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The Method of Fokas for Solving
Linear Partial Differential Equations∗
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Abstract. The classical methods for solving initial-boundary-value problems for linear partial dif-
ferential equations with constant coefficients rely on separation of variables and specific
integral transforms. As such, they are limited to specific equations, with special boundary
conditions. Here we review a method introduced by Fokas, which contains the classical
methods as special cases. However, this method also allows for the equally explicit solution
of problems for which no classical approach exists. In addition, it is possible to elucidate
which boundary-value problems are well posed and which are not. We provide examples of
problems posed on the positive half-line and on the finite interval. Some of these examples
have solutions obtainable using classical methods, and others do not. For the former, it is
illustrated how the classical methods may be recovered from the more general approach of
Fokas.
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1. Introduction. The canonical first course in partial differential equations (PDEs)
focuses on explicit solution methods for problems for which such a solution can be
found. The solution techniques presented include the method of separation of vari-
ables, Fourier series and transforms, Laplace and other integral transforms, Green’s
functions, etc. Standard textbooks for such courses include [4, 11, 12, 13, 17], each
with their own amount of rigor. These textbooks focus almost all of their attention
on scalar equations that are first- or second-order in any independent variable. In this
context, an initial- or boundary-value problem (IVP or BVP) is considered solved if an
explicit1 expression is constructed for the dependent variable as a function of the in-
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1For our purposes, an explicit expression is one whose evaluation is the topic of a lower-level

course. For instance, the ordinary differential equation (ODE) y′ + 2xy = 1 has an explicit solution
since it is possible to express the solution in terms of operations whose evaluation is the topic
of calculus, even though not all antiderivatives can be written in terms of elementary functions:
y = exp(−x2)(c+

∫ x
0
exp(s2)ds), with c an arbitrary constant. Similarly, Fourier series, integrals in

the complex plane, etc., give rise to explicit solutions of PDEs.
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dependent variables and of the given initial and boundary conditions. This expression
is typically given as an infinite series or an integral, or a combination of both.

In this paper, we advocate a different method from those taught in any course.
The method is relatively new. It was discovered by A. S. Fokas in his quest to
generalize the method of inverse scattering, which solves the IVP for x ∈ R for so-
called soliton equations, to BVPs posed either on the half-line x ≥ 0 or on the finite
interval x ∈ [0, L] [6, 7, 9]. It was observed immediately [8, 10] that the method also
produces interesting results for linear equations, which is our focus here. Just like the
classical methods, the method of Fokas produces an explicit solution for the dependent
variable u(x, t). The solution formula is given in terms of one or more integrals along
paths in the complex plane of an auxiliary variable k. All x and t dependence in
the solution formula is entirely explicit. Although the method is more general, we
restrict our attention to scalar problems with one spatial independent variable x and
one temporal independent variable t. We present the method of Fokas as a valuable
addition to the standard methods taught, for several reasons.

• It encompasses the standard methods. For those cases where a standard
method produces an explicit solution, Fokas’s method does so as well. In
fact, as we show in several examples below, the resulting solution formulas
are equivalent, as they should be.

• It is more general than the standard methods: we are able to produce solution
formulas for many problems where the classical methods cannot. This is par-
ticularly clear for problems containing higher than second-order derivatives.

• While the standard methods are a collection of situation-specific approaches,
tailored to specific equations and boundary conditions, the method of Fokas
produces a solution using the same ideas for all these different problems, with
any differences appearing only in the calculational details.

• In addition to producing an explicit formula for the solution, the method al-
lows one to determine in a straightforward way how many and which bound-
ary conditions result in a well-posed problem. Especially for BVPs for equa-
tions with higher than second-order derivatives, this is a nontrivial issue.

• Efficient evaluation of the solution can be obtained from the explicit solution
formula using different means: parametrization of the contours resulting in
integrals that are easily evaluated numerically, asymptotic methods such as
steepest descent, the residue theorem, and so on.

• The background required for the method is limited to knowledge of the Fourier
and inverse Fourier transform pair, the residue theorem, and Jordan’s lemma;
see [1] or [3], for instance. In other words, even if no course on complex
analysis precedes the first course on PDEs, the necessary material is easily
introduced in three or four lectures.

Our introduction to the method of Fokas proceeds mostly by example. More de-
tails and general arguments can be found in [9]. We start by revisiting the IVP on
the whole line in the framework of the new method; see section 2. This merely results
in the construction of the familiar Fourier transform expression for the solution, but
it does allow us to generalize more naturally the approach to the half-line and finite
interval problems more naturally. This is done in sections 3 and 4, respectively, which
comprise the bulk of the paper. The reader will find examples of problems that can
be solved using the standard methods, in which cases we demonstrate the equivalence
of the classical results with those obtained using Fokas’s method. Other examples
illustrate the use of the method in situations where the standard methods fail or are
unable to proceed. Our emphasis is not on rigor and no comments are made about
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function spaces. Rather, in the vein of a first course on PDEs (see, for instance,
[4, 12]), we assume whatever conditions are necessary for the calculations to proceed:
for instance, functions are at least as differentiable as dictated by the equation and
boundary and initial conditions are compatible at (x, t) = (0, 0) and, for the finite
interval, at (x, t) = (L, 0).

2. The Initial-Value Problem on the Whole Line. In contrast to a traditional
first course on PDEs, we begin by considering the IVP for linear constant coefficient
equations on the entire real line. In order to start with a concrete example, consider
the IVP for the heat equation:

qt = qxx, x ∈ R, t ∈ (0, T ],(2.1a)

q(x, 0) = q0(x), x ∈ R,(2.1b)

where subscripts denote partial differentiation. Here T is a positive real number, and
we impose the boundary condition that q(x, t) → 0 sufficiently fast as |x| → ∞ for all
t ≥ 0. The solution to this problem is given by

(2.2) q(x, t) =
1

2π

∫ ∞

−∞
q̂0(k)e

ikx−ω(k)tdk,

where ω(k) = k2 is the dispersion relation2 for the heat equation and q̂0(k) is the
Fourier transform of the initial condition:

(2.3) q̂0(k) =

∫ ∞

−∞
q0(x)e

−ikxdx.

Further, letting T → ∞ does not affect the validity of the solution. In a traditional
text, this result is obtained by taking the Fourier transform of the original PDE (2.1a).
This results in a one-parameter family of ODEs with parameter k. Solving this ODE
gives the Fourier transform of the solution at any time t. Using the inverse transform,
the above result is obtained.

In the new approach, we start by rewriting the heat equation as a one-parameter
family of PDEs in divergence form,

(2.4) ∂tρ(x, t, k) + ∂xj(x, t, k) = 0,

where

ρ(x, t, k) = e−ikx+ω(k)tq,

with k ∈ C. We refer to (2.4) as the local relation. The explicit form of j is easily
obtained using the reverse product rule:(

e−ikx+ω(k)tq
)
t
= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqt

= ω(k)e−ikx+ω(k)tq + e−ikx+ω(k)tqxx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x
+ ike−ikx+ω(k)tqx

= ω(k)e−ikx+ω(k)tq +
(
e−ikx+ω(k)tqx

)
x
+
(
ike−ikx+ω(k)tq

)
x

− k2e−ikx+ω(k)tq

=
(
e−ikx+ω(k)t(qx + ikq)

)
x
,(2.5)

so that j = −e−ikx+ω(k)t(qx + ikq). Note that this calculation also determines ω(k).

2For consistency with the literature on Fokas’s method [9], we adopt the convention that the
dispersion relation ω(k) is found by substitution of exp(ikx− ω(k)t) in the PDE.
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Fig. 2.1 The region of integration in the (x, t)-plane for problems posed on the whole-line.

We are now in a position to apply Green’s theorem in the (x, t)-plane. Consider
(2.5) on an infinite horizontal strip D of height T (see Figure 2.1). In what follows,
s is a temporal dummy variable. Using the decay properties of the solution where
necessary, we have∫∫

D

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)s(qx(x, s) + ikq(x, s))

]
x

)
dsdx = 0

(Green’s theorem)⇒
∫
∂D

(
e−ikx+ω(k)sq(x, s)dx+e−ikx+ω(k)s(qx(x, s)+ikq(x, s))ds

)
= 0

⇒
∫ ∞

−∞
e−ikxq0(x)dx −

∫ ∞

−∞
e−ikx+ω(k)T q(x, T )dx = 0

⇒
∫ ∞

−∞
e−ikxq(x, T )dx = e−ω(k)T

∫ ∞

−∞
e−ikxq0(x)dx.(2.6)

The contribution of the second integrand on the second line vanishes due to the decay
properties of the solution as |x| → ∞. In later sections, such terms bring in the
contributions from the boundary data. The last line relates the Fourier transform of
the solution at time T to the Fourier transform of the initial value q0(x), as expected.
Inverting the transform we obtain the solution (2.2).

