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Abstract

We implement the Numerical Unified Transform Method to solve the Nonlinear Schrödinger equation
on the half-line. For so-called linearizable boundary conditions, the method solves the half-line problems
with comparable complexity as the Numerical Inverse Scattering Transform solves whole-line problems.
In particular, the method computes the solution at any x and t without spatial discretization or time
stepping. Contour deformations based on the method of nonlinear steepest descent are used so that the
method’s computational cost does not increase for large x, t and the method is more accurate as x, t
increase. Our ideas also apply to some cases where the boundary conditions are not linearizable.

Keywords: integrable partial differential equations; Numerical Unified Transform Method; method of non-
linear steepest descent

1 Introduction

In 1997, Fokas developed the Unified Transform Method (UTM) for nonlinear integrable partial differential
equations (PDEs) on the half-line [17]. The UTM is a generalization of the well-known Inverse Scattering
Transform (IST) [1] to initial-boundary-value problems (IBVPs). Figure 1 illustrates the schematics of the
IST and the UTM. In 2012, Deconinck, Olver and Trogdon developed the Numerical Inverse Scattering
Transform (NIST) for the initial-value problems (IVPs) of the Korteweg-de Vries (KdV) equation [33] and
the modified Korteweg-de Vries (mKdV) equation [33]. The NIST has since been successfully applied to the
IVPs of other integrable systems such as the focusing and defocusing Nonlinear Schrödinger (NLS) equations
[34], the Toda lattice [5] and the sine-Gordon equation [11].

As a hybrid analytical-numerical method based on the IST, the NIST differs in many aspects from
traditional numerical PDE methods. It has the following features:

1. The method gives the solution at given (x, t) without time-stepping or spatial discretization.

2. The method is spectrally accurate in the sense that the error at fixed (x, t), ENUTM(N, x, t) =
O(1/N l) for any integer l, where N is the number of arithmetic operations.

3. The method is uniformly accurate in the sense that the computational cost to compute the solution
at a point (x, t) with given accuracy remains bounded for large x, t.

4. The method only requires some decay and regularity assumptions on the initial and boundary data.
No closed-form expressions for the scattering data are required.

∗Corresponding author.
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(a) (b)

Figure 1: A comparison of the schematics of the IST and the UTM. Panel (a) is the diagram of the solution
process for the IST for solving an integrable PDE on the whole line. Panel (b) is the diagram of the solution
process of the UTM for solving a linear or nonlinear integrable PDE on the half-line. The inverse problems
in both the IST and the UTM are formulated as Riemann-Hilbert problems. Dashed lines denote evolution
via the integrable PDEs in question. Solid lines denote the steps of the IST and the UTM that can be
accomplished by solving a linear problem.

5. The method does not artificially truncate infinite physical domains.

6. The solution steps require only the solution of linear problems.

Feature 3, which concerns uniform accuracy, comes from the use of the method of nonlinear steepest
descent for Riemann-Hilbert Problems (RHPs) [13]. As shown in Figure 1, both the IST and the UTM
use RHPs for the inverse transforms. It is natural to ask if it is possible to numerically implement the
UTM for IBVPs with the same features. Before we discuss the nonlinear case, it is worth pointing out that
although the UTM was originally developed for nonlinear integrable PDEs, it offers a way to analyze IBVPs
for linear PDEs, giving the solution in terms of contour integrals in the complex plane [10, 15]. Thus a clear
understanding of the differences and difficulties of the UTM for linear problems is necessary for the study of
nonlinear problems. For linear evolution equations, there have been numerical methods developed based on
the UTM and applied to the heat equation qt = qxx on the half-line [14, 20] and on finite intervals [31], to the
Stokes equations qt± qxxx = 0 on the half-line [14] and on finite intervals [27], and to the advection-diffusion
equation qt + qx = qxx on the half-line [2]. These applications are implemented with features 1, 2, 5 and
6, but they generally do not possess features 3, 4. Using proper contour deformations and techniques for
oscillatory integrals, we recently implemented the Numerical Unified Transform Method (NUTM) for the
heat equation, the linear Schrödinger (LS) equation and the linear KdV equation with advection on the
half-line with features 1-6 [12].

A major difference in the UTM for nonlinear integrable IBVPs is that the determination of the unknown
boundary data, or transforms of this data, from the given initial and boundary conditions is difficult. For
general boundary conditions, the unknown boundary data satisfies a system of nonlinear Volterra integral
equations [32]. We believe that this complication is unavoidable when solving problems with general bound-
ary conditions but we do not consider this further here. In this paper, we show that for linearizable boundary
conditions (see Section 3 for the definition) the NUTM applies to the NLS equation on the half-line in the
same way as for the whole-line problem with all features 1-6. This is indeed expected as these cases can
be treated by appropriate spatial reflection. But importantly, in other cases, if the spectral functions are
known, the same procedure applies to compute some solutions in the nonlinearizable case.

This paper is organized as follows. Section 2 gives a brief overview of the UTM for the NLS equation on
the half-line. In Section 3, we discuss the NUTM applied to the NLS equation with linearizable boundary
conditions. In Section 4, we consider the solutions with prescribed spectral functions. The corresponding
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boundary conditions are not necessarily linearizable. In Section 5, we discuss the asymptotics of the spectral
functions to improve accuracy for small x, t.

2 The Unified Transform Method for the NLS equation on the
half-line

In this section we describe the UTM applied to the NLS equation on the half-line. A complete discussion is
given in [15] and [19].

2.1 The Lax pair

The NLS equation

iqt + qxx + 2λ |q|2 q = 0, λ = ±1, (1)

is integrable with the associated Lax pair

µx + ik[σ3, µ] = Q(x, t)µ, (2a)

µt + 2ik2[σ3, µ] = Q̃(x, t, k)µ, (2b)

where σ3 = diag(1,−1), [A,B] = AB −BA and

Q(x, t) =

[
0 q(x, t)

−λq(x, t) 0

]
, Q̃(x, t, k) = 2kQ− iQxσ3 + iλ |q|2 σ3.

Here λ = ±1 gives the focusing/defocusing NLS equation (λ in [19] is −λ here). The compatibility of (2a)
and (2b), µxt = µtx, requires q(x, t) satisfying (1). Using the Lax pair (2a),(2b) we define

W (x, t, z) = d(ei(kx+2k2t)σ̂3µ(x, t, k)) = ei(kx+2k2t)σ̂3

(
Qµ(x, t, k)dx+ Q̃µ(x, t, k)dt

)
, (3)

where

σ̂3A = [σ3, A], eσ̂3A = eσ3Ae−σ3 .

Requiring that W is closed implies that q(x, t) satisfies (1). An integral equation for a solution of the Lax
pair (2a),(2b) is obtained by integrating the differential form

µ(x, t, k) = I +

∫ (x,t)

(x∗,t∗)

e−i(kx+2k2t)σ̂3W (ξ, τ, k), (4)

where I is the 2 × 2 identity matrix, x, t ∈ (0,∞) and x∗, t∗ ∈ [0,∞]. Using particular choices of (x∗, t∗),
particular solutions are constructed and used to define the so-called spectral functions.

2.2 The spectral functions

Assume that q(x, t) solves (1) for x, t > 0 with the initial values

q(x, 0) = q0(x), x ≥ 0,

and the boundary values

q(0, t) = g0(t), t ≥ 0,

qx(0, t) = g1(t), t ≥ 0.
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In general, we do not know both boundary functions g0(t) and g1(t). The NLS equation on the half-line is
well-posed with either g0(t) or g1(t) specified [7, 8, 22]. We further assume that the initial condition q0 is in
Sα(R+), the Schwartz class functions restricted to the positive half-line with exponential decay rate α > 0:

Sα(R+) =

{
f ∈ S(R)|R+ , ∃α′ > α > 0 : sup

x∈R+

eα
′x |f(x)| <∞

}
.

Following [19], in this section, the boundary functions g0 and g1 are assumed to be smooth functions on
[0, T ] and when T = ∞, g0 and g1 are assumed to be in S(R)|R+ which is sufficient to define the spectral
functions. For the numerical examples we consider, this sufficient condition may not be satisfied. Different
assumptions on the boundary values are used for problems discussed in Section 3, 4 and 5 so long as the
spectral functions can be computed.

Using the conventions in [19], µ1, µ2 and µ3 are defined using (x∗, t∗) = (0, T ), (x∗, t∗) = (0, 0) and
(x∗, t∗) = (∞, t), respectively. For T <∞ the spectral functions s(k) and S(k, T ) are defined by

s(k) = µ3(0, 0, k), S(k, T ) = [e2ik
2T σ̂3µ2(0, T, k)]−1.

With this choice, s(k) depends only on the initial values q0 and S(k, T ) depends only on the boundary
values g0 and g1 on the interval [0, T ]. There is an alternate definition S(k,∞) = µ1(0, 0, k), which is more
convenient when T =∞.

2.3 Properties of the spectral functions

Using the symmetries of Q and Q̃, the spectral functions have the form

s(k) =

[
a(k) b(k)

−λb(k) a(k)

]
, S(k, T ) =

[
A(k, T ) B(k, T )

−λB(k, T ) A(k, T )

]
.

