
London Mathematical Society ISSN 1461–1570

SYMBOLIC INTEGRATION AND SUMMATION USING HOMOTOPY
METHODS

BERNARD DECONINCKAND MICHAEL NIVALA

Abstract

The homotopy algorithm is a powerful method for indefinite in-
tegration of total derivatives, and for the indefinite summation of
differences. By combining these ideas with straightforward Gaus-
sian elimination, we construct an algorithm for the optimal sym-
bolic integration or summation of expressions that contain terms
that are not total derivatives or differences. The optimization con-
sists of minimizing the number of terms that remain unintegrated
or are not summed. Further, the algorithm imposes an ordering of
terms so that the differential or difference order of these remaining
terms is minimal.

1. Introduction

Homotopy methods are powerful tools originating in differential geometry and the cal-
culus of variations for the integration and summation of exact expressions. In one contin-
uous spatial dimension, this amounts to integrating total derivatives of expressions con-
taining unknown functions and their derivatives. Such calculations occur frequently in ap-
plications. For instance, in soliton theory, the form of consecutive conserved densities and
their fluxes are given by functional expressions of unknown functions and their derivatives.
As shown in [6], the fluxes may be reconstructed by the indefinite integration of such ex-
pressions. A second application is the solution of an exact differential equation of arbitrary
order [10].

The question addressed in this paper is the design of afully automated procedurefor the
integration of expressions containing unknown functions and their derivatives, usable by
a computer algebra system (CAS) such as Maple or Mathematica, especially if the input
expressions arenot exact. The current versions of both Maple (Release 10) and Mathe-
matica (Release 5.1) are unable to integrate expressions that contain both derivative and
nonderivative terms, even when the vast majority of the terms is exact. For example, sup-
pose one wants to integrate the expression

E = u′(x)v(x) + v′(x)u(x) + u(x),

whereu(x) andv(x) are unspecified functions of the independent variablex andu′(x)
denotes the derivative ofu with respect tox. Immediately∫

Edx = u(x)v(x) +
∫

u(x)dx.

.
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Symbolic integration and summation

Below we present an algorithm to obtain this answer systematically. The algorithm is es-
pecially suited for expressions containing many terms, not all of which are exact.

In addition to expressions depending on a continuous variablex ∈ R, we also con-
sider expressions with a discrete variablen ∈ Z. Such expressions also occur frequently
in applications (see [8, 12]). All of the above statements remain true, by replacing “inte-
gral” with “sum” and “derivative” with “shift”. To illustrate this, consider the example of
summing the expression

En = un+1 − un + u2
n.

Immediately ∑
n

En = un+1 +
∑

n

u2
n,

where
∑

n denotes indefinite summation with respect ton.
The current implementations of the symbolic integration and summation algorithms

used by Maple 10 or Mathematica 5.1 do not perform these calculations, in part because
of their refusal to make choices about which terms to integrate (sum) and which terms to
leave unintegrated (unsummed). Indeed, this is a legitimate concern for more complicated
expressions and one may argue about whether or not the answer our algorithm produces
is optimal. Be that as it may, there should be no discussion on the resulting answer being
an improvement over leaving the expressions untouched, which is the response of Maple
10 or Mathematica 5.1. This is demonstrated in examples. An implementation in Maple of
the algorithm presented in this paper is available from [3]. It should be noted that the ideas
in this paper are easily generalized to the multidimensional case,i.e., the inversion of the
divergence operator (or its discrete analog) [7, 11] . We state everything in one dimension
because it is the most important and transparent case.

2. Integrating exact expressions

In this section we are concerned with expressionsE(x,u,ux,u2x, . . . ,uNx) of an
unknown (vector) functionu and its derivatives with respect tox. HereN is the order of
the highest derivative of any component ofu with respect tox appearing inE . For ease
of presentation, we assume thatE is free of terms of the form̂E(x), i.e., terms that are
independent of the dependent variable. Such expressions are exact in a trivial sense. We
also use the notationDxF to denote the derivative of the expressionF with respect tox.

We begin by introducing some mathematical tools from the calculus of variations and
differential geometry, the Euler operators and the homotopy operator. These operators al-
low us to answer the following questions:

• Question 1:How does one check if an expressionE is exact,i.e., a total derivative,
E = DxF for some functionF?

• Question 2: If an expressionE is exact, how does one determineF = D−1
x (E) =∫

Edx?

