference is defined. This was to be expected:

we can always transform time to change z; or z4 as we like. Only their difference is invariant. We
can put without loss of generality



=2 (BB =SB+ [ulB) (35)

2.7 The explicit form of the scattering pair

Applying the constant gauge transformation

v, = Guyg, (36)
with

0 1
o-( 5 1), o

we find the Ablowitz-Ladik pair for the discrete NLS equation [11]:

S, = < < qn ) . T, = ( —iqnTn—1 — %(% - 2)2 %%171 —12qn ) ) ’ (38)

—r, 1/z 121 — 2T TnQn_1 + %(% —z)

where z = —i\/[(3/7 plays the role of the scattering parameter. The reason we wrote the pair
using (35) is that upon reintroducing the discretization parameter Az , the above pair has the
correct continuum limit as Az — 0. Using three assumptions (dependence of S, isospectrality and
well-posedness of the associated linear problem), we were able to find the scattering pair for (1).
The method for doing this was purely algorithmic, as we indicated during the derivation. Since we
found a non-trivial scattering pair for (1), (1) is integrable, and we have successfully completed the
seven steps of the algorithm.

3 Identity-Connected Lie algebras

In the previous calculation we encountered central elements of the algebra, which we did not equate
to zero, unlike in the Estabrook-Wahlquist method for PDE’s.

Assume that the semi-discrete system under consideration is a spatial discretization of a PDE,
with gridpoints at z,, = nAz. As a consequence, neighboring potentials are equal, up to first-order
in Az. A similar argument holds for the eigenfunctions of the linear spectral problem v,. The
transformation from v, to v,11, which we require to be linear for integrable problems will be ‘close’
to the identity. We show what we mean by close:

Let’s start with the scattering pair for an integrable PDE:

vy = L(z,t,\)v, v = M(z,t,\)v. (39)

Let’s assume that the semi-discrete system we are interested in has a scattering pair given by
the discretization of (39). Upon discretizing (using a right spatial discretization for example)

x — x, =nAzx, v(z) =v(nAz) = v,, L(z,t,\) = L,(t,)\), (40)
we obtain

Unt1 = [+ Az Ly (t, A)] v + UAZ) = Sp(t, A, Az)v, + O(Az). (41)

We see indeed that the transformation from v, to v,41, i.e. the scattering matrix, is a first-
order in Az correction to the identity. This reasoning does not hold for the PDE case, where
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the potential and its derivatives are the independent variables for the purpose of the Estabrook-
Wahlquist method. There is no reason for these different derivatives to have approximately the
same numerical value. In general, the scattering pair for a PDE can be chosen to be trace-free,
since the underlying algebra is a Lie algebra. As was argued in [4], this Lie algebra can be assumed
to be semi-simple. For semi-discrete systems, we pointed out above that the pair does not have to
be trace-free. The procedure shows also that one can obtain integrable discretizations of a PDE
by discretizing the pair of the PDE and expressing its compatibility [11] (one can obtain (1) this
way). In that case, the algebra for the pair of the discretization will be the same as the algebra
underlying the PDE, with an identity component added in.

We call the resulting algebra identity-connected [13]. It is in fact the first-order approximation
to the Lie group generated by the Lie algebra. This algebraic structure is a Lie algebra, with a
non-trivial center. The identity matrix, commuting with every other matrix will be in the center of
the algebra and it cannot be set equal to zero as the above reasoning shows. Therefore, whenever
we find an element is central to the algebra, we can only assume it is a scalar multiple of the identity
matrix. Only if we know it is also trace-free can we equate it to zero.

The discretization obtained this way is not necessarily the desired one. An integrable PDE may
have more than one integrable discretization and the above procedure only isolates one. Further-
more, not every interesting semi-discrete system is the discretization of an integrable PDE.