Moreover, since Q and Q̃ are traceless,

det s(k) = det S(k, T ) = 1,

which implies that

a(k)a(k) + λb(k)b(k) = 1, k ∈ R, (5)

A(k, T )A(k, T ) + λB(k, T )B(k, T ) = 1, k ∈ C (k ∈ R ∪ iR if T =∞). (6)

It is convenient to characterize the spectral functions a(k) = φ2(0, k) and b(k) = φ1(0, k) using linear Volterra
integral equations:

φ1(x, k) = −
∫ ∞
x

e−2ik(x−y)q0(y)φ2(y, k)dy, (7a)

φ2(x, k) = 1− λ
∫ ∞
x

q̄0(y)φ1(y, k)dy. (7b)

If q0 ∈ S(R)|R+ , a(k) and b(k) are analytic for Im(k) > 0. With the additional assumption on exponential
decay q0 ∈ Sα(R+), a(k) and b(k) are analytic in a larger region that contains Im(k) ≥ −α/2.

For T <∞, the spectral functions A(k, T ) = Φ2(T, k) and −e−4ik2TB(k, T ) = Φ1(T, k) are defined using
a different set of linear Volterra integral equations:

Φ1(t, k) =

∫ t

0

e−4ik
2(t−τ)

(
Q̃11Φ1 + Q̃12Φ2

)
(τ, k)dτ, (8a)

Φ2(t, k) = 1 +

∫ t

0

(
Q̃21Φ1 + Q̃22Φ2

)
(τ, k)dτ. (8b)
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Therefore A(k, T ) and B(k, T ) are entire and bounded in Im(k2) ≥ 0.
For T =∞, the spectral functions A(k,∞) = Φ2(0, k) and B(k,∞) = Φ1(0, k) are defined by yet another

set of linear Volterra integral equations:

Φ̃1(t, k) = −
∫ ∞
t

e−4ik
2(t−τ)

(
Q̃11Φ̃1 + Q̃12Φ̃2

)
(τ, k)dτ, (9a)

Φ̃2(t, k) = 1−
∫ ∞
t

(
Q̃21Φ̃1 + Q̃22Φ̃2

)
(τ, k)dτ. (9b)

Therefore A(k,∞) and B(k,∞) are analytic for Im(k2) > 0 and bounded for Im(k2) ≥ 0.
Since A(k, T ), B(k, T ) are computed from overdetermined boundary data (Q̃ depends on both q and

qx), the spectral functions a(k), b(k), A(k, T ), and B(k, T ) are not independent. This is clear because the
Dirichlet to Neumann map depends on the initial data. The integral of the 1-form (3) along the boundary of
the domain (x, t) ∈ (0,∞)×(0, T ) must vanish and we arrive at the global relation connecting the information
from the initial value and the boundary values in terms of the spectral data,

a(k)B(k, T )− b(k)A(k, T ) = e4ik
2T c+(k, T ), Im(k) ≥ 0, (10)

where c+(k, T ) is:

• an undetermined function analytic for Im(k) > 0,

• continuous and bounded for Im(k) ≥ 0, and

• c+(k, T ) = O(1/k), as k →∞ for Im(k) > 0.

If T =∞, the global relation reduces to

a(k)B(k,∞)− b(k)A(k,∞) = 0, Im(k) ≥ 0,Re(k) ≥ 0. (11)

Definition (an admissible set of functions [19]). Given q0 ∈ S(R+), the pair {g0, g1} of smooth functions
on [0, T ] or [0,∞) (if T =∞) is an admissible set of functions with respect to q0 if the following conditions
are satisfied:

1. The associated spectral functions {a, b, A,B} satisfy the global relation (10) for T < ∞ or (11) for
T =∞.

2. The functions q0, g0 and g1 are compatible at x = t = 0, i.e., g0(0) = q0(0), g1(0) = q′0(0). More
equation-dependent conditions may be imposed if more regularity of the solution q(x, t) is desired.

Remark 1. The spectral functions s(k), S(k, T ) are nonlinear transforms of the corresponding initial and

boundary values. For the LS equation (when λ = 0), µ3(x, 0, k) =

(
µ11 µ12

µ21 µ22

)
satisfies (2a),

(
µ11 µ12

µ21 µ22

)
x

+ 2ik

(
0 µ12

−µ21 0

)
=

(
0 q(x, 0)
0 0

)(
µ11 µ12

µ21 µ22

)
, (12)

with µ3(∞, 0, k) = I. Solving (12) yields

µ3(x, 0, k) =

(
1 −e−2ikx

∫∞
x
e2ikξq(ξ, 0)dξ

0 1

)
, (13)

and the spectral function s(k) is given by

s(k) = µ3(0, 0, k) =

(
1 −

∫∞
0
e2ikξq(ξ, 0)dξ

0 1

)
. (14)
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Therefore b(k) = −
∫∞
0
e2ikξq(ξ, 0)dξ is the Fourier transform of the initial condition on the half-line and

a(k) = 1. On the other hand, µ2(0, t, k) =

(
µ11 µ12

µ21 µ22

)
satisfies (2b),

(
µ11 µ12

µ21 µ22

)
t

+ 4ik2
(

0 µ12

−µ21 0

)
=

(
0 2kq(0, t) + iqx(0, t)
0 0

)(
µ11 µ12

µ21 µ22

)
, (15)

with µ2(0, 0, k) = I. Solving (15) yields

µ2(0, T, k) =

(
1 e−4ik

2T
∫ T
0
e4ik

2η (2kq(0, η) + iqx(0, η)) dη
0 1

)
, (16)

and the spectral function S(k, T ) is given by

S(k, T ) = [e2ik
2T σ̂3µ2(0, T, k)]−1 =

(
1 −

∫ T
0
e4ik

2η (2kq(0, η) + iqx(0, η)) dη
0 1

)
. (17)

Therefore B(k, T ) = −
∫ T
0
e4ik

2η (2kq(0, η) + iqx(0, η)) dη is a sum of Fourier-type transforms of the boundary
data on the interval [0, T ] and A(k, T ) = 1. The global relation (10) becomes∫ ∞

0

e2ikξq(ξ, 0)dξ −

(
i

∫ T

0

e4ik
2ηqx(0, η)dη + 2k

∫ T

0

e4ik
2ηq(0, η)dη

)
= e4ik

2T c+(k, T ), Im(k) ≥ 0,

where

c+(k, T ) =

∫ ∞
0

e2ikξq(ξ, T )dξ.

This is exactly the same as the global relation in [10] which is obtained using Green’s theorem.

Remark 2 (The nonlinear Volterra integral equation). In [21], it is shown that for the Dirichlet problem,
the unknown Neumann value is given by

g1(t) =
2

πi

∫
∂D3

(kχ1(t, k) + ig0(t))dk +
2g0(t)

π

∫
∂D3

χ2(t, k)dk − 4

πi

∫
∂D3

ke−4ik
2t b(−k)

a(−k)
Φ2(t,−k)dk,

for 0 < t < T where ∂D3 is the boundary of the third quadrant in the complex plane with counterclockwise
orientation and

χj(t, k) = Φj(t, k)− Φj(t,−k), j = 1, 2, 0 < t < T, k ∈ C.

For convenience, suppose that a(k) does not have zeros in the upper half-plane. Plugging the equation of g1(t)
back into (8a) and (8b) yields a nonlinear Volterra integral equation for Φ1(t, k) and Φ2(t, k) that depend
only on known data. However, since Φj(t, k) requires all the values of Φ1(s, k), 0 < s < t, k ∈ ∂D3, this is
a fundamentally nonlinear problem that depends on two continuous variables. As discussed in Section 4.1,
even if one can solve the nonlinear Volterra integral equation for the unknown g1(t), the slow decay of g1(t)
will affect the overall accuracy when computing the solution to the NLS equation. Perturbative methods for
the nonlinear Volterra integral equation have been studied in [21] and [28] using related equations.

2.4 The Riemann-Hilbert problem

With the spectral functions a(k), b(k) and A(k, T ), B(k, T ) defined in the previous sections, we obtain q(x, t)
by solving the following RHP.

Theorem ([19]). Suppose that q0 and an admissible set of functions {g0, g1} with respect to q0 are given.
The spectral functions a(k), b(k) are defined via (7a,7b), A(k, T ), B(k, T ) are defined via (8a,8b) for T <∞
and A(k,∞), B(k,∞) are defined via (9a,9b) for T =∞. Assume that
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• If λ = 1, a(k) has at most n simple zeros {paj }nj=1 in region C+\iR. Let n1 be the number of zeros in the
open first quadrant arg paj ∈ (0, π/2), j = 1, . . . , n1, and therefore arg paj ∈ (π/2, π), j = n1 + 1, . . . , n.

• If λ = 1, for both T <∞ and T =∞, then

d(k, T ) = a(k)A(k, T ) + λb(k)B(k, T ), arg k ∈ [π/2, π], (18)

has at most n2 simple zeros in the second quadrant {pdj}
n2
j=1, where arg pdj ∈ (π/2, π), j = 1, . . . , n2.

For both T <∞ and T =∞, the following 2× 2 matrix RHP for Φ(k;x, t) has a unique solution:

1. Φ(k;x, t) is sectionally meromorphic for k ∈ C\{R ∪ iR} (sectionally analytic if λ = −1).

