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1 Introduction

The two-dimensional cubic nonlinear Schrödinger equation (NLS) is given by

iψt + αψxx + βψyy + 2|ψ|2ψ = 0, (1)

where α and β are real constants and ψ = ψ(x, y, t) is a complex-valued
function. Among many other physical situations, NLS arises as an approximate
model of the evolution of a nearly monochromatic wave of small amplitude
in pulse propagation along optical fibers (αβ > 0) [18], in gravity waves on
deep water (αβ < 0) [2, 5] and in Langmuir waves in a plasma (αβ > 0) [20].
As a description of a Bose-Einstein condensate, NLS is known as the Gross-
Pitaevskii equation (αβ > 0) [8, 21]. All quantities in (1) are dimensionless.

NLS admits a large class of one-dimensional traveling-wave solutions of the
form

ψ(x, t) = φ(x)eiλt, (2)

where φ is a real-valued function and λ is a real parameter. Solutions of the
form given in (2) are known as one-dimensional trivial-phase solutions.

Remark: The most general form of a one-dimensional trivial-phase solution
is given by

ψ(x, y, t) = φ(ax+ by − st)eiλt+ias̄x+ibs̄y+iη, (3)

where φ is a real-valued function, s̄ = s/(2αa2 + 2βb2) and a, b, s, λ and
η are real parameters. By making use of the symmetries of NLS [23] and
by redefining λ, all solutions of this form can be considered by studying the
simplified form given in (2).

If α > 0, then NLS is said to be focusing (attractive) in the x-dimension and
it admits the two trivial-phase solutions

φ(x) =
√
α k cn(x, k), with λ = α(2k2 − 1), (4)

φ(x) =
√
α dn(x, k), with λ = α(2 − k2). (5)

If k = 0 in (5), then φ is constant and the corresponding ψ is known as a
Stokes’ wave (plane wave) solution of NLS with amplitude

√
α.

On the other hand, if α < 0, then NLS is said to be defocusing (repulsive) in
the x-dimension and it admits the trivial-phase solution

φ(x) =
√
−α k sn(x, k), with λ = −α(1 + k2). (6)

In (4)-(6), k ∈ [0, 1] is a free parameter known as the elliptic modulus and
cn(·, k), dn(·, k), and sn(·, k) are Jacobi elliptic functions [3]. If k < 1, then
φ is periodic in x. The period of the φ’s given in (4) and (6) is 4K(k) and

2



the period of the φ given in (5) is 2K(k). Here K(k) is the complete elliptic
integral of the first kind [3] defined by

K(k) =
∫ π/2

0

1
√

1 − k2 sin2(θ)
dθ. (7)

Although this paper focuses on spatially-periodic trivial-phase solutions (i.e.
solutions of the form given in (4), (5) or (6) with k < 1), it should be noted
that as k → 1, the period of φ increases without bound and φ limits to an
appropriate hyperbolic function. The resulting NLS solution ψ is often called
a solitary wave.

In this paper we investigate the linear stability of the solutions (4)-(6) in the
context of (1). This gives rise to a spectral problem that we investigate per-
turbatively and numerically. We resort to these approximate methods because
the spectra of the associated operators are not known. This is true even for
the one-dimensional (ρ = 0) setting, with the exception of the soliton (k = 1)
limit. Others have considered this problem, using a variety of approximate
methods.

Davey & Stewartson [5] established that all Stokes’ wave solutions are unstable
unless either αβ = 0, or α < 0 and β < 0. Zakharov & Rubenchik [24]
established that the solutions given in (4) and (5) with k = 1 are unstable
with respect to long-wavelength transverse perturbations regardless of the
sign of β. Extensive reviews of the stability of solitary wave solutions are
given in [16, 22, 15, 7]. Martin et al. [19] numerically examined the stability
of the spatially periodic solutions given in (5) for a range of k values. They
established that all such solutions are unstable with respect to two-dimensional
perturbations. Their numerical results are a subset of the results we present in
Section 4. Infeld & Ziemkiewicz [10] established, using perturbation analysis,
that all one-dimensional trivial-phase solutions of (1) are unstable with respect
to two-dimensional perturbations that have long wavelengths in the transverse
dimension. Carter & Segur [4] summarized the asymptotic results we present
in Section 3 and include a numerical result on the stability of one solution of
the form (6). Their numerical method is different from the one used in this
paper. A comparison of these two methods is given in Section 4. A method
similar to the one used by Carter & Segur [4] was used by Aleshkevich et al. [1]
and Kartashov et al. [12, 13]. Kartashov et al. [12] established that solutions of
the form (4)-(5) are unstable with respect to one-dimensional perturbations,
and that solution of the form (6) are stable with respect to one-dimensional
perturbations. They also established that instabilities of (4) have complex
growth rates. Their one-dimensional stability computations are a subset of
the two-dimensional results presented in Section 4. Aleshkevich et al. [1] and
Kartashov et al. [13] numerically examined the stability of the solutions given
in (4)-(6). They established that all such solutions are unstable with respect
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to two-dimensional perturbations.

Our asymptotic results for long-wavelength transverse perturbations general-
ize the work of Zakharov & Rubenchik [24]. Similar results are also found in
Infeld & Ziemkiewicz [10], but only for small k. Our results are valid for all
k ∈ [0, 1]. Our asymptotic results for short-wavelength transverse perturba-
tions expands on the work by Carter & Segur [4]. Our presentation of both
the long- and short-wavelength results elaborates on that in [4] significantly.
Any of the numerical results obtained by these authors are a subset of the
numerical results presented in Section 4. This is due to the larger class of
perturbations incorporated by our method. We do not impose any restrictions
on the spatial period in x of the perturbation modes.