4 The Standard Discretization of the NLS equation

The Estabrook-Wahlquist method for PDE’s can prove non-integrability under certain assumptions.
We now illustrate that this is also possible for semi-discrete systems. To do this let us consider the
Standard Discretization of the NLS equation. The following semi-discrete system is known to be
non-integrable [5], but is nevertheless significant for its physical applications [8]:

iQp = Gn+1 — 2qn + qn—1 + Z%ZLTW (42)
—1Tp = Tp4l—2rp+7Tp 1+ 2Qn7"721-

The algorithm is now applied to the system (42).
4.1 Compatibility of the scattering pair, functional dependence of the scattering
matrix S,

The first two steps of the algorithm are identical to those in section (2). In particular, we assume
the scattering matrix at position n depends only on the potentials at position n, not on any shifted
potentials. This limits the class of scattering pairs under consideration.

4.2 Explicit form of the time evolution matrix 7,

In an analysis that parallels that in section (2), we find again

T, = gurn1 X1 +7rpgn—1Xo +qngn1X3 +rprp_1X4 +
@Y1+ 1Yo + g 1Y3s + 1 1Yy + Z. (43)



4.3 Constraints on the algebra

Using (43) we can separate in the compatibility condition the dependence on the shifted potentials,
resulting in

0S8,
—t E)qn = (raX1 4+ ¢uX3 +Y1)Sy, (44)
a8,
ZaTn = (Q'rLXQ + rpXa + YZ)Sna (45)
n
a8,
—1i aqn = _Sn('rnXQ + QnX3 + YE’)), (46)
n
.0S,
'LaT = _Sn(q'nXl +rpXs + Yzl), (4-7)
and
.08, 0SS,
(1 - Qnrn) (2'LWQ71 - 22?"%) = ('rnY4 +qnY3 + Z)Sn - Sn(QnYI +rpYs + Z)- (48)
n n

To express the compatibility of these equations, we use (16-19), but with different matrices
A,B,C and D. The compatibility condition (17) again provides two sets of commutator relation-
ships,

0= [X47X1] 3 0= [X37X2] ; (49)
X1+ Xy =i[Y1,Y5], 0 = [Xo, X1] + [X4, X3], (50)
0= [X4, 1] + [Y2, X1], 0 = [Xo,Y1] +14[Ys, X3], (51)
and
0 = [X4, Xo], 0= [X3,X1], (52)
X1+ Xo =i[Y3,Yy], 0 = [Xo, X1] + [X3, X4], (53)
0= [X3aY;l]+i[Y37X1]7 0= [X27Y4]+ [Y37X4]' (54)

4.4 Determine the center of the algebra and locate subalgebras. Find the
lowest-dimensional representation of the algebra

Condition (18) gives [X1,S,] = 0 = [X2, S,]. Taking derivatives with respect to the potentials and
using (44-47) and (49, 52) we get [X;, X;] =0,[X;,Y;] =0, for i = 1,2 and j = 1,...,4. Hence X;
and X are central elements. We put X; = al, X9 = I. Since from (49) tr(X; + Xo) =0,

X1 =al = —XQ. (55)
Equation (19) again leads to

{X?n Sn} =0= {X47 Sn} ) (56)
and subsequently (16) yields



YiS,+ 5, Y3=0, Y55,+S5,Y,=0. (57)

We can use (56) in the same way we used (29). The conclusion is similar. Both X3 and X4
commute with all elements in the algebra. Hence each is a scalar multiple of the identity. On the
other hand, from (56) we obtain that the traces of X3 and X, are zero. Hence

X3=0=X,. (58)

We can now integrate (44-47) to obtain S,,. Once we have done this, it is clear we have
completely exhausted equations (44-47). This integration is straightforward, essentially because all
matrices in the exponent of the exponential commute. We find

S, = equrnezanrwnY2SO — SoezaanneﬂanaﬂrnYz;_ (59)

If the Y; are nilpotent matrices then the scattering matrix becomes essentially polynomial up
to a scalar factor. In (59) Sy is the value of S, at infinity, assuming we are considering the infinite
line problem with decaying boundary conditions (these boundary conditions are not essential for
what follows, they are used for simplicity). Substituting the first form of S,, into (48) leads to

Y15,(—2¢, + Qq%rn) + YoS,(-2r, + QT%qn) =
(gnYs+rmYs+2)S, — Sp(gnYr +rmnYe+ 2). (60)