Let us take a step back to review our work. It appears we have obtained the
traditional result in a roundabout way. However, progress has been made. The
procedure used here is suitable for solving problems other than those posed on the
whole-line. By working with different domains (such as those used below) for the
application of Green’s theorem to the local relation, we obtain the integral expressions
for solutions to the corresponding BVP.

Remarks.
• The procedure above works equally well for equations other than the heat
equation. In fact, the solution formula (2.2) stands as is, as long as the
appropriate dispersion relation is filled in. We do not elaborate on this here;
details are found, for instance, in the appendix of [2]. For BVPs, more detail
is found below.

• The conversion of the PDE to the local relation (2.4) is always possible for
linear constant coefficient PDEs [9]. The explicit form of j(x, t, k) in terms
of ω(k), avoiding the reverse product rule, is given in (3.35). See section 3.5
for more detail.
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3. The Problem on the Half-Line.

3.1. The Heat Equation with Dirichlet Boundary Conditions. In section 2 the
heat equation on the whole real line was solved. The success of this method was due to
the properties of the Fourier transform, which incorporates the “boundary condition”
of decay at infinity. In this section we solve the heat equation on the half-line with
Dirichlet boundary data:

qt = qxx, x > 0, t ∈ (0, T ],(3.1a)

q(x, 0) = q0(x), x ≥ 0,(3.1b)

q(0, t) = g0(t), t ∈ [0, T ].(3.1c)

This is a standard textbook problem, easily solved using classical techniques. As
mentioned, its inclusion here serves the purpose of allowing the reader to see how
problems solvable using the classical methods can be solved using the method of
Fokas. We begin by considering the local relation of the heat equation (2.5), which
holds independent of the solution domain and the boundary conditions as it is a local
statement. Applying Green’s theorem to this equation with the domain of integration
R = {x ≥ 0, 0 < t ≤ T } (see Figure 3.1) we obtain∫

∂R

(
e−ikx+ω(k)sq(x, s)dx + e−ikx+ω(k)s(qx(x, s) + ikq(x, s))ds

)
= 0

⇒
∫ ∞

0

e−ikxq0(x)dx −
∫ ∞

0

e−ikx+ω(k)T q(x, T )dx

−
∫ T

0

eω(k)s(qx(0, s) + ikq(0, s))ds = 0

⇒
∫ ∞

0

e−ikxq0(x)dx −
∫ T

0

eω(k)s(qx(0, s) + ikq(0, s))ds

= eω(k)T

∫ ∞

0

e−ikxq(x, T )dx

⇒ q̂0(k)− [g̃1(ω(k), T ) + ikg̃0(ω(k), T )] = eω(k)T q̂(k, T ),(3.2)

where ∂R denotes the boundary of the domain R, oriented so that the domain R is
on the left when the boundary is traversed. Further, q̂0, q̂ are the Fourier transforms

Fig. 3.1 The region of integration in the (x, t)-plane for BVPs posed on the positive half-line.
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of the initial condition and the solution at time T , respectively. Similarly, g̃0 and g̃1
are defined in terms of the boundary data as

g̃0(ω, T ) =

∫ T

0

eωsq(0, s)ds, g̃1(ω, T ) =

∫ T

0

eωsqx(0, s)ds.

We refer to (3.2) as the global relation for the heat equation on the half-line. The
time transforms g̃0, g̃1 arise because of the presence of the boundary at x = 0. For
the problem under consideration, the Dirichlet data are given; thus g̃0 is determined,
whereas g̃1 is not.

The spectral parameter k associated with the Fourier transform is typically real.
However, the terms in the global relation (3.2) are analytic for Im(k) < 0. Indeed, the
Fourier transforms may be analytically continued into the lower half of the complex
k plane due to the exponential decay there, assuming sufficient decay of q(x, t) for
large x and all t. Further, the time transforms (g̃0, g̃1) are entire functions (analytic
and bounded for all finite k).

Remark. The continuation of the global relation into the lower half-plane, for
the equation on the half-line, should be contrasted with the “global relation” for the
whole-line case (2.6), where such an extension to complex k is not possible.

The global relation (3.2) is equally valid for any t ∈ (0, T ]. Replacing T by t in
the global relation (3.2) and inverting the Fourier transform, we arrive at an integral
expression for q(x, t):

q̂0(k)− [g̃1(ω(k), t) + ikg̃0(ω(k), t)] = eω(k)tq̂(k, t)

⇒ q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)t q̂0(k)dk

(3.3)

− 1

2π

∫ ∞

−∞
eikx−ω(k)t[g̃1(ω(k), t) + ikg̃0(ω(k), t)]dk.

Let D = {k ∈ C : Re(ω(k)) < 0}. Further, let D+ = D ∩ C+, where C+ = {k ∈
C : Im(k) > 0}. The integrand of the second integral in (3.3) is entire and decays as
k → ∞ for k ∈ C

+\D+. Consider a contour C = [−R,R]∪CR2 ∪C∂D+ ∪CR1 as shown
in bold in Figure 3.2. Let C∂D+ be the part of C on the boundary of D+ and CR1 ,
and let CR2 be circular arcs of radius R. Using the analyticity of the integrand,
(3.4)∫
C
eikx−ω(k)tg̃(ω(k), t)dk =

(∫ R

−R

+

∫
CR2

+

∫
C∂D+

+

∫
CR1

)
eikx−ω(k)tg̃(ω(k), t)dk = 0,

where g̃(ω(k), t) = g̃1(ω(k), t) + ikg̃0(ω(k), t). Taking the limit R → ∞ of the above
expression, we observe that the contour C∂D+ becomes the contour −∂D+. The
negative sign arises from the convention that the positive orientation of a boundary
is defined so that the region is to the left as the boundary is traversed. Further, an
application of Jordan’s lemma in the wedge-like regions shows that for large R, the
contribution of the integrals along CR1 and CR2 vanishes. We obtain that the integral
of exp(ikx − ω(k)t)g̃(ω(k), t) along the real line may be replaced by one along ∂D+.
Thus
(3.5)

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)t q̂0(k)dk− 1

2π

∫
∂D+

eikx−ω(k)t [g̃1(ω(k), t) + ikg̃0(ω(k), t)] dk.
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Fig. 3.2 The domain D for the heat equation is indicated in gray. The contour C, shown in bold,
is used to justify the deformation of the line integral along the real line up to the boundary
of D+.

Summarizing the argument, the contour C may be replaced by ∂(C+\D+) as R →
∞. The integral of exp(ikx − ω(k)t)g̃(ω(k), t) along ∂(C+\D+) is zero due to the
analyticity and decay properties of the integrand. Adding this integral to the right-
hand side of (3.3), we obtain (3.5).

Although (3.5) is an expression for q(x, t), it does not present a solution since it
depends on boundary data we have not prescribed through g̃1, the transform of the
Neumann data. To resolve this problem, we could solve the global relation (3.2) for
g̃1. This results in an expression for g̃1 valid in C− = {k : Im(k) < 0}, whereas (3.5)
requires an expression for g̃1 valid along ∂D+. To this end we seek a transform that
maps the contour ∂D+ to a contour in the lower half-plane C− but leaves g̃1(ω(k), t)
invariant. Thus we turn to the discrete symmetries of ω(k) = k2. The dispersion
relation ω(k) is invariant under the transform k → −k. Applying this transformation
to the global relation (3.2) (and replacing T by t), we have

(3.6) q̂(−k, t) = e−ω(k)tq̂0(−k)− e−ω(k)t[g̃1(ω(k), t)− ikg̃0(ω(k), t)], Im(k) ≥ 0.

