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Talk Abstract
A new method is proposed to recover the water-wave

surface elevation from pressure data obtained at the bot-
tom of the fluid. The new method requires the numeri-
cal solution of a nonlocal nonlinear equation relating the
pressure and the surface elevation which is obtained from
the Euler formulation of the water-wave problem with-
out approximation. This new approach is compared with
other approaches currently used in field observations.

Introduction
In field experiments, the surface elevation of a water-

wave surface in shallow water is often determined by
measuring the pressure along the bottom of the fluid, see
e.g. [2], [5], [9], [10], [11], [12]. Using this pressure data,
it is common to reconstruct the surface elevation using a
well-known transfer function linear relationship between
the Fourier transforms of the pressure and the elevation of
the surface [8]:

F {η(x)} (k) = cosh(kh)F {p(x)} (k), (1)

whereh represents the average depth of the fluid,η(x)
is the zero-average surface elevation of the wave, and
p(x) = (P (x,−h) − ρgh)/ρg is the non-static part of
the pressureP (x, z) evaluated at the bottom of the fluid
z = −h, scaled by the fluid densityρ and the accelera-
tion of gravity g. In this relationship, we regardη andp
as functions of the spatial coordinatex, with parametric
dependence on timet. It is equally useful to lett vary for
fixed x, as would be appropriate for a time series mea-
surement, which results in extra factors of the wave speed
c(k), due to the presence of a temporal instead of spa-
tial Fourier transform(F ). Different modifications of this
formula have been proposed. Most common is the use of
a multiplicative correction factor to the transfer function.
Bishop & Donelan argue that such correction factors are
not necessary [5]. While the above linear relationship is
accurate on some scales, it fails to reconstruct the surface
elevation accurately in the case of large-amplitude waves,
as might be expected. Errors of 15% or more are com-
mon, as is shown below.

In order to address the inaccuracies of the linear model,
nonlinear methods are required. With the exception of re-
cent work by Constantin & Strauss [4], few nonlinear re-
sults are found in the literature. Starting from a traveling
wave assumption, Constantin & Strauss obtain different
properties and bounds relating the pressure and surface
elevation. However, they do not present a reconstruction
method to accurately determine one function in terms of
the other.

One way to obtain an improved pressure - to - surface
elevation map is to use perturbation methods to determine
nonlinear correction terms to (1). One such approach is
given below, and it is included in our comparisons. Our
main focus, however, is the presentation of a new non-
local nonlinear relationship between the pressure at the
bottom of the fluid, and the elevation of a traveling-wave
surface that captures the full nonlinearity of Euler’s Equa-
tions. The advantage of this approach is that

1. it allows for the surface to be reconstructed numer-
ically from any given pressure data for a traveling
wave,

2. it provides an environment for direct analysis of the
relationship between all physically relevant parame-
ters such as depth and wave speed,

3. and it allows for the quick derivation of perturbation
expansions such as the one mentioned above.

In the case of periodic boundary conditions with period
L equated to2π, the relationship is

√

c2 − 2gη
√

1 + η2x
=

∞
∑

k=−∞

eikxP̂k cosh (k (η + h)) , (2)

where

• P̂k = 1

2π

∫

2π

0
e−ikx

√

c2 − 2p(x) dx, and

• c is the speed of the traveling wave.

Similarly, the corresponding equation on the whole line
(with sufficiently fast decaying boundary conditions as



x → ±∞) is
√

c2 − 2gη
√

1 + η2x
=

∫ ∞

−∞

eikxP̂ (k) cosh (k (η + h)) dk, (3)

whereP̂ (k) = 1

2π

∫∞

−∞
e−ikx

√

c2 − 2p(x) dx.
In what follows, we derive these nonlocal relations and

demonstrate their practicality. We compare results from
the linear reconstruction model (1) and those from a non-
linear model obtained using perturbation theory with re-
sults from the nonlocal formulation using numerical data
for traveling waves in shallow water. We demonstrate the
superiority of the nonlocal reconstruction formula for a
large range of amplitudes. Comparisons with experimen-
tal data, as well as extensions including surface tension
and more mathematical detail will be presented elsewhere
[6].