For clarity, we first introduce the more familiar zeroth-order Euler operator or the vari-
ational derivative, before introducing the higher-order versions. With the Euler operators
in hand, we introduce the homotopy operator and demonstrate how it is used to integrate
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exact expressions. Most of the material presented in this section is not new. It may be found
in a more abstract form in [2, 11], e.g., or in a more concrete form in [6, 7], for instance.

2.1. The continuous Euler operators
DEFINITION 1. The one-dimensionalEuler operator of order zero (variational deriva-
tive), with independent variablex and dependent variableu =

(
u(1)(x), . . . , u(M)(x)

)
,

is defined as the operatorL(0)
u(x) with M components

L(0)
u(x) =

(
L(0)

u(1)(x)
, . . . ,L(0)

u(M)(x)

)
=

( ∞∑
k=0

(−Dx)k ∂

∂u
(1)
kx

, . . . ,
∞∑

k=0

(−Dx)k ∂

∂u
(M)
kx

)
.

(1)

In particular, the explicit formula for the variational derivative with scalar componentu
and variablex is

L(0)
u(x) =

∞∑
k=0

(−Dx)k ∂

∂ukx
=

∂

∂u
−Dx

∂

∂ux
+ D2

x

∂

∂u2x
−D3

x

∂

∂u3x
+ · · · . (2)

The Euler operator of order zero allows us to answer Question 1 by the following theo-
rem [11].

THEOREM 1. A necessary and sufficient condition for an expressionE to be exact is that
L(0)

u(x)(E) ≡ 0.

Example.Consider

E = uv′ + vu′ = Dx (uv) . (3)

Then

L(0)
u(x)(E) = v′ −Dx (v) = 0.

L(0)
v(x)(E) = u′ −Dx (u) = 0.

To computeF = D−1
x (E) =

∫
Edx we need the higher Euler operators.

DEFINITION 2. The one-dimensionalhigher Euler operator of orderi with variablex is
given by

L(i)
u(x) =

∞∑
k=i

(
k

i

)
(−Dx)k−i ∂

∂ukx
, (4)

where

(
k

i

)
=

k!
i!(k − i)!

.

In particular, the explicit formulas for the first four higher Euler operators (with component
u and variablex) are
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L(0)
u(x) = 1 · ∂

∂u
− 1 ·Dx

∂

∂ux
+ 1 ·D2

x

∂

∂u2x
− 1 ·D3

x

∂

∂u3x
+ · · · , (5a)

L(1)
u(x) = 1 · ∂

∂ux
− 2 ·Dx

∂

∂u2x
+ 3 ·D2

x

∂

∂u3x
− 4 ·D3

x

∂

∂u4x
+ · · · , (5b)

L(2)
u(x) = 1 · ∂

∂u2x
− 3 ·Dx

∂

∂u3x
+ 6 ·D2

x

∂

∂u4x
− 10 ·D3

x

∂

∂u5x
+ · · · , (5c)

L(3)
u(x) = 1 · ∂

∂u3x
− 4 ·Dx

∂

∂u4x
+ 10 ·D2

x

∂

∂u5x
− 20 ·D3

x

∂

∂u6x
+ · · · . (5d)

Though not explicitly used in what follows, it is interesting to note that the higher-order
analog of Question 1 is answered by the higher Euler operators (see [9]), E = Dm

x F for
someF if and only ifL(k)

u(x)(E) ≡ 0 for k = 0, . . . ,m− 1.

2.2. The continuous homotopy operator
We now define the homotopy operator, which reduces integration of an expression in-

volving unknown functions to integration of a known function with respect to a single
scalar variable.

DEFINITION 3. The one-dimensionalhomotopy operatorwith variablex is given by

Hλ0(E) =
∫ 1

λ0

M∑
j=1

Ij(E)[λu]
dλ

λ
, (6)

with

Ij(E) =
N−1∑
i=0

Di
x

(
u(j) L(i+1)

u(j)(x)
(E)
)

. (7)

The integrand (7) involves the one-dimensional higher Euler operators andM is the num-
ber of components ofu(x) =

(
u(1)(x), . . . , u(M)(x)

)
. The notationIj(E)[λu] implies

that in Ij(E) one replacesu(x) with λu(x), ux(x) with λux(x), etc.