Solving this version of the global relation yields an expression for g̃1(ω(k), t) which is
valid along ∂D+. The integral expression for q(x, t) becomes

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [2ikg̃0(ω(k), t) + q̂0(−k)] dk

+
1

2π

∫
∂D+

eikxq̂(−k, t)dk.(3.7)

The above expression does not depend on the unknown boundary data. However,
the function we wish to solve for, q(x, t), also appears in the third integral on the
right-hand side. Using analyticity, this problem is resolved as follows. The function
q̂(−k, t) is bounded and analytic in C+ with q̂(−k, t) → 0 uniformly as k → ∞. This
implies that the integral of exp(ikx)q(−k, t) along a closed, bounded curve in C+
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Fig. 3.3 The contour L is shown in bold. Application of Cauchy’s integral theorem using this contour
allows one to eliminate the contribution of q̂(−k, t) from the integral expression (3.7).

vanishes. In particular, we consider a closed curve L = L∂D+ ∪ LR, where L∂D+ =
∂D+ ∩ {k : |k| < R} and LR = {k ∈ D+ : |k| = R} (see Figure 3.3). We have

(3.8)

∫
L
eikxq̂(−k, t)dk =

∫
L∂D+

eikxq̂(−k, t)dk +
∫
LR

eikxq̂(−k, t)dk = 0.

If it can be shown that the integral along LR vanishes for large R, then the third
integral on the right-hand side of (3.7) must also vanish since the contour L∂D+

becomes ∂D+ as R → ∞. From Jordan’s lemma, the uniform decay of q̂(−k, t) for
large k is precisely the condition required for the integral to vanish. Thus
(3.9)

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t [q̂0(−k) + 2ikg̃0(ω(k), t)] dk

is the solution to the Dirichlet problem for the heat equation on the half-line. The
contours in the complex plane may be parameterized as desired.

Let us summarize the steps involved in this method.
1. Using the dispersion relation ω(k) we define the regions D = {k : Re(ω(k)) <

0}, D+ = D ∩ C+, and D− = D ∩ C−.
2. The PDE is rewritten as a one-parameter family of equations in divergence

form. Applying Green’s theorem in the (x, t)-plane, we obtain the global
relation. By considering complex values for the spectral parameter k, we
extend the domain of definition of the global relation. For problems posed on
the half-line, the global relation is valid in Im(k) ≤ 0.

3. The global relation is solved for q̂(k, t). The integral expression for q(x, t) is
constructed by inverting the Fourier transform. The integral involving the
boundary terms is deformed off the real line. For problems on the half-line,
we deform up to ∂D+.

4. The discrete symmetries ν(k) of ω(k), ω(k) = ω(ν(k)), are used to obtain
additional versions of the global relation valid for k in certain regions of C+.
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These additional global relations are solved simultaneously for the transforms
of the unknown boundary data. The expressions thus obtained are substituted
into the integral expression for q(x, t).

5. The integral expression for q(x, t) now depends on q̂(ν(k), t). Analyticity
considerations are used to evaluate the contribution of q̂(ν(k), t). Typically
this contribution vanishes. The functions q̂(ν(k), t) and exp(ikx) are bounded
and analytic in the upper half-plane. If the coefficient of exp(ikx)q̂(ν(k), t)
in the integral expression is also analytic in D+, then the contribution of this
term is zero. For instance, this happens for the Dirichlet problem for the heat
equation posed on the half-line where this coefficient is a constant. Let us
now consider the case when this coefficient has a simple pole at some point
k = k0 in D+. An application of the residue theorem shows that we need
the value of q̂(ν(k0), t). At this point, the global relation is used once more.
The global relation connects the transform of the solution at time t to the
transforms of both the known initial-boundary conditions and the unknown
boundary conditions. Evaluating the global relation at k = ν(k0), we ob-
tain an expression for q̂(ν(k0), t). If this expression depends only on known
initial-boundary conditions (i.e., the coefficients of the unknown terms add
up to zero), we have solved the problem. The presence of unknown bound-
ary conditions hints at an ill-posed problem. Note that we select only those
transformations ν(k) whose image lies in the lower half-plane. Consequently,
q̂(ν(k0), t) is defined.

Remarks.
• For the Neumann problem, when qx(0, t) is supplied as the boundary con-
dition, we can just as easily solve the global relation for g̃0. The integral
involving q̂(−k, t) vanishes for the same reason as for the Dirichlet problem
[9].

• The classical solution in terms of the sine transform can be recovered from the
solution to the heat equation (3.9). Note that q̂0(−k) is analytic and bounded
in the upper half-plane and exp(−ω(k)t)kg̃0(ω(k), t) is bounded and analytic
in the region between D+ and the real line. Thus the contour ∂D+ may be
deformed back to the real line:

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk

− 1

2π

∫ ∞

−∞
eikx−ω(k)t(q̂0(−k) + 2ikg̃0(ω(k), t))dk.

By splitting the integral along the real line into integrals from −∞ to 0 and
from 0 to ∞, and using the definition of sine in terms of exponentials, we
obtain

q(x, t) =
2

π

∫ ∞

0

e−ω(k)t sin(kx)

[∫ ∞

0

sin(ky)q(y, 0)dy − kg̃0(ω(k), t)

]
dk.

This deformation back to the real line is not possible for all PDEs. In fact,
the deformation is possible only when a classical transform exists. Also note
that, unlike the integral representation (3.9), the sine transform solution is
not uniformly convergent at x = 0. Further, using methods like steepest
descent or stationary phase, the contribution due to the boundary can be
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evaluated much more efficiently in (3.9) than in the classical sine transform
solution; see [5].

• An alternative to the new method is the use of Laplace transforms in t. This
results in multivalued integral kernels due to the presence of radicals. Con-
sequently, the inversion of the Laplace transform involves contour integrals
along branch cuts; see, for example, the example on page 358 of [17]. For spa-
tial derivatives of order greater than two, this procedure quickly becomes far
more involved. Further, the Laplace transform involves an integration over
all time t ≥ 0. This seems to contradict causality for evolution problems. For
evolution equations we do not expect the solution at time t = T to depend
on times greater than T .

3.2. A Third-Order PDE with Dirichlet Boundary Conditions. As a second
example consider the following problem, posed again on the half-line:

qt + qxxx = 0, x ≥ 0, t ∈ (0, T ],(3.10a)

q(x, 0) = q0(x), x ≥ 0,(3.10b)

q(0, t) = g0(t), t ∈ (0, T ].(3.10c)

As before, we assume that q(x, t) decays sufficiently fast as x→ ∞ for all t ≥ 0. We
follow the steps outlined in the previous section.

1. Dispersion relation. The dispersion relation for the PDE is ω(k) = −ik3.
Using

ω(k) = −i|k|3[cos(3 arg k) + i sin(3 arg k)],

we define the region D (where Re(ω(k)) < 0) as

D =

{
k : arg k ∈

(
π

3
,
2π

3

)
∪
(
π,

4π

3

)
∪
(
5π

3
, 2π

)}
,

so that

D+ =

{
k : arg k ∈

(
π

3
,
2π

3

)}

and

D− = D−
1 ∪D−

2 ,

where

D−
1 =

{
k : arg k ∈

(
π,

4π

3

)}
, D−

2 =

{
k : arg k ∈

(
5π

3
, 2π

)}
.

See Figure 3.4 for a depiction of these regions.
2. Global relation. Using the same method as before, we find the local relation(

e−ikx+ω(k)tq
)
t
+
(
e−ikx+ω(k)t(qxx + ikqx + (ik)2q)

)
x
= 0,

which is easily verified. Integrating the above equation over the domain
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Fig. 3.4 Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (3.10a).

R = {0 ≤ x <∞, 0 < t ≤ T } and applying Green’s theorem, we obtain

∫∫
R

([
e−ikx+ω(k)sq(x, s)

]
s
−
[
e−ikx+ω(k)t(−qxx−ikqx−(ik)2q)

]
x

)
dsdx=0

⇒
∫
∂R

(
e−ikx+ω(k)sq(x, s)dx + e−ikx+ω(k)s(−qxx(x, s)

− ikqx(x, s)− (ik)2q(x, s))dt
)
= 0

⇒
∫ ∞

0

e−ikxq(x, 0)dx−
∫ T

0

eω(k)s(−qxx(0, s)− ikqx(0, s)− (ik)2q(0, s))ds

=

∫ ∞

0

e−ikx+ω(k)T q(x, T )dx

⇒ q̂0(k)− [k2g̃0(ω(k), T )− ikg̃1(ω(k), T )− g̃2(ω(k), T )] = eω(k)T q̂(k, T ),

(3.11)

where, as before, q̂0(k) and q̂(k, T ) represent the Fourier transform of the
solution at time t = 0 and time t = T . The time transforms of the boundary
data are given by

g̃i(ω, T ) =

∫ T

0

eωs∂ixq(0, s)ds, i = 0, 1, 2.

