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The Instabilities of Periodic Traveling Water Waves with
Respect to Transverse Perturbations
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Abstract. We show that the exact reformulation of the classical surface water
wave problem due to Ablowitz, Fokas and Musslimani, provides a convenient
framework to investigate the instabilities of one-dimensional stationary peri-

odic waves, with respect to transverse perturbations. Such perturbations have
trigonometric dependence on the transverse variable, and are bounded (typi-
cally quasi periodic) in the longitudinal direction. Using the new formulation,
we examine waves in both deep and shallow water, confirming previous results
about their instabilities due to McLean and Francius & Kharif, among others.

1. Introduction

The objective of this paper is to examine the stability of one-dimensional pe-
riodic surface gravity waves with respect to two-dimensional perturbations using a
recent nonlocal reformulation of the water wave problem due to Ablowitz, Fokas
and Musslimani [AFM06]. Of course, there exists a great wealth of literature on
the stability of traveling water waves, and by no means can this be completely cov-
ered, nor replicated, within the context of this paper. We discuss the major results
that are fundamental to our investigation.

Perhaps the earliest results on the stability of surface water waves are those
discussing the instability of small-amplitude waves in deep water with respect to
long-wave perturbations. This modulational (or Benjamin-Feir) instability was dis-
covered in 1967 by Benjamin [Ben67], Benjamin & Feir [BF67] and Whitham
[Whi67]. Benjamin[Ben67] considered a Stokes wave solution perturbed by two
sidebands. By examining the Fourier mode expansion of the perturbed solution,
he determined that waves of period L in water of dimensionless depth kh > 1.363
(k = 2π/L), are unstable with respect to long-wave perturbations.

Since the 1960s, researchers have been using numerical techniques to deter-
mine the stability properties of traveling waves due to the complicated nature
of the underlying equations of motion. Examples of in-depth numerical stud-
ies on one-dimensional solutions perturbed by one-dimensional disturbances in-
clude the early work of Longuet-Higgins[LH78a, LH78b], and the current work
of Nicholls[Nic09]. Recently, we have examined the spectral stability of periodic
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traveling waves in the one-dimensional setting[DO] . In addition to recovering ex-
pected results (i.e. waves in deep water are modulationally unstable with respect
to long-wave perturbations), we found there are specific classes of quasi-periodic
perturbations that yield instabilities in shallow water, even for small-amplitude
waves.

As stated, the above results are limited to one-dimensional periodic travel-
ing waves perturbed by one-dimensional periodic or quasi-periodic disturbances.
As an intermediate step between investigating the one-dimensional and the two-
dimensional problem, different researchers have considered the effects of two- di-
mensional perturbations on one-dimensional traveling wave solutions. In other
words, they have investigated the transverse instabilities of the one-dimensional so-
lutions. Early notable work on the transverse instabilities of solutions of the Euler
equations was conducted by Bryant[Bry78]. Using a set of truncated nonlinear
approximations to the Euler equations for water of finite depth, he explored the
instabilities using a small number of wave interactions. Several years later, McLean
presented the first results on the transverse instabilities of one-dimensional so-
lutions to the Euler equations for water of finite depth. McLean et al. (Refs.
[McL82a, McL82b, MMM+81]) considered perturbations of the form

η1 = e−σteipx+iqy
∞∑

j=−∞
aje

ijx, and

φ1 = e−σteipx+iqy
∞∑

j=−∞
bje

ijx cosh(κj(z + h))

cosh(κjh)
.

Here η1 and φ1 are the perturbations of the surface elevation and the velocity po-
tential in the interior of the fluid, respectively. Substituting these expansions into
the original equations of motion, McLean calculated the growth rates −σ associated
with the linearized problem for waves in deep water. He found that in deep wa-
ter, small-amplitude one-dimensional waves are most unstable to one-dimensional
perturbations. However, as the amplitude of the wave is increased, the wave be-
comes more unstable with respect to two-dimensional perturbations. More recently,
McLean’s stability calculations have been extended to waves of even greater am-
plitude by Kharif & Ramamonjiarisoa[KR90] and to waves in water of shallower
depths by Francius & Kharif[FK06].

The purpose of this paper is to demonstrate that we can replicate these trans-
verse instability results using the nonlocal formulation of Ablowitz, Fokas, and
Musslimani [AFM06] with less computational effort. In order to numerically cal-
culate the spectral instabilities, we must determine (i) one-dimensional traveling
wave solutions, and (ii) the growth rates associated with two-dimensional pertur-
bations of these one-dimensional traveling waves. We have recently shown that
one-dimensional periodic traveling waves solutions can be determined by numeri-
cally solving the single equation

∫ L

0

e−ikx
√
(1 + η2x)(c

2 − 2gη) sinh (k(η + h)) dx = 0,

∀k ∈ 2π
L Z0, for the surface elevation η(x) moving with wave-speed c, see Ref.

[DO]. Using the numerical scheme outlined in Deconinck & Oliveras[DO], we
determine one-dimensional traveling wave solutions for various wave amplitudes and
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water depths. These one-dimensional solutions are perturbed with two-dimensional
(quasi-) periodic disturbances. Substituting the two-dimensional perturbations into
the equations of motion, we calculate the linear growth rates using a Fourier-Floquet
decomposition, see for example Ref. [DK06]. We find that our stability results are
in general agreement with those of Francius & Kharif [FK06] and the other sources
mentioned above. Although a direct comparison is not possible (see Section 5), it
appears that our method produces more accurate results at a significantly reduced
computational cost.