2 The linear stability problem

In order to study the stability of solutions of the form given in (2), we consider
perturbed solutions, ψ

p
= ψ

p
(x, y, t), with the following structure

ψ
p

= (φ(x) + εu(x, y, t) + iεv(x, y, t) + O(ε2))eiλt, (8)

where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real pa-
rameter, and φ(x)eiλt is one of the solutions presented in the previous section.
Substituting (8) into (1), linearizing and separating into real and imaginary
parts gives

−λv + 2φ2v + βvyy + αvxx = −ut, (9a)

−λu+ 6φ2u+ βuyy + αuxx = vt. (9b)

Since the system given in (9) does not depend on y or t explicitly, we assume
that u(x, y, t) and v(x, y, t) have the forms

u(x, y, t) = U(x, ρ)eiρy+Ωt + c.c., (10a)

v(x, y, t) = V (x, ρ)eiρy+Ωt + c.c., (10b)

where ρ is a real constant, Ω is a complex constant, U and V are complex-
valued functions and c.c. denotes complex conjugate. This leads to

−λV + 2φ2V − βρ2V + αVxx = −ΩU, (11a)

−λU + 6φ2U − βρ2U + αUxx = ΩV. (11b)

This system can be rewritten as







0 −L−

L+ 0













U

V





 = Ω







U

V





 , (12)
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where

L− = −λ+ 2φ2 − βρ2 + α∂2
x, (13a)

L+ = −λ+ 6φ2 − βρ2 + α∂2
x. (13b)

Instability occurs if (11) admits a bounded solution with <(Ω) > 0. (The
notation <(Ω) represents the real part of Ω.) We refer to instabilities due
to non-real Ω as oscillatory instabilities. We define the growth rate of an
instability to be the real part of Ω. The system (11) is the focus of this paper.

3 Formal perturbation theory

In this section formal perturbation techniques are used to obtain asymptotic
estimates on parts of the spectrum of (11) for varying ρ. It may be possible for
these techniques to be rigorously justified, but no attempts in that direction
are made here.

3.1 Long-wavelength instabilities

Generalizing the work in [24], we assume that for fixed k and for fixed small ρ
(long-wavelength transverse perturbations), (11) admits solutions of the form

U(x, ρ) ∼ u0(x) + ρu1(x) + ρ2u2(x) + . . . , (14a)

V (x, ρ) ∼ v0(x) + ρv1(x) + ρ2v2(x) + . . . , (14b)

Ω ∼ ρω1 + ρ2ω2 + . . . , (14c)

where the ωj are complex constants and the uj and vj are complex-valued
bounded functions.

Substituting (14) into (11) and separating by powers of ρ gives

−λv0 + 2φ2v0 + αv0xx = 0, (15a)

−λu0 + 6φ2u0 + αu0xx = 0, (15b)

at leading order in ρ, O(ρ0). The general solution to this system is

u0(x) = c1φx + c2φx

∫ x

0
φ−2

z dz, (16a)

v0(x) = c3φ+ c4φ
∫ x

0
φ−2 dz, (16b)

where c1, c2, c3 and c4 are complex constants. The restriction that u0 and v0

must be bounded leads to the requirement that c2 = c4 = 0 because both of
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the integral terms in (16) grow linearly with x. At the next order in ρ, O(ρ),
(11) gives

−λv1 + 2φ2v1 + αv1xx = −ω1u0, (17a)

−λu1 + 6φ2u1 + αu1xx = ω1v0. (17b)

The general solution of this system is

u1(x) = c5φx + c6φx

∫ x

0
φ−2

z dz +
ω1c3
2α

φx

∫ x

0
φ2φ−2

z dz, (18a)

v1(x) = c7φ+ c8φ
∫ x

0
φ−2 dz − ω1c1

2α
xφ, (18b)

where c5, c6, c7 and c8 are complex constants. In order to ensure that u1 and v1

are bounded, c6 and c8 must be chosen to cancel all linear growth that results
from the particular solution of the nonhomogeneous problem. Specifically,

c6 = −ω1c3 sgn(α)
f1

2f2
, (19a)

c8 = ω1c1 sgn(α)
1

2f3
. (19b)

Here and in what follows, the fj = fj(k) are functions that depend on the pa-
rameter k only. Analytic expressions for the fj ’s corresponding to the solutions
given in (4)-(6) are included in Appendices A.1-A.3.