Equation (3.11) is the global relation for the third-order PDE (3.10a) posed
on the positive half-line. Note that it is valid for Im(k) ≤ 0.

3. Integral expression. Let

g̃(k, t) = k2g̃0(ω(k), t)− ikg̃1(ω(k), t)− g̃2(ω(k), t).

Replacing T by t in the global relation (3.11) and applying the inverse Fourier
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transform, we obtain

eω(k)tq̂(k, t) = q̂0(k)− g̃(k, t)

⇒ q̂(k, t) = e−ω(k)tq̂0(k)− e−ω(k)tg̃(k, t)

⇒ q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞

−∞
eikx−ω(k)tg̃(k, t)dk

⇒ q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)tg̃(k, t)dk,

where the second integral on the last line has been deformed into the upper
half complex plane up to the boundary of D+.

4. Solving for the unknown boundary data. As for the heat equation, the integral
expression for q(x, t) does not represent a solution due to the presence of un-
known boundary terms, here g̃1, g̃2. As before we use the discrete symmetries
of ω(k). In this case, these are ν1(k) = e

2πi
3 k and ν2(k) = e

4πi
3 k.

We observe that for k ∈ D+, ν1(k) ∈ D−
1 and ν2(k) ∈ D−

2 . Applying these

transformations to the global relation, for k ∈ D+ with α = e
2πi
3 we find

q̂0(αk) − α2k2g̃0(ω(k), t) + iαkg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(αk, t),

q̂0(α
2k)− αk2g̃0(ω(k), t) + iα2kg̃1(ω(k), t) + g̃2(ω(k), t) = eω(k)tq̂(α2k, t).

Given q(x, 0) and q(0, t) (or q̂0(k) and g̃0(ω, t)) we may solve the above two
equations for the two unknowns g̃1 and g̃2, for k in D+, to obtain

ikg̃1(ω(k), t) = −k2g̃0(ω(k), t) + 1

α(1− α)

[
q̂0(α

2k)− q̂0(αk)
]

+
eω(k)t

α(1 − α)

[
q̂(αk, t)− q̂(α2k, t)

]
,

g̃2(ω(k), t) = −k2g̃0(ω(k), t) + 1

α(1− α)

[
α2q̂0(αk) − αq̂0(α

2k)
]

+
eω(k)t

α(1 − α)

[−α2q̂(αk, t) + αq̂(α2k, t)
]
.

These expressions are substituted into the integral expression for q(x, t), re-
sulting in

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

H(k, x, t)dk,(3.12)

H(k, x, t) = eikx−ω(k)t
[
3k2g̃0(ω(k), t)− αq̂0(αk)− α2q̂0(α

2k)
]

+ eikx
[−αq̂(αk, t)− α2q̂(α2k, t)

]
.

We have used the fact that α is the cube root of unity and thus α3 = 1 and
1 + α+ α2 = 0.

5. Contribution of q̂(ν(k), t). The functions q̂(αk, t) and q̂(α2k, t) are bounded
and analytic in D+ and decay to zero uniformly as k → ∞. Once again Jor-
dan’s lemma implies that these terms do not contribute to the final solution,
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which is given by

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

3k2eikx−ω(k)tg̃0(ω(k), t)dk

+
1

2π

∫
∂D+

eikx−ω(k)t
[
αq̂0(αk) + α2q̂0(α

2k)
]
dk.(3.13)

The classicalmethod of images approach, by which one obtains the sine transform
solution to the heat equation, cannot be applied to this third-order PDE. Indeed it is
not possible to obtain solutions via the method of images for any PDE which involves
odd-order derivatives in x. For the third-order problem considered here, since q̂(αk)
is not bounded in the region {arg(k) ∈ [0, π/3]}, Jordan’s lemma may not be applied
in order to justify the deformation of the contour integral back to the real line. This
apparently implies that an integral transform pair using integrals along the real line
does not exist for this third-order PDE.

3.3. A (Slightly) Different Third-Order PDE. The two problems considered so
far are well posed when only q(0, t) is specified at the left boundary. Using a slight
modification of the previous example we illustrate what changes when more boundary
conditions are required. Consider the following third-order PDE on the positive half-
line:

(3.14) qt − qxxx = 0.

We assume that an initial condition q(x, 0) has been given. The analysis of the global
relation indicates the number and type of the boundary conditions that need to be
prescribed in order for the problem to be well posed. The dispersion relation is

(3.15) ω(k) = ik3,

and

(3.16) D =

{
k : arg k ∈

(
0,
π

3

)
∪
(
2π

3
, π

)
∪
(
4π

3
,
5π

3

)}
.

Let D+ = D+
1 ∪D+

2 , where

D+
1 =

{
k : arg k ∈

(
π,
π

3

)}
, D+

2 =

{
k : arg k ∈

(
2π

3
, π

)}
,(3.17)

and

D− =

{
k : arg k ∈

(
4π

3
,
5π

3

)}
;

see Figure 3.5.
The local relation is given by

(3.18) (e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx − k2q)

)
x
= 0,

leading to the global relation (by integrating over the region R = {x ≥ 0, 0 < t ≤ T }
and applying Green’s theorem)
(3.19)
q̂0(k)− [−k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t)] = eω(k)tq̂(k, t), Im(k) ≤ 0.
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Fig. 3.5 Domain D = {k : Re(ω(k)) < 0} for the third-order PDE (3.14).

The integral expression for the solution is

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk(3.20)

− 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk,

where

g̃(k, t) = −k2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).

The “deformation” from the real line to ∂D+ is obtained by adding to the path of
integration the closed contour that is the boundary of the wedge between D+

1 and D+
2

(see Figure 3.5) traversed in a clockwise sense. The contribution of the integrands
along this contour is zero (Cauchy’s theorem), and the contribution from the arc at
infinity vanishes due to Jordan’s lemma.

The symmetries of the global relation are as in the previous example. Hence
if k ∈ D+

1 , l ∈ D+
2 , then αk, α2l ∈ D−, where α = e

2πi
3 . We obtain the following

versions of the global relation:

q̂0(αk) + α2k2g̃0(ω(k), t)− iαkg̃1(ω(k), t)− g̃2(ω(k), t) =e
ω(k)tq̂(αk, t), k ∈ D+

1 ,

(3.21)

q̂0(α
2k) + αk2g̃0(ω(k), t)− iα2kg̃1(ω(k), t)− g̃2(ω(k), t) =e

ω(k)tq̂(α2k, t), k ∈ D+
2 .

(3.22)

Hence in each region, D+
1 and D+

2 , there is one relation between the three quan-
tities g̃i(ω(k), t), i = 0, 1, 2. Thus two boundary conditions are required at the left
boundary in order to be able to solve the global relation for the unspecified bound-
ary condition. For instance, given q(0, t) and qx(0, t) we can calculate g̃0(ω(k)) and
g̃1(ω(k)). The above relations can be used to obtain two expressions for g̃2(ω(k)), one
valid for k ∈ D+

1 and the other for k ∈ D+
2 . Substituting the resulting expressions

into the integral expression for q(x, t), we find the solution to (3.14) posed on the
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positive half-line. The difference in the number of boundary conditions required for
the seemingly very similar boundary-value problems (3.10a) and (3.14) is explained
as follows. For (3.10a), the phase velocity −iω/k = −k2 is negative and the left
boundary acts as a sink. Using (3.14), the phase velocity −iω/k = k2 is positive,
and the left boundary is a source. The same conclusion is reached using the group
velocity, which is 3× the phase velocity.

3.4. A Multiterm Third-Order PDE. For the problems above, the symmetries
of the dispersion relation are easily found. With this example we illustrate the use of
Fokas’s method if the symmetries are somewhat more complicated and the introduc-
tion of a branch cut is necessary. This method illustrates how to proceed in general,
even if the symmetries cannot be written out explicitly. Consider

(3.23) qt = qx + qxxx = 0, x > 0,

where an initial condition q(x, 0) is given. The previous example indicates that two
boundary conditions are required on the left boundary, which we will verify in the
process of solving the equation. As in the previous example, we skip some calculation
details that are similar to previous examples.