2. Equations of Motion

We consider Euler’s equations describing the dynamics of the surface of an
ideal fluid in three dimensions. For the periodic problem, this requires us to solve
Laplace’s equation inside the fluid domain D with periodic boundary conditions in
both horizontal directions x and y. The fluid domain D is shown in Figure 1. The
equations of motion are

φxx + φyy + φzz = 0, (x, y, z) ∈ D,(2.1)

φz = 0, z = −h,(2.2)

ηt + φxηx + φyηy = φz, z = η(x, y, t),(2.3)

x

y

z

L2

L1

h

Figure 1. The fluid domain for a water wave surface with periodic
boundary conditions.
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φt +
1

2

(
φ2
x + φ2

y

)
+ gη = 0, z = η(x, y, t),(2.4)

where φ = φ(x, y, z, t) is the velocity potential, η = η(x, y, t) is the surface elevation,
g is the acceleration of gravity, and h is the constant depth of the fluid when at
a state of rest. In this paper, we ignore the effects of surface tension. We require
periodic boundary conditions with period L1 in the x-direction and L2 in the y-
direction. This provides additional boundary conditions on the surface elevation as
well as on the velocity potential once the induced mean flow has been eliminated.
We have assumed finite depth in the above formulation. The formulation is also
valid in infinite depth.

As discussed in Ref. [DO], Euler’s equations as written above are challenging
to work with directly: they are a free-boundary problem with nonlinear boundary
conditions specified at the unknown boundary. For the two-dimensional problem
(i.e., one-dimensional surface), there are several reformulations that reduce these
complications. However for the three-dimensional problem (with two-dimensional
surface), there are fewer alternative formulations. One of the commonly used re-
formulations is that due to Zakharov, Craig and Sulem[Zak68, CS93]. A minor
disadvantage to the Zakharov-Craig-Sulem formulation is that for numerical imple-
mentations, one must truncate the series expansion of the Dirichlet-to-Neumann
operator. The nonlocal formulation presented below does not require such a trun-
cation.

Ablowitz, Fokas and Musslimani (AFM) [AFM06] introduced a new, nonlocal
reformulation of the Euler equations, valid for surface waves localized on the whole
line or the whole plane. It is essentially trivial to extend this formulation to periodic
boundary conditions. In a traveling coordinate frame where x = (x, y) is moving
with speed c̄ = (cx, cy), the equations of motion can be written as

L2∫
0

L1∫
0

e−ik̄·x
(
i(ηt − c̄ · ∇η) cosh(κ(h+ η))

− k̄ · ∇q

κ
sinh(κ(h+ η))

)
dx dy = 0,(2.5)

qt − c̄ · ∇q +
1

2
|∇q|2 + gη − 1

2
· (ηt +∇q · ∇η)2

1 + |∇η|2
= 0,(2.6)

where ∇ = (∂x, ∂y), q(x, y, t) = φ(x, y, η(x, y, t), t) is the velocity potential evalu-

ated at the surface, k̄ = (kx, ky), κ =
√
k2x + k2y and

Λ =

{
k̄ ∈ R

2

∣∣∣∣kx =
2mπ

L1
, ky =

2nπ

L2
, (m,n) ∈ Z

2 − {(0, 0)}
}
.

For the remainder of this paper, we use this nonlocal formulation of the water-
wave problem. We refer the reader to Refs. [DO, AFM06, AH08] for additional
information regarding this exact reformulation of the water-wave problem.

Since our goal is to determine the stability of one-dimensional periodic trav-
eling waves with respect to two-dimensional perturbations, we must use the full
equations for the two-dimensional surface gravity wave to examine stability. Since
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we only consider the stability of one-dimensional solutions, we reduce the equa-
tions of motion by eliminating the y-dependence in (2.5) and (2.6) to determine the
traveling wave solutions moving in the x-direction with speed c. In Ref. [DO], we
demonstrated that periodic one-dimensional traveling wave solutions are solutions
of

(2.7)

L∫
0

e−ikx
√
(1 + η2x)(c

2 − 2gη) sinh (k(η + h))dx = 0,

∀ k ∈ 2π
L Z0, for the surface elevation η(x). This equation provides solutions to the

fully nonlinear problem, and is easily solved numerically. To determine the velocity
potential q(x) at the surface (which is needed when examining the stability of
traveling waves), we use the relationship

(2.8) qx = c±
√
(1 + η2x) (c

2 − 2gη).

where we work with the negative sign in order to enforce that u − c < 0 within
the fluid bulk as well as along the free surface for all but the limiting wave.
One-dimensional solutions are computed using an iterative pseudo-continuation ap-
proach as outlined in Ref. [DO]. All solutions were calculated using at least 64
Fourier Modes and a residual error < 10−14.

3. Stability Formulation

Before we proceed to investigate the stability of the traveling wave profiles, we
discuss what perturbations we wish to allow. In this paper, we plan to investigate
the effects of two-dimensional pertubations. It may appear natural to consider
disturbances of the same period as the underlying stationary wave in the x direction,
and vary the period of the perturbation in the y direction. However, we wish to
work with a more general class of disturbances, namely those that are bounded on
the whole real plane. Specifically, for some disturbance U(x, y), we use the notation
||U(x, y)|| < ∞ to mean that sup

R2 |U(x, y)| < ∞ and that U(x, y) is continuous
for all (x, y) ∈ R2. It is important to realize that this class is the largest class
of perturbations allowed by the physical problem at hand. Indeed, disturbances
should be bounded and continuous functions, but there is no physical reason to
restrict their spatial dependence to be periodic.