At O(ρ2), (11) gives

−λv2 + 2φ2v2 + αv2xx = βv0 − ω2u0 − ω1u1, (20a)

−λu2 + 6φ2u2 + αu2xx = βu0 + ω2v0 + ω1v1. (20b)

The solution to this system has terms that grow linearly and others that
grow quadratically. Ensuring that the right-hand sides of these equations are
orthogonal to the periodic solutions of the homogeneous problems leads to the
following pair of restrictions

(

β

α
f6 −

ω2
1

4α2

( 1

f3
− f5

)

)

c1 = 0, (21a)

(

β

α
f5 −

ω2
1

4α2

(f 2
1

f2
− f4

)

)

c3 = 0. (21b)

Equation (21) admits two nontrivial solutions

ω2
1 = −4αβ

f3f6

f3f5 − 1
, c3 = 0, and c1 arbitrary, (22a)

ω2
1 = −4αβ

f2f5

f2f4 − f 2
1

, c1 = 0, and c3 arbitrary. (22b)
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To leading order, (22a) leads to the “snake” mode

Us(x, ρ) = φx, (23a)

Vs(x, ρ) = 0, (23b)

Ω2
s = −4αβρ2 f3f6

f3f5 − 1
= −αβρ2ω1s, (23c)

and (22b) leads to the “neck” mode

Un(x, ρ) = 0, (24a)

Vn(x, ρ) = φ, (24b)

Ω2
n = −4αβρ2 f2f5

f2f4 − f 2
1

= −αβρ2ω1n, (24c)

where ω1s and ω1n are functions that depend only on k. These results are
presented in Figure 1, where the scaled growth rates, ω1s and ω1n are plotted
versus k for the unperturbed solutions given in (4)-(6). These plots show that
ω1n < 0 for (4) and (5) and ω1s < 0 for (6). Therefore, if αβ > 0, (4) and (5)
are unstable with respect to long-wave transverse perturbations corresponding
to the neck mode and (6) is unstable with respect to long-wave transverse
perturbations corresponding to the snake mode. These plots also show that
ω1s > 0 for (4) and (5) and ω1n > 0 for (6). Therefore, if αβ < 0, (4) and (5)
are unstable with respect to the snake mode and (6) is unstable with respect
to the neck mode. These asymptotic results are corroborated numerically in
Section 4.

A “snaking” instability has the opposite parity in x from the unperturbed
solution and causes the crests and troughs to oscillate forward and backward.
A “necking” instability has the same parity in x as the unperturbed solution
and causes the crests to alternate between being high and narrow and low and
broad.

Remarks:

• This asymptotic argument establishes that all one-dimensional trivial-phase
solutions with 0 ≤ k < 1 are unstable with respect to two-dimensional
perturbations with long wavelengths in the transverse dimension regardless
of the signs of α and β.

• A one-dimensional trivial-phase solution of NLS is unstable to a growing
neck mode if β > 0, and to a growing snake mode if β < 0.

• Although the transverse wavelength of the perturbation is large, the longi-
tudinal scale of the perturbation is the same as the scale of the unperturbed
solution.

• For all values of k, in the small-ρ limit, the scaled growth rates are finite.
Specifically, 0 ≤ |ω1| ≤ 12.
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Fig. 1. Plots of ω1s and ω1n versus k in (a) and (b) respectively. The solid lines
correspond to (4), the dotted lines correspond to (5) and the dashed lines correspond
to (6).

3.2 Short-wavelength instabilities

If αβ > 0, the last two terms on the left-hand sides of (11a) and (11b) have the
same sign because the second derivative is a negative operator. Additionally,
if ρ is large, then these two terms dominate the other left-hand side terms. If
ρ is chosen large enough to satisfy

ρ2 > 5

∣

∣

∣

∣

α

β

∣

∣

∣

∣

, (25)

then this dominance is established and the two operators on the left-hand side
of (11) have the same sign. Multiply (11a) and (11b) through by U and V
respectively and integrate both equations with respect to x over one period of
the unperturbed solution. If the left-hand sides of the resulting equations are
multiplied, their product is positive because the operators have the same sign
(recall that U and V are real functions). The product of the right-hand sides
results in −Ω2 times the square of the integral of UV . Therefore, Ω2 < 0 at
leading order in ρ and there is no large-ρ instability if αβ > 0. This result is
corroborated numerically in Section 4.

For fixed k, αβ < 0, and fixed large ρ (short-wavelength transverse perturba-
tions), assume

U(x) ∼ ζ0(z) + ρ−2ζ1(z) + ρ−4ζ2(z) + . . . , (26a)

V (x) ∼ ξ0(z) + ρ−2ξ1(z) + ρ−4ξ2(z) + . . . , (26b)

Ω ∼ w0 + ρ−2w1 + ρ−4w2 + . . . , (26c)

αµ2 ∼ −βρ2 + µ0 + ρ−2µ1 + . . . , (26d)

where z = µx, the wj are complex constants, the µj are real constants and
the ζj and ξj are complex-valued bounded functions. The wave number µ is
real only if αβ < 0. This is the only case we consider in this section. Note that
if ρ is large, then µ is necessarily large as well.
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Substituting (26) into (11), simplifying and separating by powers of ρ leads to

ζ0zz + ζ0 = 0, (27a)

ξ0zz + ξ0 = 0, (27b)

at leading order in ρ, O(ρ2). The general solution of this system is

ζ0(z) = b1 sin(z) + b2 cos(z), (28a)

ξ0(z) = b3 sin(z) + b4 cos(z), (28b)

where b1, b2, b3 and b4 are complex constants. At the next order in ρ, O(ρ0),
(11) gives

βξ1zz + βξ1 = w0ζ0 − λξ0 + 2φ2ξ0 + µ0ξ0zz, (29a)

βζ1zz + βζ1 = −w0ξ0 − λζ0 + 6φ2ζ0 + µ0ζ0zz. (29b)

In order for ζ1 and ξ1 to be bounded, the right-hand side of (29) must be
orthogonal to the solutions of the corresponding homogeneous problem. This
requirement leads to the restrictions





















w0 0 −λ + 2g1 − µ0 0

0 w0 0 −λ+ 2g2 − µ0

−λ + 6g1 − µ0 0 −w0 0

0 −λ+ 6g2 − µ0 0 −w0





















~b = ~0, (30)

where ~b = (b1 b2 b3 b4)
T and ~0 is the zero vector. Using the half-angle trigono-

metric identities, g1 and g2 can be rewritten as

g1 = I1 − I2 =
1

L

∫ L

0
φ2(x) dx− 1

L

∫ L

0
φ2(x) cos(2µx) dx, (31a)

g2 = I1 + I2 =
1

L

∫ L

0
φ2(x) dx+

1

L

∫ L

0
φ2(x) cos(2µx) dx, (31b)

where L represents the period of the unperturbed solution φ.