The dispersion relation is

(3.24) ω(k) = −ik + ik3,

and

(3.25) D =
{
k : kI(1 + k2I − 3k2R) < 0

}
,

where kR and kI denote the real and imaginary parts of k, respectively. The region D
is shown on the left in Figure 3.6. The boundaries of the region consist of a hyperbola
with asymptotes kI = ±√

3kR and the real line. As above, we define D+ (D−) to be
the intersection of D with the upper (lower) half-plane, and D+ = D+

1 ∪D+
2 , where

D+
1 =

{
k : D+ ∩ second quadrant

}
, D+

2 =
{
k : D+ ∩ first quadrant

}
,(3.26)

as indicated in Figure 3.6.
The local relation is given by

(3.27) (e−ikx+ω(k)tq)t −
(
e−ikx+ω(k)t(qxx + ikqx + (1− k2)q)

)
x
= 0;

integrating over the region R = {x ≥ 0, 0 < t ≤ T } and using Green’s theorem gives
the global relation

(3.28) q̂0(k)− g̃(k, t) = eω(k)tq̂(k, t), Im(k) ≤ 0,

where we have defined g̃(k, t) = (1−k2)g̃0(ω(k), t)+ikg̃1(ω(k), t)+ g̃2(ω(k), t). At this
point, we might write an integral expression for q(x, t) involving a contour integral
over the boundary of D+, but first we examine the symmetries of the dispersion
relation, as their functional form will influence what follows.

The discrete symmetries of ω(k) are found by solving −ik+ ik3 = −iν(k)+ iν3(k)
for ν(k). Eliminating the solution ν(k) = k, we find

ν = −k
2
±
√
1− 3k2

4
.
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Fig. 3.6 Domain D = {k : Re(ω(k)) < 0} (left) and its deformation D̃ (right) for the third-order
PDE (3.23). The branch cut [−2/

√
3, 2/

√
3] is indicated by the jagged line.

This is a two-sheeted expression with branch points at ±√
3/2, leading to a choice

of branch cut along [−√
3/2,

√
3/2]. Define ν1 to be the branch of ν which limits

to (−1/2 + i
√
3/2)k = k exp(2πi/3), and let ν2 be the other branch, limiting to

k exp(4πi/3). Our standard procedure would be to deform the integration over the
real k axis to one along ∂D+, leading to the solution expression

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

1

eikx−ω(k)tg̃(k, t)dk(3.29)

− 1

2π

∫
∂D+

2

eikx−ω(k)tg̃(k, t)dk,

where

g̃(k, t) = (1− k2)g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t).

This is problematic, since the integration paths ∂D+
1 and ∂D−

2 contain the branch
points and part of the branch cut. Instead, we deform D to D̃ with its constituent
parts D̃+

1 , D̃
+
2 , and D̃

−, so that the boundary of these domains is separated from the
branch cut. Although the integrands are growing as k → ∞ in D, they are analytic
in any bounded region, and this deformation has no overall effect, due to Cauchy’s
theorem. The deformation from D to D̃ can be chosen in many ways, as long as D̃ has
the same asymptotic form as D. Specifically, we may deform D+

1 to D̃+
1 and induce

deformations on D+
2 and D− using D̃+

2 = ν2(D̃
+
1 ) and D− = ν1(D̃

+
1 ), respectively.

This leads to the solution formula

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫
∂D̃+

1

eikx−ω(k)tg̃(k, t)dk(3.30)

− 1

2π

∫
∂D̃+

2

eikx−ω(k)tg̃(k, t)dk.
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Next, we eliminate the dependence on unnecessary boundary conditions. In ad-
dition to (3.28), we have the following versions of the global relation:

q̂0(ν1(k))− (1− ν1(k)
2)g̃0(ω(k), t)− iν1(k)g̃1(ω(k), t)− g̃2(ω(k), t) = eω(k)tq̂(ν1(k), t),

k ∈ D̃+
1 ,(3.31)

q̂0(ν2(k))− (1− ν2(k)
2)g̃0(ω(k), t)− iν2(k)g̃1(ω(k), t)− g̃2(ω(k), t) = eω(k)tq̂(ν2(k), t),

k ∈ D̃+
2 .(3.32)

As for the previous example, in each region, D̃+
1 and D̃+

2 , there is one relation
among the three quantities g̃i(ω(k), t), i = 0, 1, 2. Thus two boundary conditions
are required at the left boundary in order to be able to solve the global relation for
whichever boundary condition is unspecified.

3.5. A General Evolution PDE. Fokas’s method is also applicable to the general
constant coefficient linear evolution PDE

(3.33) qt + ω(−i∂x)q = 0, x ≥ 0, t ∈ (0, T ].

Here ω(k) is a polynomial of degree n. To ensure that solutions do not grow in time,
we impose that Re(ω(k)) ≥ 0 for real k. Let

(3.34) ω(k) = αnk
n + αn−1k

n−1 + · · ·+ α0.

The large k limit of the condition Re(ω(k)) ≥ 0, k ∈ R, implies that if n is odd,
then αn = ±i. For n even, Re(αn) ≥ 0. Using the dispersion relation we define the
following regions in the complex k plane:

D = {k : Re(ω(k)) < 0}
and

D+ = D ∩ C
+, D− = D ∩ C

−.

The local relation is given by

∂t

(
e−ikx+ω(k)tq(x, t)

)
− ∂x

⎛
⎝e−ikx+ω(k)t

n−1∑
j=0

cj(k)∂
j
xq(x, t)

⎞
⎠ = 0,

where

n−1∑
j=0

cj(k)∂
j
xq(x, t) = i

(
ω(k)− ω(l)

k − l

)∣∣∣∣
l=−i∂x

q(x, t).(3.35)

The proof is straightforward [9]. Equation (3.35) implies the global relation

eω(k)T q̂(k, T ) = q̂0(k)−
n−1∑
j=0

cj(k)g̃j(ω(k), T ), Im(k) ≤ 0,

where

g̃j(ω, T ) =

∫ T

0

eωs∂jxq(0, s)ds.
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Applying the inverse Fourier transform to the global relation, we obtain the integral
expression for the solution

q(x, t) =
1

2π

∫ ∞

−∞
e−ikx+ω(k)tq̂0(k)dk − 1

2π

∫
∂D+

⎛
⎝e−ikx+ω(k)t

n−1∑
j=0

cj(k)g̃j(ω(k), t)

⎞
⎠ dk.

(3.36)

In order to obtain a solution, we require expressions for the time transforms of
the unknown boundary data valid for k ∈ ∂D+. As with the previous examples, we
use the discrete symmetries of the equation

ω(k) = ω0.

This relation is a polynomial of order n and thus has n roots in the complex plane.
The mappings from one root to another are precisely the transformations k → ν(k)
which leave ω(k) invariant. We employ the induced versions of the global relation
to solve for the transforms of the unknown boundary data. The solution proceeds
as before. Having eliminated the unknown boundary data, we obtain an expression
that depends on q̂(ν(k), t). The transformation ν is such that q̂(ν(k), t) is analytic
and bounded in the region D+. Hence we may use the Cauchy integral theorem to
eliminate the contribution of the term involving q̂(ν(k), t) to the integral along ∂D+.

It is possible to predict how many boundary conditions are required for a well-
posed problem by considering the large k behavior of ω(k). For large values of k,
ω(k) ∼ αnk

n and the region D approaches

DR =

{
k : argαn + n arg k ∈

(
π

2
,
3π

2

)
+ 2mπ, m = 0, . . . , n− 1

}
.

Indeed for large k, Re(ω(k)) ∼ |k|n cos(argαn+n arg k), which is negative for k in DR.
The region DR consists of n unbounded equal-angled sectors in the complex k plane.
Let N represent the number of unbounded sectors of DR in the upper half-plane. It
is easily seen that

(3.37) N =

⎧⎪⎨
⎪⎩
n/2, n even,

(n+ 1)/2, n odd and αn = −i,
(n− 1)/2, n odd and αn = i.

The reader is encouraged to verify the formulas for DR and N for the examples
presented above. Indeed Figures 3.2, 3.4, and 3.5 are examples of the three possible
cases for N . In these examples, the regions DR and D coincide.

In the integral expression for q(x, t), the contour ∂D+ may be deformed to ∂D+
R =

∂DR ∩C+, since the integrands are entire functions. Thus we require expressions for
the time transform of the n boundary data, valid in the unbounded sectors of DR in
the upper half-plane.