In order to investigate the stability of the traveling wave profiles with respect to
such perturbations, it is necessary to reformulate the governing equations. Equation
(2.6) is a local statement and does not require modification. However, the current
incarnation of the nonlocal equation (2.5) applies specifically to waves of period L1

in the x-direction and L2 in the y-direction. Let 〈〈f〉〉 represent the average value
of a function f(x), f : R2 → R by

〈〈f〉〉 = lim
|A|→∞

1

|A|

∫∫
A

f(x, y)dA,

where A is a rectangle in R2 and |A| denotes its area.
It is clear that if f(x, y) is periodic in both x and y with period L1 and L2 re-

spectively, then 〈〈f〉〉 is well defined. However, this two-dimensional spatial average
is defined for the larger class of so-called almost-periodic functions, which contains
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the set of quasi-periodic functions[Boh47]. This leads us to replace (2.5) with the
more general nonlocal equation

(3.1)

〈〈
e−ik̄·x (i(ηt − c̄ · ∇η) cosh(κ(h+ η)) − k̄ · ∇q

κ
sinh(κ(h+ η))

)〉〉
= 0,

which is valid for all k̄ ∈ R
2
0 = R

2 − {(0, 0)}. In fact, if we were to consider
perturbations of increasingly larger period, the set of k̄ values to be considered in
Equation (2.5) would approach a dense subset of the real plane.

Having generalized the dynamical equations to accommodate the perturbations
we wish to consider, we briefly discuss the definition of spectral stability. A station-
ary solution of a nonlinear problem is spectrally stable if there are no exponentially
growing modes of the corresponding linearized problem. To determine the spectral
stability of the periodic traveling wave solutions, we start by considering a one-
dimensional traveling wave solution (η0(x− ct), q0(x− ct), c), which solves equa-
tion (2.7). In the same traveling coordinate frame, we add a small perturbation in
both the x and y direction of the form

q(x− ct, y, t) = q0(x− ct) + εq1(x− ct, y, t) +O(ε2),

η(x− ct, y, t) = η0(x− ct) + εη1(x− ct, y, t) +O(ε2),

where ε is a small parameter. The perturbation is moving in a traveling reference
frame with speed c̄ = (c, 0). Our goal is to determine the time dependence of
the perturbation in order to determine how the deviation from the unperturbed
solution evolves.

We begin with the local equation (2.6). Substituting the above into Equation
(2.6) and keeping only terms to order ε, we obtain

(3.2) q1,t−cq1,x+q0,xq1,x+gη1−f ·
(
η1,t+η1,x(q0,x−c)+η0,xq1,x−f ·η0,xη1,x

)
= 0,

where

f =
η0,x(q0,x − c)

1 + η20,x
.

Since the problem does not depend on t or y explicitly (recall that the functions
η0 and q0 are both independent of y and t, and depend only on x), we can use
separation of variables to decompose η1(x, y, t) and q1(x, y, t) as

(3.3a) η1(x, y, t) = eλteiρy η̃1(x) + c.c.,

(3.3b) q1(x, y, t) = eλteiρy q̃1(x) + c.c.,

without loss of generality. Here ρ is the transverse wave number of the perturbation.
Substituting into (3.2), we have

(3.4) λq̃1−cq̃1,x+q0,xq̃1,x+gη̃1−f ·
(
λη̃1+η̃1,x(q0,x−c)+η0,xq̃1,x−η0,xf ·η̃1,x

)
= 0,

which is the same linearization as that obtained in (Ref. [DO]) for the local equation
with respect to one-dimensional perturbations.

Now we turn our attention to the nonlocal equation. For the nonlocal equation,
we substitute the perturbation expansion into (3.1). This gives〈〈

e−ik̄·x
(
iη1,tCκ−icη0,xκη1Sκ−icη1,xCκ−

1

κ
(kxq1,x + kyq1,y)Sκ−kxq0,xη1Cκ

)〉〉
= 0,
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where

Sκ = sinh(κ(η0 + h), Cκ = cosh(κ(η0 + h)).

As before, since the problem does not depend on y or t explicitly, we use sepa-
ration of variables to decompose η1(x, y, t) and q1(x, y, t) as in (3.3). Using this
decomposition, we obtain

〈〈
e−ik̄·xeiρy

(
iη̃1,tCκ − icη0,xκη̃1Sκ − icη̃1,xCκ

− 1

κ
(kxq̃1,x + ikyρq̃1)Sκ − kxq0,xη̃1Cκ

)〉〉
= 0,

Since our new integrand depends on y only through ei(ρ−ky)y, we eliminate the
integration with respect to y completely. Calculating the average value along the
y direction results in

lim
M→∞

1

M

∫ M/2

−M/2

e−i(ky−ρ)ydy = lim
M→∞

2

M(ky − ρ)
sin

(
M(ky − ρ)

2

)
.

Taking the limit as M → ∞, the contribution is identically zero if ky 	= ρ. Other-
wise, if ky = ρ, the contribution from the integral is unity. Thus, the linearization
of the nonlocal equation simplifies to

〈
e−ikxx

(
iλη̃1Cκ − icη̃1,xCκ − η0,xcκη̃1Sκ

− 1

κ

(
kxq̃1,x + iρ2q̃1

)
Sκ − kq0,xη̃1Cκ

〉
= 0,

(3.5)

where now κ =
√
k2x + ρ2 and

〈f〉 = lim
M→∞

1

M

∫ M/2

−M/2

f(x) dx.