2. Φ(k;x, t) has continuous boundary values 1 on the cross k ∈ R ∪ iR with orientation as shown in
Figure 2, and

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t). (19)

The jump matrix J(k;x, t) is given by

J(k;x, t) =


J4(k;x, t), arg k = 0,

J1(k;x, t), arg k = π
2 ,

J2(k;x, t), arg k = π,

J3(k;x, t), arg k = 3π
2 ,

(20)

where

J1(k;x, t) =

[
1 0

−Γ(k, T )e2iθ(k;x,t) 1

]
,

J3(k;x, t) =

[
1 −λΓ(k, T )e−2iθ(k;x,t)

0 1

]
,

J4(k;x, t) =

[
1 + λγ(k)γ(k) γ(k)e−2iθ(k;x,t)

λγ(k)e2iθ(k;x,t) 1

]
,

J2(k;x, t) =J1(k;x, t)J−14 (k;x, t)J3(k;x, t)

=

 1 −
(
λΓ(k, T ) + γ(k)

)
e−2iθ(k;x,t)

−
(
λγ(k) + Γ(k, T )

)
e2iθ(k;x,t) 1 +

(
λΓ(k, T ) + γ(k)

)(
λγ(k) + Γ(k, T )

) ,
and

θ(k;x, t) = kx+ 2k2t, k ∈ C, (21)

γ(k) =
b(k)

a(k)
, k ∈ R, (22)

Γ(k, T ) = − λB(k, T )

a(k)d(k, T )
, arg k ∈

[π
2
, π
]
. (23)

1For k ∈ C where C is an oriented contour, define Φ±(k;x, t) to be the limit of Φ(k′;x, t) as k′ → k nontangentially from the
right (+) or the left (−).

7



Figure 2: The jump contour of RHPs (19) and (34). The contour consists of the real and imaginary axes.

3. If λ = 1, the first column of Φ(k;x, t) has simple poles at {paj }
n1
j=1 and {pdj}

n2
j=1. The second column of

Φ(k;x, t) has simple poles at {paj }
n1
j=1 and {pdj}

n2
j=1. The associated residues satisfy the relations:

Resk=paj Φ(k;x, t) = lim
k→paj

Φ(k;x, t)

(
0 0

1
a′(paj )b(p

a
j )
e2iθ(p

a
j ;x,t) 0

)
, j = 1, . . . , n1, (24a)

Resk=paj
Φ(k;x, t) = lim

k→paj
Φ(k;x, t)

(
0 −λ

a′(paj )b(p
a
j )
e−2iθ(p

a
j ;x,t)

0 0

)
, j = 1, . . . , n1, (24b)

Resk=pdj Φ(k;x, t) = lim
k→pdj

Φ(k;x, t)

 0 0

− λB(pdj )

a(pdj )d
′(pdj )

e2iθ(p
d
j ;x,t) 0

 , j = 1, . . . , n2, (24c)

Res
k=pdj

Φ(k;x, t) = lim
k→pdj

Φ(k;x, t)

 0
B(pdj )

a(pdj )d
′(pdj )

e−2iθ(p
d
j ;x,t)

0 0

 , j = 1, . . . , n2. (24d)

4. Φ(k;x, t) = I +O(1/k) as k →∞.

Then (as is shown in [19])
q(x, t) = 2i lim

k→∞
(kΦ(k;x, t))12 ,

solves the NLS equation with

qx(x, t) = lim
k→∞

{
4
(
k2Φ(k;x, t)

)
12

+ 2iq(x, t) (kΦ(k;x, t))22
}
,

q(x, 0) = q0(x), q(0, t) = g0(t) and qx(0, t) = g0(t).

Figure 3 shows a detailed diagram of the UTM applied to nonlinear integrable PDEs. Steps 1 and 1′ denote
the invertible transforms between the initial condition q(x, 0) = q0(x) and the spectral functions {a(k), b(k)}.
Step 2 and 2′ denote the invertible transforms between the pair of boundary functions {q(0, t) = g0(t),
qx(0, t) = g1(t)} and the spectral functions {A(k, T ), B(k, T )} for T < ∞ or T = ∞. Step 3 denotes
obtaining {A(k, T ), B(k, T )} within a special class of boundary conditions known as linearizable boundary
conditions as discussed in Section 3. Step 4 denotes the construction of the associated RHP using the spectral
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Figure 3: A diagram describing the use of the UTM to solve integrable PDEs on the half-line. The path
along 1, 4, 5 is the same as the IST for IVPs. In this paper, we focus on three paths: (i) the path along
1-5 for problems with linearizable boundary conditions, (ii) the path along 1, 2, 4, 5 for problem with
overdetermined but compatible initial and boundary values, and (iii) the path along 4, 5 for problems with
specified spectral functions.

functions incorporating time dependence. Step 5 denotes the inverse transform to get the solution q(x, t) by
solving the RHP. In the following sections, we show examples of the solutions that can be efficiently computed
with different types of given data. In Section 3, we give an example with linearizable boundary conditions
following steps 1-5. In Section 4.1, we show an example with an admissible set of functions g0, g1 ∈ Sβ(R+)
with respect to q0 ∈ Sα(R+). This follows steps 1, 2, 4, 5 in Figure 3. In Section 4.2, we show an example
with specified spectral functions that follows steps 4, 5 in Figure 3, which can also be understood as an
application of the dressing method to construct solutions to the NLS equation [15].

Remark 3. The defocusing NLS equation on the half-line does not have soliton solutions [29]. More precisely,
a(k) does not have zeros for Im(k) ≥ 0 and d(k, T ) does not have zeros for arg(k) ∈ [π/2, π].

Remark 4. When t = 0, the RHP (19) reduces to a RHP that depends only on a(k) and b(k) by deforming
J1 and J3 to the negative real line. The global relation is not needed in the deformation. When x = 0, the
RHP (19) reduces to a RHP that depends only on A(k, T ) and B(k, T ) on the cross k ∈ R ∪ iR but the
reduction requires the use of the global relation as well as (6).

2.5 Algorithms for computing the spectral data

The goal of the numerical computation for the forward transform is to obtain: (i) the evaluation of the
spectral functions along the (deformed) jump contour, (ii) in the focusing case, the zeros of a(k) and d(k, T )
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as well as the related residues.

(i) Continuous spectral data. For convenience, we describe the algorithm for the computation of the
spectral data in the case T = ∞. Assuming q0 and an admissible set of functions g0 and g1 are given, we
compute the spectral functions {a(k), b(k)} using the differential equation form of (7a,7b). We compute
A(k,∞), B(k,∞) using the differential equation form of (9a,9b). Both sets of equations are in the form(

y1(s, k)
y2(s, k)

)
s

+M1(k)

(
y1(s, k)

y2(s, k) + 1

)
=M2(s, k)

(
y1(s, k)

y2(s, k) + 1

)
.

They are solved by a Chebyshev collocation method [3] on [0, L] with vanishing boundary condition at
y1(L, k) = y2(L, k) = 0 for sufficiently large L. A detailed discuss of the Chebyshev collocation method
solving this type of the equations can be found in [33] and [36].

(ii) Discrete spectral data. In [29], it is shown that the zeros of a(k) in the upper half-plane are
the L2(R,C2×2) eigenvalues of the operator

L = iσ3∂x − iσ3Qe,

where

qe(x) =

{
q(x, 0), x ≥ 0,

0, x < 0,
and Qe =

[
0 qe
−λqe 0

]
.

The eigenvalues are obtained using the Floquet-Fourier-Hill method [9]. Though the Floquet-Fourier-Hill
method does not achieve spectral accuracy due to the possible discontinuity of the potential qe(x) at x = 0,
it provides initial guesses for Newton’s method. The residue conditions require evaluating caj = 1

a′(paj )b(p
a
j )

at

the zeros {paj }
n1
1 where a′(paj ) is computed using Cauchy’s integral formula.

Similarly, it is shown in [29] that the zeros of d(k, T ) satisfy the same eigenvalue problem except that

qe(x) =

{
q(x, T ), x ≥ 0,

0, x < 0.

The potential qe depends on the unknown solution q(x, T ), and pure root-finding algorithms are needed to

find zeros of d(k, T ). Once the zeros {pdj}
n2
1 are obtained, cdj = − λB(pdj )

a(pdj )d
′(pdj )

are computed using Cauchy’s

integral formula.

3 The NLS equation with linearizable boundary conditions

3.1 Linearizable boundary conditions

Obtaining A(k, T ) and B(k, T ) is non-trivial since they are defined in terms of the Dirichlet and Neumann
data, both of which cannot be arbitrarily specified, for a well-posed problem [7, 8, 22, 23]. In the special
case of linearizable boundary conditions, A(k, T ) and B(k, T ) can be obtained by solving algebraic equations
involving a(k) and b(k) without solving (2b) (recall that (2b) requires boundary functions g0(t) and g1(t)).
The idea is to use the global relation (10) to find extra identities using the symmetries of the dispersion
relation similar to how the UTM is applied to linear PDEs [10]. For the LS equation, the dispersion relation
is ω(k) = ik2, which is invariant under the mapping k → −k. Similarly, for the NLS equation, we want to
determine a relation between A(k, T ), B(k, T ) and A(−k, T ), B(−k, T ). Recall that A(k, T ) and B(k, T ) are

defined in terms of e2ik
2T σ̂3µ2(0, T, k). Let Φ(t, k) = µ2(0, t, k)e−2ik

2tσ3 , then Φ(t, k) satisfies

Φt + 2ik2σ3Φ = Q̃(t, k)Φ, Φ(0, k) = I.