Equations of Motion
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Figure 1: Fluid Domain

Consider Euler’s equations describing the dynamics of
the surface of an ideal fluid in two dimensions (with a
one-dimensional surface). For the periodic problem, this
requires us to solve Laplace’s equation inside the fluid
domainD with periodic boundary conditions in the hori-
zontalx direction (see Figure 1). The equations of motion
are

φxx + φzz = 0, (x, z) ∈ D, (4)

φz = 0, z = −h, (5)

ηt + ηxφx = φz, z = η(x, t), (6)

φt +
1

2

(

φ2

x + φ2

z

)

+ gη = 0, z = η(x, t), (7)

whereφ(x, z, t) represents the velocity potential of the
fluid with surface elevationη(x, t). In order to relate the
pressure at the bottom of the fluid with the surface eleva-
tion, we reformulate the problem at both interfaces.

Rewriting the surface elevation
Euler’s equations as written above are challenging to

work with directly: they are a free-boundary problem

with nonlinear boundary conditions specified at an un-
known boundary. For the two-dimensional problem (i.e.,
one-dimensional surface), there are several reformula-
tions that reduce these complications. Ablowitz, Fokas
& Musslimani [1] introduced a nonlocal reformulation of
the Euler equations, valid for surface waves localized on
the whole line or the whole plane. It is essentially triv-
ial to extend this formulation to periodic boundary condi-
tions [7].

To simplify the equations of motion defined at the sur-
face, letq(x, t) represent the velocity potential at the sur-
facez = η(x, t). In other words [1],

q(x, t) = φ(x, η(x, t), t).

Combining the above with equation (6), we have

φz = ηt + ηx (qx − φzηx) ,

which allows us to solve directly forφx, φz, andφt in
terms ofη andq

φx =
qx − ηxηt
1 + η2x

, φz =
ηt + ηxqx
1 + η2x

,

φt = qt −
ηt (ηt + ηxqx)

1 + η2x
. (8)

By substituting the resulting expressions into the dynamic
boundary condition (7), we reduce equations (6-7) into
the single equation given by:

qt +
1

2
q2x + gη − 1

2
· (ηt + qxηx)

2

1 + η2x
= 0. (9)

Transitioning to a traveling coordinate frame moving
with speedc by making the change of variables

ξ = x− ct, η̃(ξ, t) = η(x− ct, t),

q̃(ξ, t) = q(x− ct, t),

and looking for stationary solutions, (9) results in

−cqξ +
1

2
q2ξ + gη − 1

2
·
η2ξ (qξ − c)2

1 + η2
ξ

= 0, (10)

where we have dropped the tildes for simplicity. Noting
that (10) is a quadratic equation forqξ, we solve forqξ in
terms of the surface elevation to find

qξ − c = ±
√

(c2 − 2gη)(1 + η2
ξ
), (11)

the± representing waves traveling to the left or right re-
spectively.



Upon substitution of the equation forqξ into the expres-
sions for the velocity potential at the surface, we find:

φξ = c+

√

c2 − 2gη
√

1 + η2
ξ

, φz =
ηξ
√

c2 − 2gη
√

1 + η2
ξ

, (12)

where we have used+, without loss of generality.

Rewriting the Pressure at the Bottom
Returning to the original coordinate system(x, z, t),

let Q(x, t) = φ(x,−h, t) (the velocity potential at the
bottom). In the fluid, we know that the Bernoulli equation
holds:

φt +
1

2

(

φ2

x + φ2

z

)

+ gz +
P (x, z, t)

ρ
= 0.

Evaluating this equation atz = −h, we find

Qt +
1

2
Q2

x − gh+
P (x,−h, t)

ρ
= 0. (13)

Moving to a traveling coordinate frame as before, we
make the change of variables

ξ = x− ct, Q̃(ξ, t) = Q(x− ct, t),

p̃(ξ, t) = P (x− ct,−h, t)/ρ − gh,

and look for stationary solutions. Thus, we solve (13) for
Qξ in terms of the pressure to find

Φξ = c+
√

c2 − 2p(ξ), Φz = 0 (14)

wherep(ξ) represents the non-static part of the pressure
at the bottom in the traveling coordinate frame (p(ξ) =
P (x− ct,−h, t)/ρ− gh) and we have dropped the tildes
for simplicity. For consistency with our previous choice,
we choose the+ sign again.