It should be noted that if we equate ρ = 0, the above equation reduces to the
expression for the one-dimensional surface case presented elsewhere[DO].

Having linearized the equations about the traveling wave solution, we have the
following generalized eigenvalue problem:

λq̃1 − cq̃1,x + q0,xq̃1,x + gη̃1 − f ·
(
λη̃1

+ η̃1,x(q0,x − c) + η0,xq̃1,x − η0,xf · η̃1,x
)
= 0,

(3.6)

λ

〈
e−ikxx

(
iη̃1Cκ

)〉
=

〈
e−ikxx

(
icη̃1,xCκ+iη0,xcκη̃1Sκ

+
1

κ

(
kxq̃1,x+iρ2q̃1

)
Sκ +kxq0,xη̃1Cκ

)〉
.

(3.7)
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Equations (3.6) and (3.7) are valid for (kx, ρ) ∈ R2 − {(0, 0)}, and can be
rewritten compactly as

(3.8) λL1U(x) = L2U(x)

where L1 and L1 are 2 × 2 matrices of linear operators that depend on ρ, and
whose entries are easily read off from (3.6) and (3.7).

Since the time dependence of the perturbation depends exponentially on λ, we
can determine information about the stability of the underlying traveling wave by
determining the solutions of this generalized eigenvalue problem. If any solutions
U(x) exist for which the corresponding λ has a positive real part, the linear ap-
proximation of the solution grows exponentially in time and the perturbed solution
will diverge from the stationary solution in the linear approximation. With this
intuition in mind, the concept of spectral stability, as applicable to the generalized
eigenvalue problem (3.8) is defined as

Definition 3.1 (Spectral Stability). A one-dimensional periodic traveling wave
solution (η0(x), q0(x), c) of Equations 2.7 and 2.8 (and thus of the Euler equations)
is spectrally stable with respect to two-dimensional perturbations parameterized
by ρ if no element of the spectrum for the generalized eigenvalue problem 3.8 has
strictly positive real part.

In order to use this definition, we recall the definition of the spectrum of the
generalized eigenvalue problem.

Definition 3.2 (Spectrum of the Generalized Eigenvalue Problem). The spec-
trum of the generalized Eigenvalue problem λL1U(x) = L2U(x) is given by

(3.9) σ(L2,L1) = {λ ∈ C : ||U(x)|| < ∞},

where U(x) solves λL1U(x) = L2U(x).

In order to examine spectral stability or instability, we need to locate the spec-
trum of the generalized eigenvalue problem 3.8. By definition of the spectrum, we
determine those values of λ ∈ C for which Equation 3.8 has bounded solutions.
Since the coefficient functions of Equation (3.8) are periodic in x with period L1,
we decompose the perturbations further using Floquet’s Theorem, see for instance
Ref. [DK06]. Thus, both q̃1(x) and η̃1(x) can be written as

q̃1(x) = eiμxq̄1(x), and η̃1(x) = eiμxη̄1(x),

where μ ∈ [−π/L1, π/L1) and q̄1 and η̄1 are 2π periodic functions.
Substituting the Floquet decomposition into the eigenvalue problem yields

λ (q̃1 − fη̃1) = c(iμ+ ∂x)q̄1 − q0,x(iμ+ ∂x)q̄1 − gη̄1

+f
(
(q0,x − c)(iμ+ ∂x)η̄1 + η0,x(iμ+ ∂x)q̄1 − η0,xf(iμ+ ∂x)η̄1

)
,(3.10)

λ
〈
ei(μ−kx)x

(
iη̃1Cκ

)〉
=

〈
(ei(μ−kx)x

(
icCκ(iμ+ ∂x)η̄1 + iη0,xcκη̄1Sκ

+
1

κ

(
kx(iμ+ ∂x) + iρ2

)
q̄1Sκ + kxq0,xη̄1Cκ

)〉
= 0.(3.11)
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We represent the 2π-periodic portion of the eigenfunctions q̄1 and η̄1 by their
Fourier series. In other words,

q̄1(x) =
∞∑

m=−∞
Q̂meimx, η̄1(x) =

∞∑
m=−∞

N̂meimx.

Additionally, we represent the periodic variable coefficient functions by their Fourier
series as well. Substituting the series representations into the Floquet decomposi-
tion, we are able to determine a bi-infinite matrix eigenvalue problem, where the
eigenvectors are the Fourier coefficients Q̂j and N̂j for j ∈ {0,±1,±2, . . .}.

The Fourier decomposition proceeds in a straightforward manner for the local
equation. Substituting the Fourier expansions into the local equation, we obtain

λ

( ∞∑
m=−∞

F̂3,n−mN̂m − Q̂n

)
= −gN̂n +

∞∑
m=−∞

(iμ+ im) F̂1,n−mN̂m

+

∞∑
m=−∞

F̂2,n−m (iμ+ im) Q̂m,(3.12)

for n ∈ Z− {0}, where the coefficients F̂j,n are given by the following expressions

F̂1,n =

∫ L1

0

e−
2inπx

L1 f(η0, q0) (q0,x − c− η0,xf(η0, q0)) dx,

F̂2,n =

∫ L1

0

e−
2inπx

L1 (q0,x − c− η0,xf(η0, q0)) dx,

F̂3,n =

∫ L1

0

e−
2inπx

L1 f(η0, q0)dx.