Multiplying this equation on the left by Yln_l, on the right by S, ! and taking the trace, we
can eliminate all S, and its inverses. Notice that this is possible, since Y{*S, = (—1)"S,Y3" from
(57). We find a polynomial equation in the potentials. Vanishing of the coefficient of g2r, implies
trY® = 0; the trace of Y] to any power is zero. As a consequence Y] is nilpotent [12]. Similarly,
Ys,Y3 and Yy are nilpotent. Assume that Y7 is nilpotent of degree d, then disregarding the scalar
exponential factor (which cancels out in (60)) and equating the highest power in ¢,, we find

Y; = 0. (61)

This argument can be repeated to obtain that all the Y;’s are zero. This means that any pair
for the Standard Discretization of NLS which depends only locally on the potentials (no shifts or
nonlocal factors) is abelian and hence trivial. We can conclude that under the above assumptions the
Standard Discretization is not integrable using the inverse scattering technique. The extension of
the Estabrook-Whalquist method can hence determine nonintegrability under certain assumptions
just as easily as does its original version for PDE’s.

5 The Toda lattice

One of the first semi-discrete systems to attract a lot of attention was the Toda lattice [7]. It
appeared as a physical model in its own right, not as a discretized version of a PDE (although it
can be interpreted as such). The Toda lattice is for our purposes important to consider, since it
is a system with nonpolynomial dependence on the potentials. The Estabrook-Wahlquist method
for PDE’s for such systems becomes much harder than for quasi-polynomial systems [3]. The Toda
system can be written in the form

qn _ pn’ p.n — eQn+1*Qn _ SQn*Qn—l. (62)
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Usually when discussing this system in terms of a scattering pair, it is brought into polynomial
form [14]. Integrability of a system should not depend on having the right coordinate system,
therefore we will try to construct the pair using the form (62). As mentioned above this will also
illustrate that the semi-discrete version of the Estabrook-Wahlquist method works in nonpolynomial
cases.

5.1 Compatibility of the scattering pair, functional dependence of the scattering
matrix S,

Assuming again that S,, = S,,(¢n,pn) depends only on the potentials locally and not on any shifts,
we find that T}, = T,,(¢n, gn—1)- The compatibility condition (3) gives

oSy, oSy,
_I_ -

ﬁpn 8p (eQn+1_Qn _ eQn_Qn—l) 4 S’nTn — n—|—1S'n- (63)

5.2 Explicit form of the time evolution matrix 7,

Taking derivatives of (63) with respect to ¢,+1 and ¢,—1, we get

88, . . Ty 0S, . _ o,
_e(In+1 qn — Sn’ eQn In—1 — _Sn— 64
Opn 8qn+1 Opn, Oqn—1 ( )

These equations can be used to fix the functional dependence of T, more explicitly. For instance,
from the second equation, we find T, = A, (q,) exp(—¢n—1) + Bn(qn), where A, and B,, are matrix-
valued functions to be determined. We get a similar equation in which the functional dependence
of T}, on gy, is explicit, using the first equation in (64). Compatibility between these two expressions
leads to

T, = )(leqn_q"*1 + Xgeqn + )(36_(1”71 + X4. (65)
In this expression, the X; are constant matrixes with dimension and representation to be de-
termined.
5.3 Constraints on the algebra

Substituting (65) into (63), we separate the dependence on the shifted potentials. We get three
equations:

oSn

o = (X1 + Xqe®) S, (66)
n
a8,
S = Sn (X1 4 Xpe ™), (67)
n
and
asn qn —qn
9 Pn + Sn (X26 + X4) = (X36 + X4) Sh- (68)

We can cast these three equations in a more useful form by expressing the compatibility between
them: taking the derivative with respect to p, of (68) and with respect to ¢, of (66), we can equate
mixed partial derivatives. Using (66) to eliminate as many derivatives as possible, we obtain

11



aSn

9 _ ([ 4 X0, X5+ K] — o) S, ()
n
Repeating this procedure using (67) instead of (66),
8,5'” —qn qn —qn
Agn = =8, ([X1 + Xze™ %, Xoe™ + X4] — ppXze™ ). (70)
n

The equations (66),(67),(69) and (70) are similar in form to for instance (9-12). We can use the
compatibility conditions (16-19) as we did before.