10



Suppose there exists a t-independent, nonsingular matrix N(k) such that

Φ(t,−k) = N(k)Φ(t, k)N−1(k). (25)

More explicitly, (25) is equivalent to

(2ik2σ3 − Q̃(t,−k))N(k) = N(k)(2ik2σ3 − Q̃(t, k)). (26)

A necessary condition for the existence of N(k) is that the determinant of 2ik2σ3− Q̃(t, k) is even in k. This
implies

q(0, t)qx(0, t)− q(0, t)qx(0, t) = 0.

If this condition is satisfied, (26) becomes

(2kq − iqx)N21 = λ(2kq − iqx)N12,

(2kq + iqx)N11 + (2kq − iqx)N22 = −2(2ik2 − iλ |q|2)N12.

In particular, for the homogeneous Robin boundary condition with a real parameter ρ > 0 (this choice of
sign is discussed below in Remark 5)

qx(0, t)− ρq(0, t) = 0, (27)

we choose N12 = N21 = 0 and (2k − iρ)N22 + (2k + iρ)N11 = 0 so that

A(k, T ) = A(−k, T ), B(k, T ) = −2k + iρ

2k − iρ
B(−k, T ), k ∈ C. (28)

The results for the homogeneous Dirichlet boundary condition and the homogeneous Neumann boundary
condition are obtained by taking ρ→∞ and ρ→ 0 respectively. For instance, for the homogeneous Dirichlet
boundary condition, (28) becomes

A(k, T ) = A(−k, T ), B(k, T ) = B(−k, T ), k ∈ C. (29)

With this, we can solve for A(k) and B(k) in terms of a(k) and b(k) explicitly. Indeed, if T =∞, the global
relation (11) gives the following equation, valid in the first quadrant,

a(k)B(k,∞)− b(k)A(k,∞) = 0, arg k ∈
[
0,
π

2

]
. (30)

Letting k → −k in the expression for d(k,∞) in (18) and using (29), we find a second equation, also valid
in the first quadrant:

A(k,∞)a(−k) + λB(k,∞)b(−k) = d(−k,∞), arg k ∈
[
0,
π

2

]
. (31)

Solving both (30) and (31) for A(k,∞) and B(k,∞) yields

A(k,∞) =
a(k)d(−k,∞)

∆0(k)
, B(k,∞) =

b(k)d(−k,∞)

∆0(k)
, arg k ∈

[
0,
π

2

]
, (32)

where

∆0(k) = a(k)a(−k) + λb(k)b(−k), arg k ∈ [0, π]. (33)

There is no need to solve for d(k,∞) in terms of a(k) and b(k) since the jump condition in (19) depends
only on B(k,∞), A(k,∞) through the ratio B(k,∞)/A(k,∞).
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Example 1 (The RHP associated with homogenous Dirichlet boundary conditions). With a homogenous
Dirichlet boundary condition, we obtain a RHP involving only a(k) and b(k), which are determined solely by
the initial condition. We seek a 2× 2 matrix-valued function Φ(k;x, t) that satisfies

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t), (34)

with the jump functions defined in (20) on the cross k ∈ R ∪ iR, shown in Figure 2. The only difference is
that (23) becomes

Γ(k) =
−λb(−k)

a(k)∆0(k)
, arg k ∈ [0, π], (35)

where ∆0(k) is given by (33).

Remark 5. In general, ρ in the homogeneous Robin boundary condition (27) can take any real value [7].
As shown in [25], when ρ < 0, generically, there are zeros of a(k) on the positive imaginary axis. This
requires modifications of our assumptions on the RHPs since we do not allow for poles on the jump contour.
Meanwhile, the long time behavior of such solutions at x = 0 is dominated by oscillatory standing solitons
leading to non-decaying boundary data. The choice of the sign of ρ is also related to the possibility of extending
the half-line solution to a bounded whole-line solution, see [6, 18] for further details.

3.2 Deformation of the contour based on the method of nonlinear steepest
descent

We use the numerical approach developed in [30, 36] to solve the RHP (34). Uniform accuracy can be
obtained using appropriate deformations of the jump contours. Then, the deformed RHP is solved using
the Mathematica package RHPackage developed by Olver [30] with spectral accuracy. The deformations are
derived in a similar fashion as the deformations used for the solution of the RHP for the NLS equation on
the whole line [34]. The idea is to deform the contour near the saddle point to the steepest descent direction
so that the oscillations from the exponential factor e2iθ(k;x,t) change to exponential decay. The saddle point
k0 of the phase θ(k;x, t) is determined by

dθ(k;x, t)

dk

∣∣∣
k=k0

= 0⇒ k0 = − x
4t
.

We write the exponent as

2iθ(k;x, t) = − ix
2

4t
+ 4it(k − k0)2.

Thus e2iθ(k;x,t) is exponentially decaying if k follows a path with arg(k − k0) = π/4, 5π/4. In addition,
the deformation of contours requires that the functions γ(k),Γ(k) are analytic in the neighbourhood of k0.
Since q0 ∈ Sα(R+), a(k) and b(k) are analytic and bounded for Im(k) ≥ −α/2. To ensure that the residue
condition is outside the region in which the contour is deformed, if 0 ≤ min({Im(paj )}nj=1) ≤ α/2, we redefine
α = min({Im(paj )}nj=1)/4. Therefore, γ(k) is bounded and analytic in a strip centered around the real axis
with −α/2 ≤ Im(k) ≤ α/2, while Γ(k) is bounded and analytic for Im(k) ≥ −α/2. In some cases, if τ(k)
in (36) vanishes in the strip, then we need to further shrink the width of the strip. Since τ(k) ≥ 1 on the
real axis, we can always find a valid choice for α > 0. We introduce the following deformation steps for the
contour of the RHP (34).

3.2.1 Step 1: deformations based on steepest descent directions

Let Rk,θ = {k + reiθ : r ≥ 0}. The jump matrix J4(k;x, t) has the factorization

J4(k;x, t) =

[
1 + λγ(k)γ(k) γ(k)e−2iθ(k;x,t)

λγ(k)e2iθ(k;x,t) 1

]
=

[
1 γ(k)e−2iθ(k;x,t)

0 1

] [
1 0

λγ(k)e2iθ(k;x,t) 1

]
= MP.
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This factorization provides J4(k;x, t) with decay away from k0 as, by replacing the contour on the real line
with two oblique rays starting from k0. Then M approaches the identity matrix exponentially fast in the
lower half-plane along Rk0,7π/4 and P approaches the identity matrix exponentially fast in the upper half-
plane along Rk0,π/4. However, for Re(k) < Re(k0), the exponentials in M and P are growing for M along
Rk0,5π/4 in the lower half-plane and P along Rk0,3π/4 in the upper half-plane. Alternatively, J2(k;x, t) has
the factorization

J2(k;x, t) =

 1 −
(
λΓ(k) + γ(k)

)
e−2iθ(k;x,t)

−
(
λγ(k) + Γ(k)

)
e2iθ(k;x,t) 1 +

(
λΓ(k) + γ(k)

)(
λγ(k) + Γ(k)

)
=

[
1 0

−
(
λγ(k) + Γ(k)

)
e2iθ(k;x,t)

τ(k) 1

] [ 1
τ(k) 0

0 τ(k)

][
1 −

(
λΓ(k) + γ(k)

)
e−2iθ(k;x,t)

τ(k)

0 1

]
= LDU,

where

τ(k) = 1 +
(
λγ(k) + Γ(k)

)(
λΓ(k) + γ(k)

)
, Im(k) ≤ α

2
. (36)

This factorization provides J2(k;x, t) with decay for increasing t as, for Re(k) < Re(k0), L approaches the
identity matrix exponentially fast along Rk0,5π/4 in the lower half-plane and U approaches the identity
matrix exponentially fast along Rk0,3π/4 in the upper half-plane. We obtain the RHP

Φ+(k;x, t) = Φ−(k;x, t)H(k;x, t), (37)

with jump functions

H(k;x, t) =



M(k;x, t), {k ∈ Rk0,7π/4 : |Im(k)| ≤ α/2} ∪ {k ∈ C : k = k0 + α
2 e
−iπ4 + s, s ≥ 0},

P (k;x, t), {k ∈ Rk0,π/4 : |Im(k)| ≤ α/2} ∪ {k ∈ C : k = k0 + α
2 e
iπ4 + s, s ≥ 0},

J1(k;x, t), {k ∈ Rk0,π/4},
L(k;x, t), {k ∈ Rk0,5π/4 : |Im(k)| ≤ α/2} ∪ {k ∈ C : k = k0 + α

2 e
i 5π4 − s, s ≥ 0},

D(k;x, t), {k ∈ C : k = k0 − s, s ≥ 0},
U(k;x, t), {k ∈ Rk0,3π/4 : |Im(k)| ≤ α/2} ∪ {k ∈ C : k = k0 + α

2 e
i 3π4 − s, s ≥ 0},

J3(k;x, t), {k ∈ Rk0,7π/4},

(38)

and the deformed contour, with orientation, is shown in Figure 4.