For the nonlocal equation, we employ a similar strategy as used elsewhere[DO].
There are two slight differences. First, the hyperbolic sine and cosine terms depend
on κ =

√
k2x + ρ2 instead of kx directly. Second, there is an additional term de-

pending on the perturbation of the velocity potential and on ρ.
Substituting the Fourier series into the nonlocal equation and representing all

variable coefficients by their Fourier series representation, we have

[ ∞∑
j=−∞

∞∑
m=−∞

(
Ĝ

(kx)
1,j + ic(iμ+ im)Ĝ

(kx)
2,j

)
N̂m

+

∞∑
j=−∞

∞∑
m=−∞

(
kx
κ
(iμ+ im) +

iρ2

κ

)
Ĝ

(kx)
3,j Q̂m

]
〈Ejm〉

= iλ
∞∑

j=−∞

∞∑
m=−∞

Ĝ
(kx)
2,j N̂m 〈Ejm〉

(3.13)
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where

Ĝ
(kx)
1,n =

∫ L1

0

e−
2inπx
L1 (iκcη0,xSκ + kxq0Cκ) dx,

Ĝ
(kx)
2,n =

∫ L1

0

e−
2inπx
L1 Cκ dx,

Ĝ
(kx)
3,n =

∫ L1

0

e−
2inπx
L1 Sκ dx.

Each term in the double infinite sum contains the average value of

Ejm = exp [ix (μ− kx +m+ j)] .

This average value is identically zero unless the quantity μ− kx +m+ j is zero so
that 〈Ejm〉 = 1. In other words the contribution from the integral is identically
zero unless

kx = μ+ n,

for some integer n. Thus, the only contribution in the integral equation occurs
when kx is a shift of the original dual lattice. This allows us to collapse the double
infinite sum to a single infinite sum given by

∞∑
m=−∞

(
Ĝ

(k(μ))
1,n−m + ic(iμ+ im)Ĝ

(k(μ))
2,n−m

)
N̂m

+

∞∑
j=−∞

∞∑
m=−∞

(iμ+ im)Ĝ(k(μ))(μ+ n)3,n−mQ̂m

]

= iλ

∞∑
m=−∞

Ĝ
(k(μ))
2,n−mN̂m

,(3.14)

where k(μ) = μ+ n. The above equation holds for all n ∈ Z.
Combining the above equation with (3.12) yields a generalized bi-infinite eigen-

value problem for the spectrum of the linearized operator about the stationary trav-
eling wave solutions. We define the quantity X̂ as the bi-infinite vector of Fourier

coefficients Q̂j and N̂j for all j ∈ Z: X̂ =
[
. . . , N̂−1, N̂0, N̂1, . . . Q̂−1, Q̂0, Q̂1, . . .

]T
.

With this notation, we rewrite the generalized eigenvalue problem as

[
A(μ) B(μ)
C(μ, ρ) D(μ, ρ)

]
X̂ = λ

[
−I S(μ)
0 V (μ, ρ)

]
X̂,
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Figure 2. Cauchy error for the maximal eigenvalue corresponding
to a solution with amplitude a = .01 in water of various depths.

where

A(μ)n,m = −gδ(n−m) + (iμ+ im) F̂1,n−m,

B(μ)n,m = F̂2,n−m (iμ+ im) ,

C(μ)n,m = Ĝ
(k(μ))
1,n−m + ic(iμ+ im)Ĝ

(k(μ))
2,n−m,

D(μ)n,m = (iμ+ im)Ĝ
(k(μ))
3,n−m,

S(μ)n,m = F̂3,n−m, V (μ)n,m = iĜ
(k(μ))
2,n−m, and

δ(n−m) =

{
1 if m = n

0 if m 	= n
.

We solve this generalized eigenvalue problem numerically by truncating the
Fourier series representation from Z to {0,±1,±2, . . . ,±N} for a discrete sampling
for all possible μ and ρ values. We note that due to the underlying symmetries in
the problem, we may further restrict the μ interval from [−π/L1, π/L1] to [0, π/L1].
For traveling wave solutions of period 2π, μ ∈ [0, .5], while the parameter ρ can be
any number in [0,∞).

The convergence and reliability of this truncation was investigated by Curtis
& Deconinck[CD10] as well as Johnson & Zumbrun [JZ12]. Those results do
not formally apply to our setting, but can be easily generalized once we note that
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S(μ, ρ) is invertible. It follows that we can trust the numerical results obtained.
With this truncation, we obtain 2(2N+1) equations for 2(2N+1) unknown Fourier

coefficients Q̂n and N̂n.
As seen in Figure 2, the adjustment to the maximal eigenvalue decays to εmach

as N increases. It should be noted that the decay rate for h = .5 is significantly
slower than the decay rate for the other depths h = 1.5 and h = ∞ with the
same amplitude. This is not surprising: a = .1 corresponds to a significantly more
nonlinear wave for h = .5 than for the other two depths.

We further establish confidence in our numerical approach by investigating its
Cauchy convergence. Let λN represent a particular eigenvalue corresponding to a
truncation size N (which corresponds to 2N + 1 Fourier coefficients). We define
the Cauchy error as

eN = |λN − λN−1|.
As we increase the size of our truncated matrix, the calculated eigenvalues

should be found to converge numerically. We track the approximation of the eigen-
values with the largest real part as a function of truncation size for three different
depths corresponding to traveling wave solutions with a dimensionless amplitude
ak = 0.1. The Cauchy errors are given in Table 1.