Analytic expressions for I2 corresponding to the solutions given in (4)-(6) are
not known, but the Riemann-Lebesgue Lemma [9] can be used to establish
that I2 ∼ 0 for large µ (large ρ). This establishes that g1 ∼ I1 and g2 ∼ I1 in
the large-ρ limit. For the solution given in (4),

I1 = α
4E(k) + 4(k2 − 1)K(k)

4K(k)
, (32)

for the solution given in (5),

I1 = α
E(k)

K(k)
, (33)
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and for the solution given in (6),

I1 = |α|K(k) − E(k)

K(k)
. (34)

In each of these expressions, E(k) is the complete elliptic integral of the second
kind [3] defined by

E(k) =
∫ π/2

0

√

1 − k2 sin2(θ) dθ. (35)

In order for a nonzero solution of (30) to exist, w0 must be chosen to satisfy

w0 ∼ ±
√

2I1 − λ+ µ0

√

λ− 6I1 − µ0, (36)

where we have used the relationships g1 ∼ I1 and g2 ∼ I1. Maximizing the
positive root of (36) with respect to the free parameter µ0 gives

w0m
∼ 2I1, (37)

when µ0 ∼ λ − 4I1. Plots of the scaled growth rate w0m
/|α| versus k for the

solutions given in (4)-(6) are included in Figure 2.

Then (26d) defines ρη, the value of ρ at which the unstable mode with wave
number η achieves its maximal growth rate

−βρ2
η ∼ α(2πη/L)2 + 4I1 − λ. (38)

Equation (38) is valid for all values of η such that ρ is large. If η is an integer,
then the corresponding perturbation has the same period as φ. If η is not an
integer, then the perturbation has an x-period different from φ. We also find
how far ρ can deviate from ρη before ω0 becomes imaginary

δρη ∼ I1/(|β|ρη) = O(1/η). (39)

Remarks:

• If αβ > 0, then all one-dimensional trivial-phase solutions are unstable with
respect to two-dimensional perturbations only if the transverse wavelength
is longer than a well-defined cutoff.

• This asymptotic argument establishes that all one-dimensional trivial-phase
solutions with k < 1 are unstable with respect to two-dimensional pertur-
bations with arbitrarily short wavelengths if αβ < 0.
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Fig. 2. Plots of w0m
/|α| versus k. The solid line corresponds to (4), the dotted line

corresponds to (5) and the dashed line corresponds to (6).

• In the large-ρ limit, the perturbations to which the solutions given in (4)-(6)
are unstable have short wavelengths in both the transverse and longitudinal
directions.

• For all values of k, the scaled growth rates of the instabilities remain bounded
as ρ→ ∞. Specifically, 0 ≤ w0m

≤ 2|α| for all solutions under consideration.
• The k → 1 limit of the large-ρ results is singular because the period of the

unperturbed solution goes to infinity and “large ρ” loses its meaning.

4 Numerical results

In order to find approximations to the spectra of (11) corresponding to the
solutions given in (4)-(6), we employ the numerical method of Deconinck &
Kutz [6]. In Section 4.1, we describe this method in detail. In Sections 4.2
and 4.3, we include results of numerical studies of (11) corresponding to the
solutions given in (4)-(6).

4.1 Numerical method

The Fourier-Floquet-Hill (FFH) numerical method presented by Deconinck &
Kutz [6] relies on Fourier and Floquet theory. We chose this method because it
is spectrally accurate for differential eigenvalue problems with periodic coeffi-
cients and is a significant improvement over the method of Carter & Segur [4].

The only nonconstant coefficient in (11) is φ2. The Fourier series for φ2 corre-
sponding to the solutions given in (4)-(6) can be obtained from the relation-
ships

sn2(x, k) =
1 −E(k)/K(k)

k2
− 2π2

k2K2(k)

∞
∑

m=1

mqm

1 − q2m
cos

(

mπx

K(k)

)

, (40a)

cn2(x, k) = 1 − sn2(x, k), (40b)
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dn2(x, k) = 1 − k2sn2(x, k), (40c)

where

q = exp
(

− πK(
√

1 − k2)

K(k)

)

. (41)

Equation (40a) is found in [11] and it should be noted that [3] contains an
incorrect expression (Equation 911.01) for the same Fourier series. Floquet’s
Theorem establishes that all bounded solutions of (11) are of the form

U(x) = eiµx
∞
∑

j=−∞

Ûj eiπjx/L, (42a)

V (x) = eiµx
∞
∑

j=−∞

V̂j eiπjx/L, (42b)

where µ ∈ [−π/L, π/L). We refer to functions that share the period L of φ2(x)
as periodic; functions that are periodic with period 2L are called antiperiodic.
It follows that if µ = 0, then U and V are either periodic or antiperiodic
functions of x. For all other values of µ, the functions U and V are quasi-
periodic or have periods exceeding 2L.