3.2.2 Step 2: deformations for uniform accuracy

Similar to the RHP for the whole-line problem in [34], the errors for computing the solution of RHP (37)
are not uniformly small for large time since not all jumps decay to the identity matrix away from the saddle
point k0. For large t, although the jump matrix D along the negative real axis does not contain oscillatory
exponentials, the solution of the RHP (37) has increasing oscillations along the jump contour for k < k0 as
t grows. Therefore we remove the jump matrix D using conjugation [34]. We introduce the matrix-valued
function ∆(k, k0),

∆(k, k0) =

[
δ(k, k0) 0

0 δ−1(k, k0)

]
,

where

δ(k, k0) = exp

(
1

2πi

∫ k0

−∞

log τ(z)

z − k
dz

)
.
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Figure 4: The deformed contour for the RHP (37) in the complex k-plane near the saddle point k0 for the
method of nonlinear steepest descent.

Then Ψ(k;x, t) = Φ(k;x, t)∆−1(k, k0) is continuous across the real axis for Re(k) 6= Re(k0), and satisfies

Ψ+(k;x, t) = Ψ−(k;x, t)∆(k, k0)H(k;x, t)∆−1(k, k0) = Ψ−(k;x, t)H̃(k;x, t).

Since δ(k, k0) is singular at k0, lensing is used to avoid the singularity by introducing new jump conditions
on a square around k0, as shown in Figure 5. The length of the side of the square is O(1/

√
t) for large t.

See [34] for further details of the scaling. Summarizing all deformations, we have the RHP

Ψ+(k;x, t) = Ψ−(k;x, t)H̃(k;x, t), (39)

where the jump contours are shown in Figure 5.

3.2.3 Step 3: Adding residue conditions

For the focusing NLS equation, there is an additional step for the residue conditions (24a)-(24d). By
introducing small circles centered at the singularities, and modifying the unknown function Ψ inside the
circle, the residue conditions are replaced with jump conditions on the circles [34]. Let {zj}n1+n2

1=j be the union

of the zeros of a(k) and d(k, T ) defined by zj = paj , for 1 ≤ j ≤ n1 and zj = pdj−n1
, for n1 + 1 ≤ j ≤ n1 + n2.

Let {cj}n1+n2
1=j be defined by cj = caj , 1 ≤ j ≤ n1 and cj = cdj−n1

, n1 + 1 ≤ j ≤ n1 + n2. For a residue
condition at k = zj in the upper half-plane,

Ψ+(k;x, t) = Ψ−(k;x, t)

(
1 0

cje
2iθ(zj ;x,t)/(k − zj) 1

)
, (40)

is the jump condition on a circle centered at zj with radius ε oriented counterclockwise. The circles need to
avoid intersections with contours already present in the RHP. The corresponding residue condition at k = zj
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Figure 5: The deformed contour for the RHP (39) in the complex k-plane near the saddle point k0 after
removing the jump on the negative real axis. All jumps away from k0 approach the identity exponentially
fast as t→∞. The length of the side of the square is on the order of O(1/

√
t) for large t.
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in the lower half-plane becomes

Ψ+(k;x, t) = Ψ−(k;x, t)

(
1 −cje−2iθ(zj ;x,t)/(k − zj)
0 1

)
, (41)

on a circle centered at zj with radius ε. Since
∣∣cje2iθ(zj ;x,t)∣∣ may be unbounded for large x, t, we invert this

factor through a deformation when
∣∣cje2iθ(zj ;x,t)∣∣ > 1. We define the matrix-valued function Ψ̂(k;x, t) by

Ψ̂(k;x, t) =



Ψ(k;x, t)

(
1 −(k − zj)/(cje2iθ(zj ;x,t))

(cje
2iθ(zj ;x,t))/(k − zj) 0

)
V (k), if |k − zj | < ε,

Ψ(k;x, t)

(
0 (−cje−2iθ(zj ;x,t))/(k − zj)

(k − zj)/(cje−2iθ(zj ;x,t)) 1

)
V (k), if |k − zj | < ε,

Ψ(k;x, t)V (k), otherwise,

(42)

where

v(z) =
∏

j∈Kx,t

k − zj
k − zj

and V (z) =

(
v(z) 0

0 1/v(z)

)
,

for each j in the set Kx,t = {j :
∣∣cje2iθ(zj ;x,t)∣∣ > 1} containing the indexes of the zeros of a(k) and d(k, T )

whose jump matrices need to be inverted. Then Ψ̂(k;x, t) satisfies the jump conditions

Ψ̂+(k;x, t) = Ψ̂−(k;x, t)V −1(k)H̃(k;x, t)V (k),

on the same contours as (39). In addition, Ψ̂(k;x, t) satisfies the jump conditions circles around {zj}n1+n2
1=j ,

Ψ̂+(k;x, t) =


Ψ̂−(k;x, t)V −1(k)

(
1 −(k − zj)/(cje2iθ(zj ;x,t))
0 1

)
V (k), if |k − zj | = ε,

Ψ̂−(k;x, t)V −1(k)

(
1 0

(k − zj)/(cje−2iθ(zj ;x,t)) 1

)
V (k), if |k − zj | = ε.

With all deformations, the RHP (39) is solved using RHPackage [30] after truncating the contours along
which the jump matrices are close to the identity matrix. In practice, this tolerance is set to 10−9 unless
otherwise stated. We use the same tolerance 10−9 when solving for the spectral functions. For convenience,
we also truncate the contours if they are outside a disk centered at the origin with radius 50. In most cases,
the truncation errors are on the same order of the tolerance since the jump matrix approaches the identity
matrix exponentially fast. When x, t are small, the truncation error dominates. We discuss how to control
the truncation error in Section 5.

3.3 Numerical results

In Figure 6, we plot the real part of the solution to the defocusing NLS equation on the half-line with
homogenous Dirichlet boundary condition at x = 0 and the initial condition q(x, 0) = xe−x

2

. We observe
dispersive waves propagating to the right from the localized initial condition. We plot the solution for
0 ≤ x ≤ 10 and 0.1 ≤ t ≤ 3.5. The domain is chosen to be bounded away from t = 0 as the NUTM is
less efficient there. Indeed, when the UTM is applied to linear PDEs on the half-line, the solution formula
requires principle-value integrals for its evaluation at x = t = 0 [12]. This issue occurs with the NLS equation
at x = t = 0 as well. The UTM is well-defined for any x > 0 or t > 0 but the numerics suffer from slow
convergence when x, t are small, see Section 5.
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Figure 6: The real part of q(x, t) with homogenous Dirichlet boundary condition q(0, t) = 0 and the initial

condition q(x, 0) = xe−x
2

. The thick curves show the initial and boundary conditions.
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4 The NLS equation with nonlinearizable boundary conditions

4.1 Overdetermined boundary conditions

A possible way to avoid computing unknown boundary conditions is to specify both boundary functions g0(t)
and g1(t), provided they are admissible with respect to the given initial condition q0(x). However, there are
obstacles to computing the associated solution efficiently:

1. For a generic whole-line solitonless solution q(x, t) with a nontrivial reflection coefficient ρ(k) =
b(k)/a(k), one has q(0, t) ∼ t−1/2 and qx(0, t) ∼ t−3/2 as t → ∞ [19]. Therefore, in general, for
half-line problems the Dirichlet and Neumann data do not both decay exponentially. This affects the
regions where the contours can be deformed. For instance, in the T = ∞ case, A(k,∞) and B(k,∞)
are only guaranteed to be analytic in the first and third quadrants. Therefore, jump contours , which
depend on τ(k) defined in (36) cannot be deformed away from the real axis and the method of nonlin-
ear steepest descent cannot be applied directly. These undeformed contours become highly oscillatory
as t increases. For linear PDEs, numerical methods such as Levin’s method can be used to compute
the oscillatory integrals with high accuracy [12]. For nonlinear integrable PDEs, efficient numerical
methods for oscillatory singular integral equations from the RHP are not as well developed [35]. A
complete discussion of this is beyond the scope of this paper.

2. For pure whole-line soliton solutions that have non-zero velocity, q(0, t) and qx(0, t) decay exponen-
tially. In this case, the focusing NLS equation allows right-going soliton solutions whose parameters
correspond to zeros of d(k, T ) in the second quadrant. As discussed in Section 2.5, this step requires
root-finding algorithms.

There are solutions, with compatible q0, g0, g1, that do not suffer from (1) and (2). We can compute these
solutions efficiently. Such solutions include left-going singular solutions of the defocusing NLS equation,
known as positons, or left-going soliton solutions of the focusing NLS equation.