4. Results

4.1. Flat Water. Since we use a continuation approach, we start by carefully
considering the stability of the trivial solution η(x) = 0, q(x) = 0, corresponding
to a traveling wave of zero amplitude. We can analytically determine the spectrum
of this trivial traveling wave. We choose the wave speed c corresponding to the
starting point of the bifurcation branch of periodic solutions to be

c =

√
g tanh(hk)

k
,

where we choose k = 1 for 2π periodic solutions. Other bifurcation branches start
elsewhere, but those branches correspond to mere scalings of the branch we consider.
Their stability properties are identical, and no information is lost by considering
only the one branch.

Table 1. Cauchy error for the calculation of the eigenvalue with
largest real part for h = .5, h = 1.5, and h = ∞ with a = .1.

N h = .5 h = 1.5 h = ∞ N h = .5 h = 1.5 h = ∞
5 3.1e-03 1.2e-07 2.0e-08 13 8.9e-09 5.1e-16 1.3e-15
6 3.2e-04 3.0e-09 3.3e-10 14 2.0e-09 5.7e-16 2.1e-15
7 7.5e-05 7.2e-11 5.2e-12 15 4.3e-10 2.4e-15 2.8e-15
8 1.8e-05 1.7e-12 7.9e-14 16 9.3e-11 3.5e-15 3.0e-15
9 4.0e-06 4.0e-14 6.7e-16 17 2.0e-11 7.0e-16 2.2e-15
10 8.7e-07 1.2e-17 6.8e-16 18 4.3e-12 3.4e-15 4.0e-15
11 1.9e-07 4.0e-16 1.9e-16 19 9.2e-13 6.6e-16 3.1e-15
12 4.1e-08 6.4e-16 1.2e-15 20 1.9e-13 1.2e-15 8.1e-17
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Since the linear stability problem for this solution has constant coefficients, we
easily determine the spectrum analytically. Repeating the method outlined in the
previous section, we consider perturbations of the form

η(x) = εeiμx+iρy+λt
∞∑

j=−∞
η̂je

ijx,(4.1)

q(x) = εeiμx+iρy+λt
∞∑

j=−∞
q̂je

ijx,(4.2)

where ε is a small parameter.
Substituting this solution form into the equations of motion and simplifying as

before, we find that the eigenvalues λ are purely imaginary, as expected. They are
given by

(4.3) λs
m = −ic(μ+m) + is

√
gκ tanh(κh)

where s = ±1, m ∈ Z, κ =
√
(μ+m)2 + ρ2, and κ 	= 0. Thus, for each perturbation

(parameterized by μ and ρ), we can determine the growth-rates λs
m for all m ∈ Z.

Since all eigenvalues are purely imaginary, it follows that flat water is spectrally
stable. Using the results of MacKay & Saffman[MS86], we know that for an
instability to arise in the water wave system, it is necessary for two eigenvalues
with opposite signatures to collide, where the signature of a particular eigenvalue
is given by

sig(λs
m) = −Im (sλs

m) .

Using the signature and the form of the eigenvalues λ, we see that a necessary
condition for an instability to arise is that

λs1
m = λs2

n , −Im (s1λ
s1
m) = Im (s2λ

s2
n ) .

1

−1

1 2−1−2

μ

ρ

Figure 3. Resonant Curves for h = .5. The solid lines are asso-
ciated with the Class I instabilities for m = 1 and m = 2, and the
dashed lines with the Class II instabilities for m = 1, and m = 2.
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Solving these two equations, it follows that s1 = −s2. This implies we can reduce
the above two conditions to the single condition

λs
m = λ−s

n

Following the work of McLean [McL82a, McL82b] and Francius & Kharif
[FK06], there are two main conditions that we need to investigate for collisions of
eigenvalues with opposite signatures:

Class I: n = −m (the case of complex conjugates colliding at the origin),
Class II: n = −m − 1 (collisions on the imaginary axis, away from the
origin).

There are additional collisions of interest (such as when n = −m − 2, etc).
However, recalling that the perturbations are periodic in μ with period 1, we can
omit these additional collisions from consideration. These conditions give rise to
the well-known resonant curves that are found throughout the literature (see for
example (Ref. [McL82a, McL82b, FK06]). They are shown in Figure 3 for
h = .5. These curves connect the values of μ and ρ for which eigenvalues with
opposite signatures collide.

4.2. General Results. As mentioned in the introduction, much is known
about the transverse stability of one-dimensional solutions of Euler’s equations.
Our intent is to demonstrate that the use of the AFM method reproduces these
known results for the same parameter values as those used most recently by Francius
& Kharif [FK06], with less computational effort, or equivalently, with greater accu-
racy for comparable computational effort. The comparison is not straightforward.
In [FK06], the authors used solutions that were allowed to have non-zero average
value for a fixed depth whereas with our method, we strictly inforce zero-average
values solutions.

Figure 4. The spectrum {λ} (real vs. imaginary part) for h = .5
and amplitude a = .1. Computed with N = 16 Fourier modes,
1000 μ values, and 300 ρ values.
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Figure 5. The spectrum {λ} (real vs. imaginary part) for h = 1.5
and amplitude a = .1. Computed with N = 16 Fourier modes,
1000 μ values, and 300 ρ values.

Figure 6. The real part of the spectrum as a function of the
Floquet parameter μ for depth h = .5 and amplitude a = .1.
Computed with N = 16 Fourier modes, 1000 μ values, and 300 ρ
values.
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Figure 7. The real part of the spectrum as a function of the
Floquet parameter μ for depth h = 1.5 and amplitude a = .1.
Computed with N = 16 Fourier modes, 1000 μ values, and 300 ρ
values.