Assume we are given p boundary conditions at the boundary at x = 0. This
implies we require, for each of the N sectors in C

+, expressions for the transforms
of the n − p unknown boundary data. For each of the N sectors in C+, the discrete
symmetries of ω(k) allow us to choose n−N transformations νi(k), i = 0, 1, . . . , n−
N − 1, which map that sector to the n−N remaining sectors. Hence, by substituting
νi(k) for k, there are n − N versions of the global relation valid in each of the N



SOLVING LINEAR PARTIAL DIFFERENTIAL EQUATIONS 177

sectors in C+. Thus we have n − p unknowns with n − N equations in each sector.
It follows that we need N boundary conditions at x = 0 for a well-posed problem
or, in other words, a well-posed problem on the positive half-line requires as many
boundary conditions as there are sectors of DR in the upper half-plane.

Remarks.
• A canonical problem is one for which q(0, t) and its first N − 1 derivatives
are provided as boundary conditions. An example of a noncanonical problem
is the Neumann problem for the heat equation. Providing N linear combina-
tions with constant coefficients of a subset of the boundary values is another
example (Robin problem). In this case, versions of the global relation valid in
D+

R and the N linear combinations form a system of equations which can be
solved for the boundary data, provided a certain determinant is not identi-
cally zero. If the determinant has zeros in D+

R , then the contribution of these
zeros to the final solution is computed via the residue theorem.

• For the class of the PDEs discussed in this paper, the dispersion relation ω(k)
is a polynomial of degree n; see (3.34). Thus, by the fundamental theory of
algebra, in addition to the identity, n − 1 additional symmetries ν(k) exist,
even if typically they cannot be written out in closed form. In this sense, the
problem has been reduced to one of polynomial algebra.

4. The Problem on the Finite Interval.

4.1. The General Method. Having studied the problem posed on the half-line in
some detail, we turn to the problem on the finite interval. We use the same notation
as before, extending it where necessary to incorporate the boundary on the right-hand
side:

qt + ω(−i∂x)q = 0, (x, t) ∈ [0, L]× [0, T ],

q(x, 0) = q0(x), x ∈ [0, L],

∂jxq(0, t) = gj(t), j = 0, . . . , n− 1,

∂jxq(L, t) = hj(t), j = 0, . . . , n− 1.

Here gj(t) and hj(t) denote the relevant boundary values at x = 0 and x = L,
respectively. We assume that n of the functions gj(t) and hj(t) are given. In what
follows, we will see that for a well-posed problem N of these specified boundary
functions should be specified at x = 0 and the other n − N at x = L, where N is
as in (3.37). As for the half-line problem, the different incarnations of the global
relation (see below) obtained using the symmetries of the dispersion relation are used
to eliminate unspecified boundary conditions.

As above, we define

g̃j(k, t) =

∫ t

0

eksgj(s)ds, h̃j(k, t) =

∫ t

0

ekshj(s)ds, k ∈ C,

where we have introduced the time transforms of both the left and right boundary
values.

Employing the divergence form (3.35), we use Green’s theorem on the domain
[0, L]× [0, t]. This is an easier domain to work with since it is bounded. The conver-
gence of integrals over the spatial domain is not an issue, as it might be for problems
posed on the half-line. We obtain the global relation

q̂0(k)− g̃(k, t) + e−ikLh̃(k, t) = eω(k)t

∫ L

0

e−ikxq(x, t)dx = eω(k)tq̂(k, t), k ∈ C,(4.1)
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with

(4.2) h̃(k, t) =

n−1∑
j=0

cj(k)hj(k, t), g̃(k, t) =

n−1∑
j=0

cj(k)gj(k, t).

As before, the global relation is also valid if we replace t by T . In contrast to
the global relation for a problem on the half-line, the global relation (4.1) on the
finite interval is valid for all k ∈ C. It is clear this has important implications, as is
discussed below.

To formally obtain a solution, we apply the inverse Fourier transform to (4.1):

q(x, t) =
1

2π

∫ ∞

−∞
eikxq̂(k, t)dk

=
1

2π

∫ ∞

−∞
eikx−ω(k)tq̂0(k)dk − 1

2π

∫ ∞

−∞
eikx−ω(k)tg̃(k, t)dk

+
1

2π

∫ ∞

−∞
e−ik(L−x)−ω(k)th̃(k, t)dk.(4.3)

There are two major differences between the half-line problem and the problem on
the finite interval. The most obvious is the addition of h̃(k, t) due to the presence of the
boundary on the right side of the domain. This provides extra algebraic complications
in obtaining the solution. These complications are counteracted by the validity of the
global relation in all of C, which is the second major difference. This allows us to use
D+ to eliminate the unknowns in h̃(k, t), in addition to using D− to eliminate the
unknowns in g̃(k, t) as we did earlier for the half-line. Proceeding with this intuition,
we deform the contour of integration for the integral involving g̃(k, t) up to ∂D+ as
in the half-line case.

The third integral in (4.3) does not appear in the half-line case. The exponential
e−ik(L−x) is bounded in the lower half-plane since x ∈ [0, L]. This observation allows
us to analytically extend the integrand of the third term in (4.3) to the lower half-
plane, at which point the path (−∞,∞) can be deformed to the boundary of D− using
Jordan’s lemma in C

− \D−, in the same way that the deformation to the boundary
of D+ was justified earlier in the half-line case. Taking our orientation convention
into account we obtain

q(x, t) =
1

2π

∫ ∞

−∞
eikx−ω(k)t q̂0(k)dk − 1

2π

∫
∂D+

eikx−ω(k)t g̃(k, t)dk

− 1

2π

∫
∂D−

e−ik(L−x)−ω(k)th̃(k, t)dk.(4.4)

At this point, we have obtained the solution in terms of 2n boundary values. We
can prescribe only n boundary conditions. The boundary values that are not given
are eliminated using the symmetries of the dispersion relation as for the half-line case.
As before, we have n − 1 transformations that leave ω(k) invariant, i.e., there exist
functions {ν1, . . . , νn−1} such that ω(k) = ω(νj(k)). This provides n equations with 2n
unknowns. If these equations may be solved for n of the unknown boundary functions
(or their t-transforms), then these functions may be eliminated in terms of the given
boundary conditions. In [9] the conditions under which this system of equations can
be solved in terms of a set of boundary functions to be eliminated is discussed. For
instance, the system cannot be solved for the boundary functions on one boundary
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in terms of the boundary functions on the other boundary. Indeed, a well-posed
problem on the finite interval requires boundary conditions at both boundaries. Of
course, as for the half-line problem, using these different incarnations of the global
relation introduces the quantities q̂(νj(k), t), j = 1, . . . , n− 1, on the right-hand side
of (4.4). This dependence is eliminated as before, using contour deformation and
Jordan’s lemma. These different steps are illustrated on a variety of examples below.

4.2. The Heat Equation with Homogeneous Dirichlet Boundary Conditions.
Consider the problem

qt = qxx, x ∈ (0, L), t ∈ (0, T ],(4.5a)

q(x, 0) = q0(x), x ≥ 0,(4.5b)

q(0, t) = 0, t ∈ [0, T ],(4.5c)

q(L, t) = 0, t ∈ [0, T ].(4.5d)

As we have already seen, ω(k) = k2. Also, g̃(k, t) = ikg̃0(k
2, t) + g̃1(k

2, t) = g̃1(k
2, t)

and h̃(k, t) = ikh̃0(k
2, t) + h̃1(k

2, t) = h̃1(k
2, t). The transformation that leaves

ω(k) = k2 invariant is k → −k; thus the two equations for the two unknowns g̃1(k
2, T )

and h̃1(k
2, T ) are

q̂0(k)− g̃1(k
2, t) + eikLh̃1(k

2, t) = ek
2tq̂(k, t)

and q̂0(−k)− g̃1(k
2, t) + e−ikLh̃1(k

2, t) = ek
2tq̂(−k, t).

These two equations are rewritten as[ −1 eikL

−1 e−ikL

] [
g̃1(k

2, t)

h̃1(k
2, t)

]
=

[
ek

2tq̂(k, t)− q̂0(k)

ek
2tq̂(−k, t)− q̂0(−k)

]
,

from which[
g̃1(k

2, t)

h̃1(k
2, t)

]
=

1

eikL − e−ikL

[
e−ikL −eikL
1 −1

][
ek

2tq̂(k, t)− q̂0(k)

ek
2tq̂(−k, t)− q̂0(−k)

]
.