Substituting (42) and the appropriate series for φ2 into (11) and multiply-
ing the resulting equations through by e−iµx leads to the following system of
coupled difference equations

(

λ+ βρ2 + α
(

µ+
πj

L

)2)

V̂j − 2
∞
∑

m=−∞

f̂(j−m)/2 δ2|(j−m)V̂m = ΩÛj , (43a)

−
(

λ+ βρ2 + α
(

µ+
πj

L

)2)

Ûj + 6
∞
∑

m=−∞

f̂(j−m)/2 δ2|(j−m)Ûm = ΩV̂j , (43b)

where j is any integer, f̂l is the lth- Fourier coefficient of φ2, and δ2|(j−m) is
1 if 2 divides (j −m) and 0 otherwise. The system given in (43) is a doubly
bi-infinite set of difference equations that is equivalent to (11).

For numerical purposes, we restrict j ∈ [−N,N ] where N is a large positive
integer. For any given unperturbed solution (i.e. any α, β and k), this reduces
(43) to a (4N+2)-dimensional linear system with two parameters, ρ and µ. The
ρ-interval (We choose ρ ∈ [0, 2] if αβ > 0 and ρ ∈ [0, 4] if αβ < 0.) is divided
into Nρ equally spaced gridpoints. For each ρ, the µ-interval [−π/L, π/L) is
divided into Nµ equally spaced gridpoints. The eigenvalues (all 4N + 2 of
them) of the coefficient matrix in the truncated version of (43) are found
for each gridpoint in (ρ, µ)-space. For each choice of α, β and unperturbed
solution, Nρ·Nµ matrix eigenvalue problems are solved resulting in a total of
Nρ·Nµ· (4N + 2) eigenvalues.

The spectrum of a one-dimensional linear operator (or more correctly, its max-
imal extension [14]) consists of a collection of straight-line segments (usually
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confined to the coordinate axes) and curves. We define a spectral component
to be a subset of the spectrum that is connected to a spectral element cor-
responding to a periodic eigenfunction, without passing through a spectral
element corresponding to an antiperiodic eigenfunction. Note that there are
an infinite number of spectral components. The consequence of the truncation
of (43) to a (4N + 2)-dimensional system is to compute approximations to
only 4N +2 spectral components. This truncation effect is the same as that of
using finite difference methods [6]. Varying µ results in approximate spectral
elements on the same collection of spectral components.

Figure 3a contains a plot of <(Ω) > 0 versus ρ. Many figures like this are shown
in what follows and it is essential that the reader has a clear understanding
of what is displayed. For any given choice of α and β (here α = −β = −1),
an approximation to the spectrum of (11) is computed. This is achieved using
the FFH method as described above. For Fig. 3a, Nρ = 800 and Nµ = 20.
As we are interested in instabilities of the solutions of (1), the real part of
any element of the spectrum found is of most interest to us. To present this
information compactly, the spectrum is projected onto the real axis, and values
with positive projections are kept. Thus for any chosen value of ρ a point set
(due to the numerical approximation) of positive values is obtained. For each
fixed value of ρ, these point sets are plotted vertically, see Fig. 3a. In this
figure, the gray and black points correspond to the real projections of real and
(non-real) complex values respectively.

Traditionally, special attention is devoted to periodic or antiperiodic eigen-
functions. As remarked earlier, these are easily obtained using the FFH method,
by letting µ = 0 in (42). Using the same construction as above with Nµ =
1, µ = 0 results in Fig. 3b. Note that no projections of non-real complex were
included in Fig. 3b. By virtue of this more restrictive construction, all point
sets displayed in Fig. 3b are subsets of those in Fig. 3a. The comparison of
the two figures illustrates the importance of considering eigenfunctions beyond
those that are periodic or antiperiodic. Alternatively, Fig. 3b can be obtained
using the monodromy method used by Carter & Segur [4] and described in
more detail in [12].

To emphasize the efficiency of the FFH method, we note that even though
the data displayed in Fig. 3a obtained by the FFH method contains nearly
20 times as much information, it is significantly faster to compute than the
data shown in Fig. 3b using the monodromy method. Computing the data
for Figure 3a using the FFH method requires approximately 120 seconds on a
3.2GHz Pentium 4 with 1.0GB RAM running Mathematica 5.0 on Microsoft
Windows XP Professional. The numerical parameters used in simulations to
create Fig. 3a are included in Appendix B.
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Fig. 3. Plots of <(Ω) > 0 versus ρ obtained using the Fourier-Floquet-Hill method
(a) and the monodromy method (b).

4.2 Case I: αβ > 0

Solutions of cn-type

This section contains results from numerical simulations using α = β = 1 and
solutions of the form given in (4). Figure 4 contains plots of <(Ω) > 0 versus
ρ for k = 0.2, 0.5, 0.9 and 0.9999. The gray points correspond to real values
of Ω and the black points correspond to non-real values of Ω. The solid lines
are obtained from the small-ρ asymptotic results. A record of all numerical
parameters is included in Appendix B.

Observations:

• For all values of k there is a critical value of ρ = ρc, above which there is
no apparent instability.