Connecting the Elevation and Pressure
Within the domain of the fluidD,

φξξ + φzz = 0,

where the boundary conditions given in (12) and (14)
must also be satisfied.

We can write the solution of this equation as

φ(ξ, z) =
1

2π

∫ ∞

−∞

eikξΨ̂(k) cosh (k (z + h)) dk,

where the boundary condition forφz at z = −h is satis-
fied. For the boundary condition at the bottom forφξ we
find,

cδ(k) + F
{

√

c2 − 2p
}

(k) = ikΨ̂(k), (15)

where δ(k) is the Dirac delta function. Evaluating
φξ(ξ, z) at the surface (z = η), we have

φξ(ξ, η) =

∫ ∞

−∞

eikξikΨ̂(k) cosh (k (η + h)) dk.

Using the boundary conditions given in (12), we find the
nonlocal relationship (3). This provides an implicit rela-
tionship between the surface elevation of a traveling wave
η(x) and the pressure measured at the bottom of the fluid
p(x). The periodic analogue of this relation (2) is found
in a similar way. Nondimensionalizing, we find

√

c2 − 2ǫη

1 + (ǫµηξ)2
=

∫ ∞

−∞

eikξF
(

√

c2 − 2ǫp(ξ)
)

cosh (µk (1 + ǫη)) dk,

whereǫ = a
h

(a scalesη(ξ) andh represents the depth of
the fluid), andµ = h

l
(l scalesx). This form of the non-

local relation is useful as a starting point to derive various
approximations. A few examples are:

• If we expandη and p as power series inǫ, we re-
cover the linear relationship (1), as expected: this is
a small amplitude expansion, but no assumption is
made about long or short waves. Since the relation-
ship is linear, superposition is possible, allowing one
to consider wave forms that are not necessarily trav-
eling at constant speed.

• Alternatively, if we balance the relationship between
µ andǫ so thatµ =

√
ǫ (this is the KdV approxima-

tion, see [1]), we find (up to orderǫ3)

η(x) = p− ǫ

2

∂2p

∂ξ2
+

ǫ2

(

1

24

∂4p

∂ξ4
−p

∂2p

∂ξ2
−
(

∂p

∂ξ

)2
)

+O(ǫ3). (16)

Numerical Comparisons of the Different Approaches
We numerically reconstruct the surface elevationη(x)

from a solution for the pressurep(x) and corresponding
wave speedc, using the periodic nonlocal relation (2).
Traveling-wave surface elevations can be computed us-
ing methods outlined in [7]. The corresponding pressure
p(x) data and wave speedc are computed using similar
methods. Next, using only the pressure data and wave
speed, (2) is solved for the surface elevation iteratively
via Newton’s method. As an initial condition for the sur-
face elevation we use the (not very good) Archimedean
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Figure 2: Log/Log plot of the error in the reconstructed
surface elevationηr as a function of the amplitude ofη.
The error from the linear and perturbation estimates are

of the same order and overlap in the above figure.

initial guessη = P/(ρg). Using numerical continuation,
we determine the surface elevation for increasingly larger
amplitudes in the pressure data.

Forh = .1, g = 1, ρ = 1 andL = 2π, we compute the
error

error =
||η − ηr||∞

||η||∞
whereη represents the expected solution andηr repre-
sents the reconstructed solution. This is done for the re-
construction using the nonlocal relationship (2), the linear
approximation (1), and a modified form of the perturba-
tion expansion (16) where the linear terms are replaced
by the full relationship given in (1).

As seen in the above figure, the error in both approx-
imations grows as the amplitude of the Stokes wave in-
creases. In fact, both approximations show errors ex-
ceeding 15% for waves with surface elevations which are
only 55% of the limiting wave height as calculated in
[3]. The numerical method using the nonlocal equation
does not suffer from this amplitude dependence, giving
errors never larger than round-off due to machine preci-
sion. Even for large amplitude waves, we conclude that
(2) provides a practical means to reconstruct the surface
elevation from pressure data measured along the bottom
of a fluid. Comparisons with experimental data will be
reported elsewhere [6].
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