Such solutions have analytical expressions and are used to demonstrate the accuracy of the NUTM. In
fact, unlike for the whole line problem, the jump function (20) in the half-line problem is non-trivial even
when the solution does not contain dispersion. For instance, suppose the initial and boundary values are
prescribed by the one-positon solution of the defocusing NLS equation [36]

q(x, t) = 2ηe−4it(ξ
2−η2)−2ixξ csch(2η(4tξ + x− x0)),

where ξ, η, x0 are constants. The positon is left-going if ξ > 0. If x0 < 0 the singularity is outside the
domain for all t ≥ 0, therefore q(x, t) is exponentially localized and smooth for x, t ≥ 0. This positon
solution corresponds to a simple zero of a(k) at k1 = ξ + iη tanh(2ηx0) [26]. The assumptions ξ > 0 and
x0 < 0 imply that k1 is not in the first quadrant so no residue conditions are required for formulating the
associated RHP. Similarly, suppose the initial and boundary values are obtained from the one-soliton solution
of the focusing NLS equation [36],

q(x, t) = 2ηe−4it(ξ
2−η2)−2ixξ sech(2η(4tξ + x− x0)). (43)

This soliton corresponds to a simple zero of a(k) at k1 = ξ + iη tanh(2ηx0). If the initial position of the
center of the soliton lies outside of the domain (i.e., x0 < 0) and it is left-going (i.e., ξ < 0), the soliton is
represented by the continuous part of the spectral data and no residue conditions are used. On the other
hand, for the focusing NLS equation, it is possible to allow x0 > 0. In this case, k1 is in the first quadrant
and residue conditions are required:

Resk=k1 Φ(k;x, t) = lim
k→k1

Φ(k;x, t)

(
0 0

c1e
2iθ(k1;x,t) 0

)
,

Resk=k1 Φ(k;x, t) = lim
k→k1

Φ(k;x, t)

(
0 −c1e−2iθ(k1;x,t)
0 0

)
,
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Figure 7: The absolute value of the exact one-soliton solution (43) with ξ = 1, η = 1, x0 = 0.4, φ0 = 0
(solid lines) and the absolute errors of the numerical solution with different numbers of collocation points N
(dashed lines). Panel (a) shows the evaluations for x ∈ [0.4, 4], t = 0.4. Panel (b) shows the evaluations for
x = 0.4, t ∈ [0.1, 1]. Panel (c) shows the evaluations for x = 4s, t = s, s ∈ [0.1, 1]. The tolerance of the error
from computation of the spectral functions and contour truncations is set to 10−9.

where c1 = 1/(a′(k1)b(k1)). These considerations can be generalized to n-positon and n-soliton solutions.
Figure 7 shows the error plots of the solution using the NUTM with the initial and boundary values given

by (43) with ξ = 1, η = 1, x0 = 0.4 along different lines in the x, t quarter plane. The spectral convergence of
the NUTM is demonstrated by the errors with fixed x, t and varying N , the number of collocation points used
in the solution of the RHP. The absolute errors are uniformly controlled and decreasing for increasing x, t
with fixed N . For increasing t, the NUTM even maintains relative accuracy with N fixed, but sufficiently
large. Although the absolute errors decrease exponentially for fixed t, the exponential decay rate of the
solution is not captured exactly. As a result, the relative error with fixed t increases as x grows. This is
expected, due to the fact that the jump matrix after deformation decays to the identity exponentially but
not exactly at the decay rate of the solution. Indeed, how far we can deform the contour is restricted by the
region of analyticity of γ(k) and Γ(k). For instance, when q0 ∈ S2α, γ(k) is analytic within −α ≤ Im(k) ≤ α,
along a horizontal segment of the contour k = s+ iα,

e2iθ(k;x,t) = e−8sαt−2αx+i(4(s
2−α2)t+2sx).

This is to be compared with the situation for the 1-soliton solution (43) which has an exponential decay rate 2η
in the x direction. The zeros of a(k) are outside the strips −α ≤ Im(k) ≤ α, since |α| < |η tanh(2ηx0)| < |η|.
To capture the same exponential decay rate, a deformation of the horizontal contours up to the pole of
γ(k) at k = ξ + iη tanh(2ηx0) is necessary. The restriction is not required if t is sufficiently large, in
which case the jump matrix along the deformed contour approaches the identity and is truncated before
Im(k) = η tanh(2ηx0). For instance, consider the jump functions related to P in Figure 5. When t is
sufficiently large, the jump function ∆P∆−1 in the top right corner of Figure 5 is close to the identity
matrix and is negligible. After the truncation, only the jump function ∆PJ1∆−1 remains.
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4.2 Boundary conditions implicitly determined by given spectral data A(k, T )
and B(k, T )

4.2.1 A dressing argument

If A(k, T ) and B(k, T ) are given directly, the deformation steps discussed in Section 3 can still be performed
provided that the deformations are within the regions where A(k, T ) and B(k, T ) are analytic. From the
idea of the dressing method, as long as the spectral functions A(k, T ) and B(k, T ) satisfy (6) and (10), the
RHP (19) generates solutions to the NLS equation.

Proposition (The dressing method [15]). Suppose that the oriented smooth curve L divides the complex
k-plane into the domains D+ and D−. Let M+(k;x, t) satisfy the following 2×2 matrix RHP in the complex
k-plane for all x, t > 0,

M+(k;x, t) = M−(k;x, t)e−i(kx+2k2t)σ̂3J(k), k ∈ L,
where J(k) is a 2×2 unimodular matrix with J11 = 1 or J22 = 1 . Assume that the above RHP has a unique
solution which is sufficiently smooth for all x, t > 0. Define Q(x, t) by

Q(x, t) = i lim
k→∞

[σ3, kM(x, t, k)],

then Q(x, t) satisfies the nonlinear equation

iQt −Qxxσ3 + 2Q3σ3 = 0.

To ensure that (6) is satisfied, we specify the ratio h(k) = B(k)/A(k) for k ∈ D3 since this is the quantity
required in (19). The spectral data A(k) and B(k) are defined implicitly from (6),

1 + λh(k)h(k) =
1

A(k)A(k)
, k ∈ R ∪ iR.

Remark 6. The global relation (11) determines the value of h(k) in the first quadrant. If T = ∞, h(k) =
b(k)/a(k) provided that a(k) 6= 0.

4.2.2 Numerical results

We solve the focusing NLS equation on the half-line with spectral functions b(k)/a(k) = 0 and B(k)/A(k) =

1000k/ (k − 2(1 + i))
5

for arg(k) ∈ [π, 3π/2]. In this case, γ(k) = 0 and Γ(k) = 1000k/ (k − 2(1− i))5.
Furthermore, we impose two residue conditions at k1 = −1+ i and k2 = −2+ i with corresponding constants
c1 = 100000, c2 = 2. The constant 1000 in Γ is chosen so that the dispersion is on the same order of the
solitons for small x, t. The constants c1, c2 are chosen so that the interaction of the solitons is inside the
domain. We plot the real part and the absolute value of the solution for 0 ≤ x ≤ 20 and 0.1 ≤ t ≤ 3 in Figure
8. The solution contains two right-going solitons as well as dispersion. Two slices of the solution at t = 0.1
and t = 2.9 are shown in Figure 9. We also observe that the soliton part of the numerical solution is similar
to the exact two-soliton solution with its envelope plotted in dashed lines. We compare our solution with
the large t asymptotics along x/t = 2, 6, 10 in Figure 10. Away from the solitons, the large t asymptotics
along x/t = O(1) is described by (see [19])

q(x, t) = t−1/2α
(
− x

4t

)
exp

(
ix2

4t
+ 2iλα2

(
− x

4t

)
log t+ iφ

(
− x

4t

))
+ o

(
t−

1
2

)
, as t→∞, (44)

where the amplitude α and the phase φ are given by

α2(k) =
λ

4π
log

(
1 + λ

∣∣∣γ(k) + λΓ(k)
∣∣∣2) ,

φ(k) =6λα2(k) log 2 +
π(2 + λ)

4
+ arg

(
γ(k) + λΓ(k)

)
+ arg Γ(−2iλα2(k)) + 4λ

∫ k

−∞
log |µ− k| dα2(µ).

In practice, to avoid computing the integral in the formula for the phase φ, since φ is constant with fixed
x/t, we choose it so that the errors in Figure (10d) show a trend of decreasing errors with order O(1/t).
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Figure 8: The numerical solution q(x, t) on the domain 0 ≤ x ≤ 30 and 0.1 ≤ t ≤ 3 with spectral functions
specified in Section 4.3. The solution contains two right-going solitons as well as dispersion. Left: The real
part of q(x, t). Right: The absolute value of q(x, t).
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Figure 9: The real part of q(x, t) (solid curve). The envelope of the exact right-going 2-soliton (dashed
curve). Left: q(x, 0.1). Right: q(x, 2.9).
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Figure 10: The real part of the numerically computed q(x, t) (solid curve), the real part of the dispersive
wave from the asymptotic formula (44) (dashed curves) and its envelope (dotted curves). Panel (a) shows
evaluation along x = 2t. Panel (b) shows evaluation along x = 6t. Panel (c) shows evaluation along x = 10t.
Panel (d) shows the errors compared with the asymptotic formula (44).
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Figure 11: The plots of γ(k),Γ(k) along the jump contour. Left: γ(k) on the real axis. Middle: Γ(k) on the
real axis. Right: Γ(k) on the positive imaginary axis. The real parts are plotted with solid curves and the

imaginary parts are plotted with dashed curves. The initial condition is q0(x) = e−x
2

+ i sech2(x) and the
boundary condition is g1(t) = 0. The functions γ and Γ are of order 1/k.