• As k increases, ρc increases to approximately 1.75.
• As k increases, the maximum growth rate over all ρ increases to approxi-

mately 1.54.
• As k increases, the value of ρ at which the maximum growth rate is achieved

increases to approximately 1.21.
• For small values of ρ, complex eigenvalues are dominant (i.e. have the largest

growth rates).
• The unperturbed solution is unstable with respect to one-dimensional (ρ =

0) perturbations. This instability is an oscillatory instability.
• As k → 1, the growth-rate regions of the spectrum limit to a single real-

valued curve.
• As k → 1, the spectrum for the two-dimensional problem (i.e. including

all values of ρ) appears to approach [−π/2, π/2] on the real line. For the
one-dimensional problem (fixed ρ) there are only two isolated eigenvalues
on the real line.

• As k → 1, the spectra for the solutions given in (4) and (5) limit to the
same spectrum.

• There is strong agreement between the numerical and small-ρ asymptotic
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Fig. 4. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of cn-type with α = β = 1. The spectra were computed for ρ ∈ [0, 2]. The
sharp drop off of <(Ω) is genuine.

results.
• In the small-ρ limit, the asymptotic results do not select the dominant

instability. However, they do select the dominant instability corresponding
to real eigenvalues.

Solutions of dn-type

This section contains results from numerical simulations using α = β = 1 and
solutions of the form given in (5). Figure 5 contains plots of <(Ω) > 0 versus ρ
for k = 0.2, 0.5, 0.9 and 0.9999. The gray points correspond to real values of Ω
and the black points correspond to non-real values of Ω with nonzero imaginary
part. The solid lines are obtained from the small-ρ asymptotic results. A record
of all numerical parameters is included in Appendix B.

Observations:

• For all values of k, there is a critical value of ρ = ρc, above which there is
no apparent instability.
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• As k increases, the maximum growth rate over all ρ decreases to approxi-
mately 1.54.

• There are no oscillatory instabilities.
• The unperturbed solution is unstable with respect to one-dimensional (ρ =

0) perturbations.
• As k → 0, the spectrum approaches the (known) spectrum for the Stokes’

wave solution. For the Stokes’ wave of amplitude 1, the unstable modes fill
the region above the ρ-axis and below the curve given by (for 0 ≤ ρ ≤

√
2)

<(Ω) = ρ
√

4 − ρ2 and (for ρ >
√

2) <(Ω) = 2 [5].
• As k → 1, the growth-rate regions of the spectrum limit to a single real-

valued curve.
• As k → 1, the spectrum for the two-dimensional problem (i.e. including

all values of ρ) appears to approach [−π/2, π/2] on the real line. For the
one-dimensional problem (fixed ρ) there are only two isolated eigenvalues
on the real line.

• As k → 1, the spectra for the solutions given in (4) and (5) limit to the
same spectrum.

• Comparing the small-ρ asymptotic results with the numerical results is dif-
ficult because the asymptotic results are in the middle of continua.

• In the small-ρ limit, the asymptotic results do not select the dominant
instability.

Solutions of sn-type

This section contains results from numerical simulations using α = β = −1
and solutions of the form given in (6). Figure 6 contains plots of <(Ω) > 0
versus ρ for k = 0.2, 0.5, 0.9 and 0.9999. The gray points correspond to real
values of Ω and the black points correspond to non-real values of Ω with
nonzero imaginary part. The solid lines are obtained from the small-ρ asymp-
totic results. A record of all numerical parameters is included in Appendix
B.

Observations:

• For all values of k, there is a critical value of ρ = ρc, above which there is
no apparent instability.

• For all values of k, it appears that ρc = 1.
• As k increases, the maximum growth rate over all ρ increases to approxi-

mately 0.52.
• As k increases, the value of ρ at which the maximum growth rate is achieved

decreases to approximately 0.7.
• The unperturbed solution is spectrally stable with respect to one-dimensional

(ρ = 0) perturbations.
• There are no oscillatory instabilities.
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Fig. 5. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of dn-type with α = β = 1.

• As k → 1, the growth-rate regions of the spectrum limit to a single real-
valued curve.

• There is strong agreement between the numerical and small-ρ asymptotic
results.

• In the small-ρ limit, the asymptotic results select the dominant instability.

4.3 Case II: αβ < 0

Solutions of cn-type

This section contains results from numerical simulations using α = −β = 1
and solutions of the form given in (4). The k = 1 version of this case is studied
in detail in [7]. Figure 7 contains plots of <(Ω) > 0 versus ρ for k = 0.2, 0.5, 0.9
and 0.9999. The gray points correspond to real values of Ω and the black
points correspond to non-real values of Ω. The solid lines are obtained from
the small-ρ asymptotic results and the dashed lines are obtained using the
large-ρ asymptotic results. A record of all numerical parameters is included in
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Fig. 6. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of sn-type with α = β = −1. The spectra were computed for ρ ∈ [0, 2].
The sharp drop off of <(Ω) is genuine.

Appendix B.

Observations:

• For all values of k, there does not appear to be a ρc above which there are
no instabilities.