Using (17) we obtain commutators for the generators X;. Many of these will be nested commu-
tators. In order to be able to deal with these, we will prolong the algebra by adding a number of
elements to it. Let

Y= [X17X4]a Yo = [X27X3]7 Y; = [X27X4]7 Y, = [X37X4] . (71)

Prolonging the algebra is often necessary when using the Estabrook-Wahlquist method to find
the scattering pair for a PDE, essentially to avoid dealing with double commutators. Up to now,
we did not have to do this. Apart from being a nice example of nonpolynomial dependence, the
Toda pair turns out to be a semi-discrete system for which it is necessary to prolong the algebra.

Now, (17) gives

O:[X15X3]7 O:[XI,XQ]a O:[X17Y1+Yé]a (72)
2X2 = [X27Y1 + Y2] + [X]_,Yg] ’ 0= [X2,Y3] ’ (73)
2X3 — [Xl,Yl + Y4] + [X3’Yv2] ) 0= [X3’Y2l] - (74)

5.4 Determine the center of the algebra and locate subalgebras. Find the
lowest-dimensional representation of the algebra

From (18), we find

S, Xze " = el X, S, (75)

Comparing this with (66-67) results in [S,, X1] = 0. Taking derivatives of (75) with respect
to ¢, and using (69, 70) in analogy with what we did in section (2), [X1,Y;] = 0, for all j. We
can now use the Jacobi identity [12] to get a few more restrictions on the algebra. Expressing
the Jacobi identity for X, Xs and X4 gives [X2,Y1] = 0. The Jacobi identity for X, X3 and X4
gives [X3,Y1] = 0. We could get more commutation relations if we so desired. This is however not
strictly necessary, as we can already identity a subalgebra at this point. The commutation table of
the algebra is given below, taking all known commutator relationships into account.

We see from table 2 that the subalgebra {Xs, X3,Y5} is isomorphic with sl(2,C). Using this
identification, we find in a similar way as for (31) that

1
X2 = @€, X3 = —ae_, YQ = —h. (76)

Since X is in the center of { X2, X3,Y2}, it equals a scalar multiple of the identity: X; = §I.

As a consequence Y7 = 0. The lowest-dimensional representation of s/(2,C) is two-dimensional.
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X | 0 0 0 |vi|0] 0 JOJoO
X, | 0 0 Yo | Y3 | 0| 2Xo | O

Xs || 0 | Yo | 0 |Ys]| 0| _—2X; 0
X, | V.| Y3 | —Yi| 0

Y: | 0 0 0 0] 0 |00
Yo | 0 | —2X, | 2X;3 0] 0

Ys | 0 0 0 0

Y. || O 0 0 0

Table 2: The commutation table for the algebra {X;, Xy, X3, X4,Y1,Y>,Y3,Ys}, associated
with the Toda lattice.

5.5 Determine the scattering matrix S,

Using this representation and (66,67), we get for S,

_ n 1 aetp, Qn1 Qn2
S, =P (0 ) )(Qm 5 ) (77)

Here the second matrix only depends on g, not on p,. Also, from (68), trS, is independent of
gn- This gives
Qui =C1, Qna=—0aCoe™, Qu3= Coe™, (78)

with C1,Cy constants. The second equation follows from (75). If we want S, to be linear in
the py,, we can put 8 = 0.

5.6 Find Z, the constant part of 7,

In this case, we can use (68) to determine X4. We find X44 — X413 = C1/aCy, where we have
used the same notation as before: X4, X4; are the (2,2) and (1,1) component of X, respectively.
Because only their difference is fixed, we may choose

Cq
X411 =0 Xy = —. 79
1 =0, “w= o (79)
5.7 The explicit form of the scattering pair
The scattering pair becomes
Ci + aCsop, —a2Chet 0 aein
Sn = ( Coetn " 0 o Tn= _lo—n1 C—(} : (80)
@ aCs

The parameter o can be eliminated by redefining Co, and shifting the potential ¢, by a constant
amount. It is then obvious that the ratio C/C5 is the only essential parameter in the problem and
we hence recover the scattering pair given in [15].
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6 Some new results