5 Using large k expansions for computing q(x, t) for small x, t

For a problem on the whole line, if the initial condition is in Schwartz class, the reflection coefficient is also in
Schwartz class [4]. Therefore no deformation for the associated RHP is required when x, t are small because
the jump matrix decays rapidly to the identity matrix when |k| becomes large. However, this is not true for
the RHP (19) from problems on the half-line, or even for integrals that arise in the linear case.

Example 2. Consider the NLS equation with the homogeneous Neumann boundary condition g1(t) = 0 and

initial condition q0(x) = e−x
2

+ isech2(x). This is a linearizable boundary condition and we can solve for the
spectral functions B(k,∞), A(k,∞) using symmetries of the global relation k → −k. The associated RHP
(46) for Φ(x, t, k) is formulated with the jump condition on the cross k ∈ R ∪ iR in Figure 2,

Φ+(k;x, t) = Φ−(k;x, t)J(k;x, t). (45)

The jump matrices are the same as in (20) except that (23) is replaced by

Γ(k) =
λb(−k)

a(k)∆1(k)
, arg k ∈ [0, π],

where

∆1(k) = a(k)a(−k)− λb(k)b(−k), arg k ∈ [0, π].

The functions γ(k) and Γ(k) are O(1/k) as k →∞, see Figure 11.

With the large k expansions derived in the Appendix, we can set up RHPs with jump functions that
tend to the identity matrix faster. We define

γ0(k) =
q0(0)

2i
(
k − k̂

) , Γ0(k) =
λq0(0)

2i
(
k − k̂

) ,
γ(k) = γ0(k) + γr(k), Γ(k) = Γ0(k) + Γr(k),

so that γ0(k) and Γ0(k) have the same large k behavior as γ(k) and Γ(k) to the leading order. To avoid

introducing unnecessary residue conditions, we choose k̂ = 1 − 2i. After separating the O(1/k) terms, we
get a RHP which has the jump matrix approaches the identity matrix with O(1/k2) as k → ∞ shown in
Figure 12. The RHP for Φ(x, t, k) is formulated with a jump condition on the eight rays through the origin
{r = ρeis|ρ ∈ [0,+∞), s = 0, π/4, 2π/4, 3π/4, 4π/4, 5π/4, 6π/4, 7π/4}. and Φ(x, t, k) satisfies

Φ+(k;x, t) = Φ−(k;x, t)V (k;x, t), (46)
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Figure 12: The contour of RHP (46). Jumps on V5, V6, V7, V8 are introduced to improve the rate at which
the jump matrices on V1, V2, V3, V4 approach the identity matrix.

with jump matrices

V (k;x, t) =



V4(k;x, t), arg k = 0,

V1(k;x, t), arg k = π
2 ,

V2(k;x, t), arg k = π,

V3(k;x, t), arg k = 3π
2 ,

V5(k;x, t), arg k = 3π
4 ,

V6(k;x, t), arg k = 5π
4 ,

V7(k;x, t), arg k = 7π
4 ,

V8(k;x, t), arg k = π
4 ,

(47)

where

V1(k;x, t) =

[
1 0

−Γr(k)e2iθ(k;x,t) 1

]
, V3(k;x, t) =

[
1 −λΓr(k)e−2iθ(k;x,t)

0 1

]
,

V4(k;x, t) =

[
1 + λγr(k)γr(k) γr(k)e−2iθ(k;x,t)

λγr(k)e2iθ(k;x,t) 1

]
,

V2(k;x, t) =

 1 −
(
λΓr(k) + γr(k)

)
e−2iθ(k;x,t)

−
(
λγr(k) + Γr(k)

)
e2iθ(k;x,t) 1 +

(
λΓr(k) + γr(k)

)(
λγr(k) + Γr(k)

) ,
V5(k;x, t) =

[
1 −

(
λγ0(k) + Γ0(k)

)
e−2iθ(k;x,t)

0 1

]
, V6(k;x, t) =

[
1 0

−
(
λΓ0(k) + γ0(k)

)
e2iθ(k;x,t) 1

]
,

V7(k;x, t) =

[
1 −

(
λΓ0(k) + γ0(k)

)
e−2iθ(k;x,t)

0 1

]
, V8(k;x, t) =

[
1 0

−
(

Γ0(k) + λγ0(k)
)
e2iθ(k;x,t) 1

]
.
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Figure 13: The absolute error for computing q(0.5, 0) with different number of collocation points N . The
dashed line is computed using the undeformed contour in Figure 2. The solid line is computed using the
contour in Figure 12. The flattening in both curves is due to the truncation error.

Figure 13 shows the log-linear plot of the absolute error for computing q(0.5, 0) with different numbers of
collocation points N . In the computation, the segments of contours are truncated when the jump matrix
is close to the identity matrix ‖Vm(k) − I‖2 < 10−8, m = 1, 2, . . . , 8, or when the contour reaches a large
circle centered at the origin with radius 50. In Figure 13, the dashed curve shows the error computed using
the undeformed contour and the solid curve shows the error computed using the contour in Figure 12. Both
curves decay exponentially when N is not large. Since the jump matrix of RHP (46) approaches the identity
matrix faster, the flattening in the solid curve appears later than the dashed curve. It is possible to perform
the asymptotic analysis for higher order terms in the previous section and remove more terms so that the
decay of the jump matrix is faster than O(1/k2). The calculation starts to become lengthy, however.

Remark 7. For linearizable boundary conditions, if the solution of the half-line problem can be mapped to
a smooth solution of the whole-line problem, the jump matrix J2 in (19) actually decays exponentially to the
identity matrix. Therefore there is no need to introduce modifications to V2, V5 and V6 in (46). In this case,
Γ(k) is automatically analytically extended to the first quadrant by the analyticity of b(k) and a(k). Then
it is possible to deform the jump contour J1 and J3 in (19) to the positive real line on top of J4 and this
new RHP is the same as the RHP in the whole-line problem with the initial values on the negative real line
defined properly corresponding to the boundary condition using symmetry.
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Appendix: Large k asymptotics of the spectral functions

We consider the large k asymptotics of the spectral functions a(k), b(k), A(k,∞), B(k,∞) andA(k, T ), B(k, T ).
This is used in Section 5 to improve the decay of the jump matrix. It is known that the global relation char-
acterizes the initial and boundary data of a solution to the NLS equation while the large k asymptotics of
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the global relation characterizes the compatibility of initial and boundary data at x = 0 and t = 0 [24]. Some
of these asymptotic results are found in [21]. We re-examine these results with more terms, comparing them
with examples from the LS equation, and use them to improve the decay of the jump matrix for the RHP
(19). The initial data q0(x) and the boundary data g0(t), g1(t) are assumed to have sufficient smoothness
and decay at infinity so that all relevant integrals are well defined.

Large k asymptotics of a(k), b(k)

Recall that the spectral functions a(k) = φ2(0, k) and b(k) = φ1(0, k) are defined using the linear Volterra
integral equations (7a) and (7b). We use the following expansions for large k in the upper half-plane
Im(k) ≥ 0,

φ1(x, k) =
f11(x)

k
+
f12(x)

k2
+O

(
1

k3

)
, (48a)

φ2(x, k) = 1 +
f21(x)

k
+O

(
1

k2

)
. (48b)

Substituting the expansions into (7a) and (7b) and matching terms with different powers of k, we obtain
the following:

• Using

−
∫ ∞
x

e−2ik(x−y)q0(y)

(
1 +

f21(x)

k
+O

(
1

k2

))
dy = −

∫ ∞
x

e−2ik(x−y)q0(y)dy +O

(
1

k2

)
=
q0(x)

2ik
+

1

2ik

∫ ∞
x

e−2ik(x−y)q′0(y)dy +O

(
1

k2

)
,

we obtain the coefficient of the O(1/k) term in (48a),

f11(x) =
q0(x)

2i
.

• From

− λ
∫ ∞
x

q̄0(y)φ1(y, k)dy +O

(
1

k2

)
= − λ

2ik

∫ ∞
x

|q0(y)|2 dy +O

(
1

k2

)
,

we get the coefficient of the O(1/k) term in (48b),

f21(x) = − λ
2i

∫ ∞
x

|q0(y)|2 dy.

• Using

1

2ik

∫ ∞
x

e−2ik(x−y)q′0(y)dy −
∫ ∞
x

e−2ik(x−y)q0(y)

(
− λ

2ik

∫ ∞
y

|q0(z)|2 dz
)
dy +O

(
1

k3

)
=− q′0(x)

(2ik)2
−
λq0(x)

∫∞
x
|q0(z)|2 dz

(2ik)2

+
λ

(2ik)2

∫ ∞
x

e−2ik(x−y)
(
q0(y) |q0(y)|2 − q′0(y)

∫ ∞
y

|q0(z)|2 dz
)
dy +O

(
1

k3

)
=− q′0(x)

(2ik)2
−
λq0(x)

∫∞
x
|q0(y)|2 dy

(2ik)2
+O

(
1

k3

)
,

we get the coefficient of the O(1/k2) term in (48a)

f12(x) = −q
′
0(x)

(2i)2
−
λq0(x)

∫∞
x
|q0(y)|2 dy

(2i)2
.
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As a result, we obtain expansions for a(k), b(k):

a(k) = φ2(0, k) = 1− λ

2ik

∫ ∞
0

|q0(y)|2 dy +O

(
1

k2

)
,

b(k) = φ1(0, k) =
q0(0)

2ik
−
q′0(0) + λq0(0)

∫∞
0
|q0(y)|2 dy

(2ik)2
+O

(
1

k3

)
.