• For all values of k, as ρ increases, <(Ω) approaches a finite nonzero limit.
• As k increases, the maximum growth rate over all ρ decreases to approxi-

mately 0.66.
• Oscillatory instabilities exist for all values of k.
• For small values of ρ, oscillatory instabilities dominate other instabilities.
• The unperturbed solution is unstable with respect to one-dimensional (ρ =

0) perturbations. This instability is an oscillatory instability.
• As k → 1, the spectra for the solutions given in (4) and (5) limit to the

same spectrum.
• There is strong agreement between the numerical and small-ρ asymptotic

results.
• In the small-ρ limit, the asymptotic results do not select the dominant
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Fig. 7. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of cn-type with α = −β = 1.

instability. However, they do select the dominant instability corresponding
to real eigenvalues.

• There is strong agreement between the numerical and large-ρ asymptotic
results.

Solutions of dn-type

This section contains results from numerical simulations using α = −β = 1
and solutions of the form given in (5). The k = 1 version of this solution
is studied in detail in [7]. Figure 8 contains plots of <(Ω) > 0 versus ρ for
k = 0.2, 0.5, 0.9 and 0.9999. The gray points correspond to real values of Ω
and the black points correspond to non-real values of Ω. The solid lines are
obtained from the small-ρ asymptotic results and the dashed lines are obtained
using the large-ρ asymptotic results. A record of all numerical parameters is
included in Appendix B.

Observations:

• For all values of k, there does not appear to be a ρc above which there are
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Fig. 8. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of dn-type with α = −β = 1.

no instabilities.
• As k → 0, the spectrum approaches the (known) spectrum for the Stokes’

wave solution. For the Stokes’ wave of amplitude 1, the unstable modes fill
the region above the ρ-axis and below the curve given by (for 0 ≤ ρ ≤

√
2)

<(Ω) = ρ
√

4 − ρ2 and (for ρ >
√

2) <(Ω) = 2 [5].
• The unperturbed solution is unstable with respect to one-dimensional (ρ =

0) perturbations.
• For all values of k, as ρ increases, <(Ω) approaches a finite nonzero limit.
• As k → 1 the maximal growth rate over all ρ decreases to approximately

0.66.
• Oscillatory instabilities exist for all values of k.
• As k → 1, the spectra for the solutions given in (4) and (5) limit to the

same spectrum.
• Comparing the small-ρ asymptotic results with the numerical results is dif-

ficult because the asymptotic result is in the middle of a continuum.
• In the small-ρ limit, the asymptotic results do not select the dominant

instability.
• There is strong agreement between the numerical and large-ρ asymptotic

results.
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Solutions of sn-type

This section contains results from numerical simulations using α = −β = −1
and solutions of the form given in (6) . Figure 9 contains plots of <(Ω) > 0
versus ρ for k = 0.2, 0.5, 0.9 and 0.9999. The gray points correspond to real
values of Ω and the black points correspond to non-real values of Ω. The solid
lines are obtained from the small-ρ asymptotic results and the dashed lines
are obtained using the large-ρ asymptotic results. A record of all numerical
parameters is included in Appendix B.

Observations:

• For all values of k, there does not appear to be a ρc above which there are
no instabilities.

• As k increases the maximum growth rate over all ρ increases limiting to
approximately 2.

• Oscillatory instabilities exist for all values of k, but they never dominate.
• The unperturbed solution is spectrally stable with respect to one-dimensional

(ρ = 0) perturbations.
• As k → 1, the spectrum approaches the (known) spectrum for the Stokes’

wave solution. For the Stokes’ wave of amplitude 1, the unstable modes fill
the region above the ρ-axis and below the curve given by (for 0 ≤ ρ ≤

√
2)

<(Ω) = ρ
√

4 − ρ2 and (for ρ >
√

2) <(Ω) = 2 [5].
• For all values of k, as ρ increases, <(Ω) approaches a finite nonzero limit.
• There is strong agreement between the numerical and small-ρ asymptotic

results.
• In the small-ρ limit, the asymptotic results select the dominant instability.
• There is strong agreement between the numerical and large-ρ asymptotic

results.

5 A conjecture about the topology of the spectrum

Based on the multitude of runs we investigated, only some of which are pre-
sented here, we can formulate a conjecture about the topology of the spectra
of (11). To do so, we need to introduce some terminology.

It is known that the spectrum of a second-order self-adjoint linear differential
operator with periodic coefficients consists of a sequence of bands confined
to a real half-line [17]. It is also known that the edges of these bands are
eigenvalues corresponding to either periodic or antiperiodic eigenfunctions.
Thus, in that context, special importance is associated with these periodic or
antiperiodic eigenfunctions. To what extent can the same be said about our
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Fig. 9. Plots of <(Ω) > 0 versus ρ for four different values of k corresponding to
solutions of sn-type with α = −β = −1.

spectral problem, which is of fourth order?

Definition. (Periodic or antiperiodic curves) Periodic or antiperiodic
curves are curves in the (ρ,<(Ω))-plane consisting of points (ρ,Ω) with Ω ∈ R,
so that Ω is a spectral element corresponding to a periodic or antiperiodic
eigenfunction.

For instance, to the eye Fig. 3b displays at least seven periodic or antiperiodic
curves, two of which are almost identical.

Definition. (Zakharov-Rubenchik curve) The Zakharov-Rubenchik curve
is the periodic or antiperiodic curve that passes through the origin of the
(ρ,<(Ω))-plane.