Recently, Y. B. Suris showed the integrability of two new systems [9, 10]. Integrability was demon-
strated using a Hamiltonian formalism, but no scattering pair (in the form of a zero curvature
representation) was presented. We now provide scattering pairs for these new systems, using the
algorithm outlined in the previous sections. The first system [9] can be written in first-order form
as

q'n = Dn + eQn_Qn—l, pn — pn+leQn+1_qn _ pneQn_Qn—l . (81)

Assuming the scattering matrix S;, depending only on ¢, and p,, we found the scattering pair
for (81) to be

_ z+p, —ppet” . 0 ppet?
Sn — ( e_qn _1 ) bl Tn - ( _e—qn,1 2 - (82)

To obtain this result we had to deal with determining equations for S,, that were not of the
form (9-12). As a result the integrability conditions were not exactly (16-19). Nevertheless, we sys-
tematically derive a different (slightly more complicated) set of integrability conditions, expressing
the compatibility of the determining equations for S,,. However, we could not identify a subalgebra
and we needed to impose a closure assumption on the algebra. With the closure assumption, we
can identify the algebra and find its representation. Once again the algebra is si(2,C), with an
extra identity component. The resulting form for S,, and 7T}, is (82).

Suris’ second system [10]

Gn =Pn, Pn =pPn (eqn+1fqn - 6qnfqn_1) . (83)

has the scattering pair

z —eln edn—dn-1  egln
S, = ( _;?51 | ) , T, = ( et ) : (84)

In this case the determining equations for S, could be cast into the form (9-12), using the
same method as for the Toda lattice. Also here, we needed a closure assumption to determine the
representation of the algebra.

The reader can verify that the two pairs (82) and (84) result in the respective systems (81)
and (83), using (3). The similarity of these scattering pairs with the pair for the Toda lattice is
striking. This is not surprising, considering the similarity of the corresponding systems with the
Toda lattice and the results in [9, 10]. The great benefit of the above scattering representation is
that we only need to calculate with 2 x 2 matrices, no matter what the boundary conditions on the
systems (81) and (83) are.

Acknowledgements

I would like to acknowledge fruitful discussions with Dr. S. Chakravarty, D. Trubatch, Dr. M. J.
Ablowitz and I would like to thank Dr. H. Segur for encouraging me to pursue this research. This
work was supported in part by NSF grant DMS-9304390.

14



References

[1]
2]
[3]
[4]

[5]
[6]

[12]
[13]
[14]
[15]

H. D. Wahlquist and F. B. Estabrook, Journal of Math. Phys. 16.1 (1975) 1.
F. B. Estabrook and H. D. Wahlquist, Journal of Math. Phys. 17 (1976) 1293.
R. Dodd and A. Fordy, Proc. R. Soc. Lond. A 385 (1983) 389.

A. P. Fordy, Prolongation structures of nonlinear evolution equations, in: Soliton theory, a
survey of results, ed. A. Fordy (Manchester University Press, 1990).

M. J. Ablowitz and B. M. Herbst, STAM J. Appl. Math 50 (1990) 339.

M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scat-
tering (London Mathematical Society Lecture note series 149, Cambridge University Press,
1991).

M. Toda, J. Phys. Soc. Japan 22 (1967) 431.

A. B. Aceves, C. De Angelis, G. G. Luther, A. M. Rubenchik and S. K. Turitsyn, Physica D
87 (1995) 262.

Y. B. Suris, A new integrable system related to the relativistic Toda lattice, Preprint (1996).
Y. B. Suris, A new integrable system related to the Toda lattice, Preprint (1996)

M. J. Ablowitz and H. Segur, Solitons and the inverse scattering transform (Siam Studies in
Applied Mathematics, 1981).

N. Jacobson, Lie algebras (Dover, New York, 1979).
S. Chakravarty, Private communication.
H. Flaschka, Prog. Theo. Phys. 51 (1974) 703.

L. D. Faddeev and L. A. Takhtajan, Hamiltonian methods in the theory of solitons (Springer-
Verlag, 1987).

15