Large k asymptotics of A(k, T ), B(k, T )

For T < ∞, the spectral functions A(k, T ) = Φ2(T, k) and −e−4ik2TB(k, T ) = Φ1(T, k) are defined using
the linear Volterra integral equations (8a) and (8b). We use the following expansions for large k ∈ C,

Φ1(t, k) =
h11(t)

k
+
ĥ11(t)e−4ik

2t

k
+
h12(t)

k2
+
ĥ12(t)e−4ik

2t

k2
+O

(
1

k3

)
+O

(
e−4ik

2t

k3

)
, (49a)

Φ2(t, k) = 1 +
h21(t)

k
+
ĥ22(t)e−4ik

2t

k2
+
ĥ23(t)e−4ik

2t

k3
+O

(
1

k2

)
+O

(
e−4ik

2t

k4

)
, (49b)

where the terms depending on e−4ik
2t are separated. Substituting the expansions into (8a) and (8b) and

matching terms with different powers of k, we obtain the following:

• We have ∫ t

0

2kλg0(τ)

(
h11(τ)

k
+
ĥ11(τ)e−4ik

2τ

k

)
+ iλ

∣∣g0(τ)2
∣∣ dτ +O

(
1

k

)
+O

(
e−4ik

2t

k3

)

=λ

∫ t

0

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ dτ +

∫ t

0

2λg0(τ)ĥ11(τ)e−4ik
2τdτ

+O

(
1

k

)
+O

(
e−4ik

2t

k3

)

=λ

∫ t

0

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ dτ
+

2iλ

4k2

(
g0(t)ĥ11(t)e−4ik

2t − g0(0)ĥ11(0)−
∫ t

0

e−4ik
2τ d

dτ

(
g0(τ)ĥ11(τ)

)
dτ

)
+O

(
1

k

)
+O

(
e−4ik

2t

k3

)
.

Comparing this with O(1) +O(e−4ik
2t/k2) terms in (8b), we obtain

2g0(τ)h11(τ) + i
∣∣g0(τ)2

∣∣ = 0 ⇒ h11(t) =
g0(t)

2i
,

and

ĥ22(t) =
iλ

2

(
g0(t)ĥ11(t)

)
.
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• Consider∫ t

0

e−4ik
2(t−τ)

(
−iλ

∣∣g20∣∣
(
h11
k

+
ĥ11e

−4ik2τ

k

))
dτ

+

∫ t

0

e−4ik
2(t−τ) (2kg0 + ig1)

(
1 +

h21
k

+
ĥ22e

−4ik2τ

k2

)
dτ +O

(
1

k2

)
+O

(
e−4ik

2t

k2

)

=e−4ik
2t

∫ t

0

−iλ
∣∣g20∣∣ ĥ11(t)

k
dτ +

∫ t

0

e−4ik
2(t−τ)

(
2kg0

(
1 +

ĥ22e
−4ik2τ

k2

))
dτ

+O

(
1

k2

)
+O

(
e−4ik

2t

k2

)

=
g0(t)− g0(0)e−4ik

2t

2ik
+ e−4ik

2t

∫ t

0

(
−iλ

∣∣g20∣∣ ĥ11(t)

k
+ 2g0

ĥ22
k

)
dτ +O

(
1

k2

)
+O

(
e−4ik

2t

k2

)

=
g0(t)

2ik
+
ig0(0)e−4ik

2t

2k
+O

(
1

k2

)
+O

(
e−4ik

2t

k2

)
.

Comparing this with O(1/k) +O(e−4ik
2t/k) contributions in (8a), it follows that for Φ1(t, k),

h11(t) =
g0(t)

2i
,

ĥ11(t) =
ig0(0)

2
,

h12(t) =
g1(t)

4
− iλg0(t)

4

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,

ĥ12(t) = −g1(0)

4
− iλg0(0)

4

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,

and for Φ2(t, k),

h21(t) =
λ

2

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ,

ĥ22(t) =
λg0(t)g0(0)

4i
,

ĥ23(t) =
iλ

8

(
g1(t)g0(0)− g0(t)g1(0)− iλg0(0)g0(t)

∫ t

0

g0(τ)g1(τ)− g1(τ)g0(τ)dτ

)
.
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As a result, we have

A(k, T ) =Φ2(T, k)

=1− λ

2k

∫ T

0

G(t)dt+
iλe4ik

2T

4k2
g0(0)g0(T ) +

− iλ8
(
G(T )− iλg0(T )g0(0)

∫ T
0
G(τ)dτ

)
e4ik

2T

k3

+O

(
1

k3

)
+O

(
e−4ik

2t

k4

)
,

B(k, T ) =− e4ik
2TΦ1(T, k)

=− g0(T )e4ik
2T

2ik
− ig0(0)

2k
−

(
g1(T )− iλg0(T )

∫ T
0
G(τ)dτ

)
e4ik

2T

4k2
+
g1(0) + iλg0(0)

∫ T
0
G(τ)dτ

4k2

+O

(
1

k3

)
+O

(
e−4ik

2t

k3

)
,

where
G(t) = g0(t)g1(t)− g1(t)g0(t).

Large k asymptotics of A(k,∞), B(k,∞)

We use the alternative set of equations for A(k,∞) = Φ̃2(0, k) and B(k,∞) = Φ̃1(0, k), which are defined
using the linear Volterra integral equations (9a) and (9b). Following similar steps to the calculations for
a(k) and b(k), we have the expansions for A(k,∞), B(k,∞),

A(k,∞) = Φ̃2(0, k) = 1− λ

2k

∫ ∞
0

G(t)dt+O

(
1

k2

)
,

B(k,∞) = Φ̃1(0, k) =
g0(0)

2ik
+
g1(0) + iλg0(0)

∫∞
0
G(τ)dτ

4k2
+O

(
1

k3

)
,

where
G(t) = g0(t)g1(t)− g1(t)g0(t).

These expansions are consistent with A(k, T ), B(k, T ) by taking T →∞ after dropping all terms containing

e4ik
2T . For T =∞, the expansions are only valid in Re(ik2) ≤ 0.

Compatibility conditions and the expansions for the global relation

If we expand the global relation at k =∞, the compatibility conditions of the NLS equation at x = 0, t = 0
are obtained. In the case T = ∞, we get the global relation, a(k)B(k,∞) − b(k)A(k,∞) = 0, at different
orders:

O(1/k) :
g0(0)

2ik
− q0(0)

2ik
= 0, O(1/k2) :

g1(0)

4k2
− q′0(0)

4k2
= 0.

Although the expansions for a, b, A,B depend on both q0(0), g0(0), g1(0) and the integrals of q0, g0, g1, it
turns out that the latter cancel in the expansion of the global relation. Furthermore, if a,A 6= 0, the global
relation is rearranged as b/a = B/A, and

B/A =
g0(0)

2ik
+
g1(0)

4k2
+O

(
1

k3

)
, b/a =

q0(0)

2ik
+
q′0(0)

4k2
+O

(
1

k3

)
.

The integrals of q0, g0, g1 do not appear in the expansions of B/A and b/a. For the UTM, the global relation
is strictly satisfied throughout the calculation, but the solution does not require infinitely many compatibility
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conditions at the corner x = t = 0. When the compatibility condition is violated at a certain order 1/kn,
the unknown boundary function will be unbounded at the origin. This can be shown by an explicit example
in the linear case.

Example 3. Using the UTM, the solution formula for the LS equation,

iqt + qxx = 0,

on the half-line with the initial condition q0(x) = e−x and the homogeneous Dirichlet boundary condition
g0(t) = 0 is

q(x, t) =
1

2π

∫ ∞
−∞

eikx−ik
2t

1 + ik
dk − 1

2π

∫
∂D+

eikx−ik
2t

1− ik
dk,

where ∂D+ is the boundary of the first quadrant, positively oriented. The Neumann data is to be computed

g1(t) = qx(0, t) =
1− i√

2πt
− 1

π

∫ ∞
−∞

e−ik
2t

1 + k2
dk.

with asymptotics

qx(0, t) = O(t−1/2) as t→ 0,

qx(0, t) = O(t−3/2) as t→∞.

Therefore, g1(t) = qx(0, t) is unbounded at t = 0. On the other hand, the global relation for T =∞ is

q̂0(k) = ig̃1(k), Re(k) ≤ 0, Im(k) ≤ 0,

with

q̂0(k) =

∫ ∞
0

e−ikxe−xdx =
1

1 + ik
,

ig̃1(k) = i

∫ ∞
0

eik
2tqx(0, t)dt = i

∫ ∞
0

eik
2t

π

∫ ∞
−∞

e−is
2t s2

1 + s2
dsdt =

1

1 + ik
.

The global relation remains satisfied and the leading order expansion of B(k,∞) = ig̃1(k) + kg̃0(k) is given
by

B(k,∞) = lim
t→0

√
2π
(
qx(0, t)

√
t
)

(i− 1)k
+O(1/k2).

On the other hand, if limt→0 ∂
n
x q(0, t) is known to be bounded, then the global relation implies that the initial

and boundary values are compatible with respect to the LS equation up to the n-th order derivative.
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