Note that in all cases, we have an asymptotic approximation to the Zakharov-
Rubenchik curve, given by (23c) or (24c). The question we want to address is
how important the knowledge of these curves is in terms of understanding the
entire collection of unstable real modes, as shown in gray in Fig. 3a.
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We claim the following conjecture holds:

Conjecture: (i) Any area in the (ρ,Ω ∈ R
+)-plane which is contained un-

der an odd number of periodic or antiperiodic curves, one of which is the
Zakharov-Rubenchik curve, is filled with unstable modes. (ii) The boundary
of any bounded areas containing spectrally stable modes consists of periodic
or antiperiodic curves and possibly the horizontal axis.

Note that it is not true that any area in the (ρ,Ω ∈ R
+)-plane which is

contained under an even number of periodic or antiperiodic curves, one of
which is the Zakharov-Rubenchik curve, is filled with stable modes.

This conjecture, if correct, may be used to infer information about unstable
modes that are not periodic or antiperiodic from information about periodic
or antiperiodic instabilities.

6 Summary

In this paper, we

• Established asymptotically that all periodic one-dimensional trivial-phase
solutions of NLS are unstable with respect to two-dimensional perturbations
with long wavelengths in the transverse dimension regardless of the signs of
α and β. If β > 0, then the solution is unstable with respect to a growing
“neck” mode. If β < 0, then the solution is unstable with respect to a
growing “snake” mode.

• Established asymptotically that if αβ < 0, then all periodic one-dimensional
trivial-phase solutions of NLS are unstable with respect to two-dimensional
perturbations with arbitrarily short wavelengths. Further, as the wavelength
of the perturbation decreases, the growth rate of the instability approaches
a finite nonzero value.

• Determined numerically the linear stability spectrum for twelve periodic
trivial-phase solutions. We present results for periodic and nonperiodic per-
turbations. To our knowledge, these are the most complete and detailed
spectra available. Our observations are based upon many numerical simula-
tions which are not explicitly shown here. All spectra resulting from these
numerical simulations are well-represented by those included.

• Established numerically that the solution given in (4) is unstable with re-
spect to one-dimensional perturbations. This instability is oscillatory in na-
ture because its growth rate is complex.

• Established numerically that the solution given in (5) is unstable with re-
spect to one-dimensional perturbations.
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• Established numerically that the solution given in (6) is spectrally stable
with respect to one-dimensional perturbations.

• Established numerically that the solution given in (4) is unstable with re-
spect to oscillatory instabilities regardless of the sign of β.

• Established numerically that the solutions given in (5) and (6) are unstable
with respect to oscillatory instabilities only if β < 0.
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A Definition of the fj’s

Here we include explicit definitions of all the functions necessary to calculate
the small-ρ growth rate. In each of the following expressions, L is the period

of the unperturbed solution and φ̃ = φ/
√

|α|. Note that the fj ’s depend only
on the parameter k.

f1(k) =
1

L

∫ L

0
φ̃2φ̃−2

x dx, f2(k) =
1

L

∫ L

0
φ̃−2

x dx,

f3(k) =
1

L

∫ L

0
φ̃−2 dx, f4(k) =

1

L

∫ L

0
φ̃4φ̃−2

x dx,

f5(k) =
1

L

∫ L

0
φ̃2 dx, f6(k) =

1

L

∫ L

0
φ̃2

x dx.

A.1 Solutions of cn-type

In this section, we specialize the above expressions for the fj to solutions of
cn-type (solutions of the form given in (4)). L = 4K(k), k′ =

√
1 − k2 and

Γ = E(k)/K(k).

f1(k) = 1 − 2Γ, f2(k) =
1

k2k′2
(k′

2
+ (k2 − k′

2
)Γ),

f3(k) =
1

k2k′2
(k′

2 − Γ), f4(k) = k2(1 − 2Γ − 1

k2
(1 − Γ)),

f5(k) = Γ − k′
2
, f6(k) =

1

3
(k′

2
+ (2k2 − 1)Γ).
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A.2 Solutions of dn-type

In this section, we specialize the above expressions for the fj to solutions of
dn-type (solutions of the form given in (5)). L = 2K(k), k′ =

√
1 − k2 and

Γ = E(k)/K(k).

f1(k) =
1

k4
(2k′

2 − (1 + k′
2
)Γ + k2(1 − Γ)), f2(k) =

1

k4k′2
(2k′

2 − (1 + k′
2
)Γ),

f3(k) =
1

k′2
Γ, f4(k) =

1

k4
(2k′

2 − (1 + k′
2
)Γ),

f5(k) = Γ, f6(k) =
1

3
((2 − k2)Γ − 2k′

2
).

A.3 Solutions of sn-type

In this section, we specialize the above expressions for the fj to solutions of
sn-type (solutions of the form given in (6)). L = 4K(k), k′ =

√
1 − k2 and

Γ = E(k)/K(k).

f1(k) =
1

k′4
(k′

2 − 2Γ), f2(k) =
1

k2k′4
(k′

2 − (1 + k2)Γ),

f3(k) =
1

k2
(1 − Γ), f4(k) = k2(

1

k′4
(k′

2 − 2Γ) − 1

k2k′2
(Γ − k′

2
)),

f5(k) = 1 − Γ, f6(k) =
1

3
((1 + k2)Γ − k′

2
).

B Numerical parameters

The numerical parameters used to create Figure 3a are N = 16, Nρ = 800 and
Nµ = 20.

Table B.1 contains the numerical parameters used to create Figures 4-9. The
parameters Nρ and Nµ were chosen so that the points in the spectra were
sufficiently dense. The parameter N was chosen well above what was necessary
in order to ensure the numerical method had converged.
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