Defining Δ(k) = eikL − e−ikL, we find

g̃1(k
2, t) =

1

Δ(k)
[q̂0(−k)e−ikL − q̂0(k)e

ikL]− 1

Δ(k)
[ek

2tq̂(−k, t)e−ikL − ek
2tq̂(k, t)eikL],

h̃1(k
2, t) =

1

Δ(k)
[q̂0(−k)− q̂0(k)]− 1

Δ(k)
[ek

2tq̂(−k, t)− ek
2tq̂(k, t)].

The final step is to justify neglecting the terms involving q̂(±k, t). For g̃, this is
analogous to the case of the half-line, and it is not repeated here. However, we do
demonstrate it for h̃. Consider the integral
(4.6)∫
∂D−
e−ik(L−x)−k2t 1

Δ(k)
[ek

2tq̂(−k, t)−ek2tq̂(k, t)]dk=

∫
∂D−
e−ik(L−x) 1

Δ(k)
[q̂(−k, t)−q̂(k, t)]dk,

where both (q̂(−k, t)− q̂(k, t))/Δ(k) = exp(−ikL)(q̂(−k, t)− q̂(k, t))/(1−exp(−2ikL))
and exp(−ik(L − x)) decay to zero uniformly as k → ∞ in the lower half-plane.
Another application of Jordan’s lemma shows that∫

∂D−
e−ik(L−x)−k2t 1

Δ(k)
[ek

2tq̂(−k, t)− ek
2tq̂(k, t)]dk = 0,
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(a) (b)

Fig. 4.1 (a) The domains D+, D− and their respective boundaries. (b) The deformed domains D+
0

and D−
0 , used to avoid the root of Δ(k) at the origin.

which implies

q(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tq̂0(k)dk

− 1

2π

∫
∂D+

eikx−k2t 1

Δ(k)

[
eikLq̂0(k)− e−ikLq̂0(−k)

]
dk

− 1

2π

∫
∂D−

e−ik(L−x)−k2t 1

Δ(k)
[q̂0(k)− q̂0(−k)] dk.(4.7)

It should be noted that Δ(0) = 0 and 0 ∈ ∂D, and thus it is convenient to deform the
paths of integration, as shown in Figure 4.1. Having obtained the solution of (4.5)
we demonstrate that it may be rewritten in the more familiar form of an infinite sum
over a set of fundamental modes. It should be noted that this is not always possible.
Indeed, for many problems a countable set of fundamental modes does not exist. The
third-order equation of section 4.4 provides an example of this. Even in that case, the
method of Fokas still provides a solution.

To reduce the integral representation (4.7) of the solution to an infinite series,
we start by noticing that Δ(k) has simple zeros at a countable number of roots
kn = πn/L. The idea is to deform the paths of integration in (4.7) to a sequence of
small loops around these roots, leading to a residue contribution for each loop, from
which a series representation of the solution is obtained. In order for this to happen,
all remaining integral contributions must vanish. For the heat equation, this is the
case. In fact, this occurs for all problems where a series solution exists. For other
problems (again, see section 4.4) the integral contribution to the solution does not
vanish and little is gained by separating out a series part.

To ease the notation, define

f+(x, t, k) =
1

Δ(k)

[
eikLq̂0(−k)− e−ikLq̂0(k)

]
,

f−(x, t, k) =
1

Δ(k)
[q̂0(−k)− q̂0(k)] ,

where f+(x, k) and f−(x, k) appear in the integrands along ∂D+ and ∂D−, respec-
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tively. We compute the residues at each kn for the integrand in the integral along
∂D+. All poles are simple, and thus

cn(x, t) = Res{eikx−k2tf+(x, t, k), k = kn}
=

1

Δ′(kn)
eiknx−k2

nt
[
eiknLq̂0(−kn)− e−iknLq̂0(kn)

]
.

Using eiknL = (−1)n and Δ′(kn) = (−1)n2iL, we find

cn(x, t) =
1

2iL
eiknx−k2

nt [q̂0(−kn)− q̂0(kn)] .(4.8)

This can be simplified using the explicit form of q̂0(k). We have

q̂0(kn)− q̂0(−kn) = −2i

∫ L

0

sin(knx)q0(x)dx,(4.9)

which allows us to obtain a simple expression for the residue:

cn(x, t) = − 1

2
eiknx−k2

ntqn, qn =
2

L

∫ L

0

sin(knx)q0(x)dx.(4.10)

It remains to compute the residues of the integrand on ∂D−. This is similar
to the calculation just detailed, and we end up with residues equal to those already
computed.

Res{e−ik(L−x)−ω(k)tf−(x, t, k), k = kn} = eiknx−ω(kn)t 1

Δ′(kn)
[q̂0(−kn)− q̂0(kn)]

=
1

2iL
eiknx−ω(kn)t

[
−2i

∫ L

0

sin(knx)q0(x)dx

]

= Res{eikx−ω(k)tf+(x, t, k), k = kn}.
All the poles are on the real line. We deform the paths ∂D± back to the real

line in order to collect their contributions. Additionally, in order to obtain a series
solution, the first Fourier transform integral in (4.4) needs to be addressed. Using
Jordan’s lemma, we may deform back to the real line to end up with the contours in
Figure 4.2. The solution can be written as

q(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tq̂0(k)dk

− 1

2π

∫
∂D+

ε

eikx−k2tf+(x, t, k)dk − 1

2π

∫
∂D−

ε

e−ik(L−x)−k2tf−(x, t, k)dk.(4.11)

Replacing the integrals with principal-value integrals and sums,

q(x, t) =
1

2π

∫ ∞

−∞
eikx−k2tq̂0(k)dk

−
(

1

2π
−
∫ ∞

−∞
eikx−k2tf+(x, t, k)dk − πi

2π

∞∑
n=−∞

Res{f+(x, t, k), k = kn}
)

+

(
1

2π
−
∫ ∞

−∞
e−ik(L−x)−k2tf−(x, t, k)dk +

πi

2π

∞∑
n=−∞

Res{f−(x, t, k), k = kn}
)
.

(4.12)
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Fig. 4.2 Deformation to obtain Fourier series.

The two principal-value integrals sum to cancel the first integral, leaving us with

q(x, t) = i

∞∑
n=−∞

cn(x, t) = i

∞∑
n=−∞

1

2
eiknx−k2

nt(−qn).(4.13)

Using qn = −q−n and q0 = 0, we find

q(x, t) =

∞∑
i=1

qne
−k2

nt sin(knx),

which is the classical sine series solution.

4.3. The Heat Equation with Robin Boundary Conditions. Consider the some-
what more complicated problem

qt = qxx, (x, t) ∈ [0, L]× [0, T ],(4.14a)

q(x, 0) = q0(x), x ∈ [0, L],(4.14b)

qx(0, t)− γq(0, t) = 0, t ∈ [0, T ],(4.14c)

qx(L, t)− γq(L, t) = 0, t ∈ [0, T ],(4.14d)

where γ is real. The heat equation problem with Dirichlet or Neumann boundary data
is straightforward using classical techniques and contains no surprises. The same is
not true for the Robin problem, which contains an exponentially growing mode. We
demonstrate how easily the method of Fokas extends to Robin boundary conditions,
and how naturally the growing mode is captured . We work with homogeneous Robin
conditions, to simplify the algebra involved. As before, ω(k) = k2, g̃(k) = ikg̃0(k

2) +
g̃1(k

2), and h̃(k) = ikh̃0(k
2) + h̃1(k

2). From the boundary conditions,

h̃1(k
2) = γh̃0(k

2), g̃1(k
2) = γg̃0(k

2).(4.15)

Using k �→ −k the two global relations are

q̂0(k)− [ikg̃0(k
2) + g̃1(k

2)] + eikL[ikh̃0(k
2) + h̃1(k

2)] = ek
2tq̂(k, t),(4.16)

q̂0(−k)− [−ikg̃0(k2) + g̃1(k
2)] + e−ikL[−ikh̃0(k2) + h̃1(k

2)] = ek
2tq̂(−k, t).(4.17)
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The equations (4.15)–(4.17) form a system of four linear equations for the four un-
knowns g̃0(k

2), g̃1(k
2), h̃0(k

2), and h̃1(k
2). These equations are valid in the whole

complex k-plane, and all integrals involved are proper. Substitution of (4.15) in
(4.16)–(4.17) gives

g̃0(k
2)− eikLh̃0(k

2) =
q̂0(k)− ek

2tq̂(k, t)

γ + ik
,

g̃0(k
2)− e−ikLh̃0(k

2) =
q̂0(−k)− ek

2tq̂(−k, t)
γ − ik

,

so that

g0(k
2) =

1

Δ(k)

[
eikL

q̂0(−k)− ek
2tq̂(−k, t)

γ − ik
− e−ikL q̂0(k)− ek

2tq̂(k, t)

γ + ik

]
,

h0(k
2) =

1

Δ(k)

[
q̂0(−k)− ek

2tq̂(−k, t)
γ − ik

− q̂0(k)− ek
2tq̂(k, t)

γ + ik

]
,

where, as before, Δ(k) = eikL − e−ikL. The solution formula (4.3) requires us to find
g̃ and h̃:

g̃(k) =
1

Δ(k)

[
eikLq̂0(−k)γ + ik

γ − ik
− e−ikLq̂0(k)

]

− 1

Δ(k)

[
eikLek

2tq̂(−k, t)γ + ik

γ − ik
− e−ikLek

2tq̂(k, t)

]
,

h̃(k) =
1

Δ(k)

[
q̂0(−k)γ + ik

γ − ik
− q̂0(k)

]
− 1

Δ(k)

[
ek

2tq̂(−k, t)γ + ik

γ − ik
− ek

2tq̂(k, t)

]
.