Figure 8. The real part of the spectrum as a function of the
transverse wave number ρ for depth h = 1.5 and amplitude a = .1.
Computed with N = 16 Fourier modes, 1000 μ values, and 300 ρ
values.
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Figure 9. The real part of the spectrum as a function of the
transverse wave number ρ for depth h = 1.5 and amplitude a = .1.
Computed with N = 16 Fourier modes, 1000 μ values, and 300 ρ
values.

We begin our investigations in shallow water (h = .5) with a solution of mod-
erate amplitude (a = .1). We know that for this particular choice of wave height
ak = .1 and depth h = .5 the wave is unstable with respect to one-dimensional
perturbations[DO]. Further, as expected, we find that this wave is unstable with
respect to two-dimensional perturbations as demonstrated in the full spectrum given
in Figure 4. Likewise, the full spectrum for h = 1.5 is shown in Figure 5. It is im-
portant to note that the largest real part of the spectrum in both cases is much
larger than the largest real spectral elements when only one-dimensional perturba-
tions are considered (see Ref. [DO] for comparison). This demonstrates that the
dominant instabilities for these waves are the instabilities that arise from transverse
or fully two-dimensional perturbations. However, this is not always the case. For
h = ∞ and a = .3, we found that the dominant instabilities were the result of
one-dimensional perturbations.

4.2.1. Maximum Growth Rates as a Function of μ and ρ. The full spectra
demonstrated in Figures 4 and 5 provide a good visualization of the growth rates
and frequencies present in the instabilities. We may also examine the unstable
parts of the spectrum as a function of μ and ρ. First, we consider the spectrum
as a function of μ. In Figures 6 and 7, we display the real part of the spectra for
h = .5 and h = 1. Additionally, we show the same spectra as a function of ρ in
Figures 8 and 9.

It is important to note that as the values of the parameter ρ are increased,
bands of large instabilities appear (Figure 8 near ρ = .6 and ρ = 1.25). As ρ
increases, these bands continue to appear. However, the magnitude of the dominant
instability in these bands decreases with each successive band. Each of these bands
corresponds to a specific resonant curve for the trivial solution, demonstrated in
Figure 3.
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Figure 10. The maximum real part of the spectrum as a function
of the Floquet parameter μ and the transverse wave number ρ for
depth h = .5 and amplitude a = .1. Computed with N = 16
Fourier modes, 1000 μ values, and 300 ρ values.

In addition, we visualize the instabilities in the (μ, ρ) plane where we use color
to represent the magnitude of the maximum real part of the spectrum calculated for
each perturbation. Figures 10 and 11 show the bands of instability. The periodicity
with respect to the Floquet parameter μ is obvious in this representation. The
instability bands given in Figure 10 again correspond to the resonant curves for
the zero-amplitude solution. We notice the same trends as those found elsewhere

Figure 11. The maximum real part of the spectrum as a function
of the Floquet parameter μ and the transverse wave number ρ for
depth h = 1.5 and amplitude a = .1. Computed with N = 16
Fourier modes, 1000 μ values, and 300 ρ values.
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in the literature[FK06, McL82a, McL82b]; as the amplitude of the underlying
traveling wave increases, the instability bands (which start as curves) widen to
unstable bands.

4.2.2. Eigenfunction Corresponding to the Most Unstable Eigenvalue. Yet an-
other interesting investigation is to examine the eigenfunctions corresponding to
the most unstable perturbations. These eigenfunctions provide a glimpse at the
dynamics following the onset of instability, and allow one to predict the patterns
that might be observed. For depths h = .5 and h = 1.5, we calculate the sum of
the eigenfunctions corresponding to the quadruplet of eigenvalues (λ,−λ, λ∗,−λ∗),
where λ is the eigenvalue with maximal real part, to incorporate the Hamiltonian
structure of the stability problem. Combining the appropriate eigenfunctions and
normalizing the amplitude to one, we obtain the level sets shown in Figures 12 and
13.

Figure 12. The combined eigenfunctions corresponding to the
most unstable eigenvalue and its opposite, and their complex con-
jugates for depth h = .5 and amplitude a = .1.

Figure 13. The combined eigenfunctions corresponding to the
most unstable eigenvalue and its oppose, and their complex conju-
gates for depth h = 1.5 and amplitude a = .1.
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Figure 14. The solution to the linear problem for depth h = .5
and amplitude a = .1 corresponding to the most unstable perturba-
tion. The dynamics displays the so-called snake instability, where
wave crests are deformed but the amplitude is mostly unchanged
along these deformed crests, at least initially.
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Figure 15. The solution to the linear problem for depth h = 1.5
and amplitude a = .1 corresponding to the most unstable per-
turbation. The dynamics displays the so-called neck instability,
where the amplitude along wave crests oscillates (most notably in
the third frame), followed by a secondary snake instability.
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Recall that the perturbation of the one-dimensional solution is of the form

η(x, y, t) = η0(x) + εeλteiρyeiμxη1(x) + c.c.+O(ε2)

In addition to the mode corresponding to the complex conjugate eigenvalue, we
also add those corresponding to the opposite eigenvalue and its complex conjugate.
We use this to examine the linear time evolution of the traveling wave. For short
times, before nonlinear effects become important, this demonstrates the dynamics
of the perturbed wave pattern. Here “short time” should be considered relative
to the size of the eigenvalue: the important measure is the product λt. The time
steps are shown in Figures 14 and 15. Since the perturbations are unstable, the
amplitude of the solutions grow as demonstrated in each of the figures.

5. Conclusions

We have presented a small sampling of the instabilities of one-dimensional trav-
eling wave solutions with respect to two-dimensional perturbations using the AFM
formulation. By using the nonlocal formulation in combination with Hill’s method,
we have determined various spectra numerically with high degree of accuracy. Ad-
ditionally, as demonstrated in Figure 2, the error of the approximation of the most
unstable eigenvalue converges rapidly as a function of the number of Fourier modes
used in the truncation.

When comparing our results to the method presented by Francius & Kharif
[FK06], our method converges for similar solutions using a smaller number of
Fourier modes. To quantify this, where 80 Fourier modes are needed in [FK06]
to obtain eigenvalues with Cauchy error on the order of 10−8, we only require 48
modes to obtain a comparable Cauchy error for the most unstable eigenvalue when
h = 0.3 and a ≈ 0.10 (data obtained from the appendix of Ref. [FK06], available
online only).

Table 2. Comparisons of Results with Francius & Kharif for h =
0.3 for convergence to six digits of accuracy. For the results from
[FK06], a = .1. However, for our results, a = .1003.

Francius & Kharif (a = .1)
Class Instability Parameter Values Modes R(λ)max

Class I (n = 4) μ = 0, ρ = 0.954 60 .034650
Class I (n = 6) μ = 0, ρ = 0.954 70 .041305
Class II (n = 3) μ = 0, ρ = 0.954 70 .021491
Class II (n = 5) μ = 0, ρ = 0.954 70 .040446

Nonlocal (a = .1003)
Class Instability Parameter Values Modes R(λ)max

Class I (n = 4) μ = 0, ρ = 0.954 48 .033527
Class I (n = 6) μ = 0, ρ = 0.954 52 .042458
Class II (n = 3) μ = 0, ρ = 0.954 50 .020000
Class II (n = 5) μ = 0, ρ = 0.954 60 .040528
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Table 3. Comparisons of Results with Francius & Kharif for h =
0.5 for convergence to six digits of accuracy. For the results from
[FK06], a = .17. However, for our results, a = .1696.

Francius & Kharif Nonlocal Formulation
Class Instability Parameter Values Modes R(λ)max Modes R(λ)max

Class I (n = 4) μ = 0, ρ = 1.102 70 .068502 48 .073054
Class I (n = 6) μ = 0, ρ = 3.169 70 .056946 52 .061713
Class II (n = 3) μ = 0.5, ρ = 0.475 80 .051826 48 .053728
Class II (n = 5) μ = 0.5, ρ = 1.973 80 .067256 58 .073044

In addition to the convergence rates, we also compared calculated growth rates
with previously known results. Tables 2 & 3, show comparisons of the calculated
growth rates with the results from Francius & Kharif[FK06] when h = .3 and
h = .5. While there are some minor discrepencies between the final calculated
growth rates for the chosen values of (μ, ρ), these discrepencies are easily explained
since (1) the amplitudes of the traveling waves are slightly different, and (2) the
average value of the traveling waves in Francius & Kharif [FK06] are nonzero,
whereas the average value of the traveling waves using the nonlocal formulation are
set to be zero. Furthermore, the results demonstrate the same patters of instabilities
which were found by Francius & Kharif[FK06]. For example, they showed that for
a = 0.1 and h = 0.3 they dominant instability corresponded to a Class I instability
(when n = 6). Similarly, we found that the same trend exists for our calculations
as well (see Table 2).

Figure 16. The maximum real part of the spectra as a function
of Floquet parameter μ and wave number ρ for h = .5 and ampli-
tude a = .160 compared with the results obtained by Francius and
Kharif[FK06] (outlined region).
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We have obtained results consistent with those of Francius & Kharif. However,
we have noticed that our instability regions (regions in the (μ, ρ) plane for which the
spectrum intersects the right-half plane) appear to be smaller than those presented
in [FK06]. For example, in Figure 16 we demonstrate the stability regions obtained
in [FK06] along with our own computed for h = .5 and a = .160. As shown in
Figure 16, the general shape is comparable, but our instability regions appear to
be smaller than those presented by Francius & Kharif.

There are several possible explanations for the discrepancy in the size of the
stability region. Perhaps the most logical is that we are able to calculate the
underlying traveling wave solution to a high degree of accuracy using far fewer
Fourier modes than those used in Francius & Kharif[FK06]. This is a benefit of the
reduced complexity of the nonlocal formulation for the one-dimensional traveling
wave solutions, and perhaps its amenability to spectral numerical methods. In
addition, It is important to note that since we incorporated the periodicity with
respect to μ in our computations of the spectrum, our results are essentially tiled
versions of the results presented in Francius & Kharif[FK06].

Summarizing, we have confirmed that for small amplitude waves, the domi-
nant instability is two-dimensional (occurring when ρ 	= 0) with the magnitude of
the dominant two-dimensional instability was sometimes multiple orders of mag-
nitude greater than the dominant one-dimensional instability. The results were
found earlier by Bryant [Bry78]. For h = .5, he found that for four-wave in-
teractions, the dominant instability was fully two-dimensional. However, as the
perturbations were time-evolved in his truncated equations, the two-dimensional
instabilities dominated. As mentioned in Francius & Kharif[FK06], it would be
interesting to explore the time evolution of a traveling wave perturbed with both of
the dominant one- and two-dimensional instabilities to determine how each affects
the long-time dynamics. This is an interesting possibility for future work since little
is know about the time propagation of perturbations in shallow water using the fully
nonlinear equations. Another interesting results is that for h = .5, the dominant
instability corresponds to μ = 1/2, as also noted in the previous literature[FK06].
This implies that the dominant instability is phase-locked with the original solution
expanded over twice the original period.
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