There is an added complication. Since γ ∈ R the individual terms in the above
expressions have a pole in D at k = −iγ, while g̃(k) and h̃(k) are analytic. Depending
on the sign of γ the pole at k = −iγ is in D+ or in D−. Either way it affects the use of
Jordan’s lemma, which is necessary to remove the terms involving q̂(k, t) and q̂(−k, t).
Using the above expressions, the second and third integrals in (4.4) are split term-by-
term. The resulting integrands are not analytic, and the contour deformation required
to eliminate the contribution of q̂(−k, t) necessarily accounts for the pole singularity.
For concreteness, let us assume that γ < 0, thus k = −iγ ∈ D+. We have two
equivalent options. We can deform ∂D+ to pass above k = −iγ or we can calculate
a residue. To pursue this second option we use the fact that eikx−k2tg̃(k) is entire, so
that

Res{eikx−k2tg̃(k), k = −iγ} = 0.

Therefore,

Res

{ −1

Δ(k)

[
eikLek

2tq̂(−k, t)γ + ik

γ − ik
− e−ikLek

2tq̂(k, t)

]
, k = −iγ

}

= Res

{ −1

Δ(k)

[
eikLq̂0(−k)γ + ik

γ − ik
− e−ikLq̂0(k)

]
, k = −iγ

}
=

−2iγ

Δ(−iγ)e
γLq̂0(iγ).
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The final expression for the solution q(x, t) is

q(x, t) =
2γ

1− e−2γL
q̂0(iγ)e

γx+γ2t +
1

2π

∫ ∞

−∞
eikx−k2tq̂0(k)dk

− 1

2π

∫
∂D+

0

eikx−k2t

Δ(k)

[
eikLq̂0(−k)γ + ik

γ − ik
− e−ikLq̂0(k)

]
dk

− 1

2π

∫
∂D−

0

e−ik(L−x)−k2t

Δ(k)

[
q̂0(−k)γ + ik

γ − ik
− q̂0(k)

]
dk,(4.18)

which displays the mode that is exponentially growing in time, which is explicitly
present in this problem (see [15]).

Remarks.
• As in the case of the Dirichlet problem, we deform ∂D+ to ∂D+

0 to avoid the
removable singularity at the origin.

• Using contour deformation and the residue theorem as in the previous exam-
ple, the integrals in (4.18) may be evaluated explicitly, if so desired, resulting
in a series solution (see equation (21) in section 4.3 of [15]).

4.4. A Third-Order Equation with Mixed Boundary Data. To demonstrate the
true power of the Fokas method we consider a difficult problem whose explicit solution
cannot be obtained using classical methods. Consider the problem

qt = qxxx, (x, t) ∈ [0, L]× [0, T ],(4.19a)

q(x, 0) = q0(x), x ∈ [0, L],(4.19b)

q(0, t)− αqx(0, t) = 0, t ∈ [0, T ],(4.19c)

q(L, t)− αqx(L, t) = 0, t ∈ [0, T ],(4.19d)

qxx(L, t) = β, t ∈ [0, T ],(4.19e)

where α and β are real parameters. Classical methods [17] would proceed using sepa-
ration of variables. This approach fails since a complete basis of discrete fundamental
modes does not exist for this problem, as can be verified with some effort [9].

To find an explicit solution, we use the general solution (4.4), with D as in Fig-
ure 4.3, since ω(k) = ik3. Using the formulas (4.2) for g̃ and h̃,

g̃(ω(k), t) = (ik)2g̃0(ω(k), t) + ikg̃1(ω(k), t) + g̃2(ω(k), t),(4.20)

h̃(ω(k), t) = (ik)2h̃0(ω(k), t) + ikh̃1(ω(k), t) + h̃2(ω(k), t).(4.21)

The relations that leave ω(k) invariant are k �→ αk and k �→ α2k, where α = e2iπ/3.
We have introduced six boundary functions, h̃j and g̃j , on which the solution q(x, t)

depends, according to (4.4). The BVP provides h2(k, t) = β
∫ t

0 e
ksds and relations

between g0(k, t) and g1(k, t), and between h0(k, t) and h1(k, t), respectively. It remains
to find extra relations for the remaining boundary functions, using the invariances of
the dispersion relation. As stated, the boundary function h2(k, t) is known. To
determine the others we set up a system of five equations for five unknowns. Define
M(k, t) = q̂0(k)−eω(k)tq̂(k, t)−eikLh̃2(ω(k), t). Representing the system of equations
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Fig. 4.3 D for qt = qxxx.

in matrix form, we obtain⎡
⎢⎢⎢⎢⎣

k2 −ik −1 −k2eikL ikeikL

γ2k2 −iγk −1 −γ2k2eiγkL iγkeiγkL

γk2 −iγ2k −1 −γk2eiγ2kL iγ2keiγ
2kL

1 −α 0 0 0
0 0 0 1 −α

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣
g̃0(ω(k), t)
g̃1(ω(k), t)
g̃2(ω(k), t)

h̃0(ω(k), t)

h̃1(ω(k), t)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−M(k, t)
−M(γk, t)
−M(γ2k, t)

0
0

⎤
⎥⎥⎥⎥⎦ .

Once this system is solved, its solution is substituted into (4.4). At this point, the
contributions from any poles are collected and Jordan’s lemma is used to remove
terms involving q̂(k, t), yielding the desired explicit solution. Although the algebra
involved may be messy, the process is clear and is easily completed.

5. Conclusion. We have presented the application of Fokas’s method to BVPs
for linear evolution PDEs with constant coefficients on both the half-line and the
finite interval. The main ideas behind the method are the use of (i) the analyticity
properties of various functions, inherited from the global relation, and (ii) the discrete
symmetries of the dispersion relation. We have illustrated that the method is more
general than the standard methods used in the sense that it reproduces the results
that they do, while being applicable to situations where the standard methods fail or
are not applicable. We have illustrated that the method is suitable to be taught in
the classroom at the undergraduate level.

Many other topics can be discussed at this point. Perhaps our biggest omission
is not having mentioned Lax pairs. Indeed, it is possible to write a linear PDE with
constant coefficients as the compatibility condition of two first-order ODEs for an
auxiliary function ψ(x, t): one of these equations dictates how ψ(x, t) changes as a
function of x, with t as a parameter, and the other equation has the roles of x and t
reversed. Both equations may depend on u(x, t) and its derivatives, and thus they are
not autonomous. As shown in [9], this approach leads to the solution of the PDE via
a scalar Riemann–Hilbert problem, which may be solved explicitly using the Plemelj
formula [1]. Following this route, it is not necessary to introduce even the Fourier
transform! Admittedly, the background in complex analysis required for this approach
is far more extensive.

The method is far more general than we have discussed. For instance, it can be
extended to apply to evolution equations with periodic boundary conditions [16], to
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evolution equations with more than one spatial dimension, or to elliptic equations. It
is applicable also to some linear PDEs with nonconstant coefficients and, as already
stated, to so-called integrable nonlinear equations. These topics are beyond the scope
of this article, but the interested reader can find more details and additional references
in [9]. The method continues to be extended. For instance, it was recently applied to
elliptic PDEs in polar coordinates [14].
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