Remarks:

• This definition differs from that found in [6, 11] to avoid singularities as a conse-
quence of the lower limit of integration, as discussed in [1, 13]. This is illustrated
below.

• We have not included the part of the homotopy operator that deals with expressions
whose onlyx-dependence is explicit (Sections 1.5 and 5.4 in [11]), as we have as-
sumed that all such expressions are removed fromE.

• The homotopy operator defined above is one of many homotopy operators introduced
in [11] and elsewhere. For our purposes here, we simply refer to it as the homotopy
operator.

The homotopy operator allows us to answer Question 2 by the following theorem (Sec-
tion 5.4 in [11], with a more general lower bound used throughout).
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THEOREM 2. For an exact functionE = DxF one has

Hλ0(E) = F [u]− F [λ0u]. (8)

It is important to note that the kernel of the homotopy operator is non-trivial (see Appendix
A). Because of this, different cases have to be considered: expressions whichvanish at zero
or infinity and expressions which do not. We can exclude mixed cases (containing both
types of limit terms) sinceHλ0 is a linear operator.

• Expressions which vanish at zero or infinity:If limλ→λ0 E[λu] = 0 for λ0 equal
to zero or infinity, then evaluatingHλ0(E) givesF [u], up to an integration con-
stant, according to (8). This can be seen by applying the chain rule:DxF [λ0u] =
E[λ0u] = 0, from whichF [λ0u] is a constant independent ofx.

• Expressions which do not vanish at zero or infinity:If limλ→λ0 E[λu] = E0[u] 6=
0 for bothλ0 = 0 andλ0 = ∞, then: (i)E0[u] is exact (sinceE[u] is exact) and
(ii) E0[u] is an expression of degree zero (see Appendix A). Therefore,E0[u] is
in the kernel of the homotopy operator (see Appendix A), and must be dealt with
separately. One method of dealing with such terms is the introduction of a parameter,
as demonstrated in the examples below. For an alternative approach, see [1]. Also,
non-homotopy methods can be used (see [10], for instance).

Example.Returning to (3)

E = uv′ + vu′.

In this case,u = (u, v) and

lim
λ→λ0

E[λu, λv] = lim
λ→λ0

((λu)(λv′) + (λv)(λu′)) =(uv′+vu′) lim
λ→λ0

λ2 = (uv′+vu′)λ2
0.

Thus we chooseλ0 = 0. Proceeding without this, we have

Hλ0(E) =
∫ 1

λ0

(Iu(E)[λu] + Iv(E)[λu])
dλ

λ
,

with

Iu(E) =
∞∑

i=0

Di
x

(
uL(i+1)

u(x) (E)
)

and Iv(E) =
∞∑

i=0

Di
x

(
vL(i+1)

v(x) (E)
)

.

These formulas give

Iu(E) = uL(1)
u(x)(E) = u

∂E

∂ux
= uv, Iv(E) = vL(1)

v(x)(E) = v
∂E

∂vx
= vu.

Thus, (6) gives

Hλ0(E) =
∫ 1

λ0

(
λ2uv + λ2uv

) dλ

λ
= 2uv

∫ 1

λ0

λdλ = uv − uvλ2
0.

Usingλ0 = 0 results in
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F = uv,

as desired.

Example.Consider

E = u′up. (9)

Here

E[λu] = λ(p+1)u′up.

A similar calculation to that given above establishes thatλ0 = 0 for p > −1, whereas
λ0 = ∞ for p < −1. Forp 6= −1, (7) gives

Iu(E) = u(p+1).

Therefore,

Hλ0(E) =
∫ 1

λ0

λpu(p+1)dλ =
1

p + 1
u(p+1) − 1

p + 1
u(p+1)λ

(p+1)
0 .

Evaluating atλ0 = ∞ for p < −1 or λ0 = 0 for p > −1 gives∫
Edx =

u(p+1)

p + 1
, p 6= −1. (10)

Example.Supposep = −1 in (9) from our previous example, thenE is homogeneous of
degree zero. In this case (7) gives

Iu(E) = 1,

resulting in

Hλ0(E) =
∫ 1

λ0

1
λ

dλ = ln
(

1
λ0

)
, (11)

which is independent ofu(x). Nevertheless, this is correct since upon inspection one has

F [u] =
∫

Edx = ln (u) ,

so that

F [u]− F [λ0u] = ln (u)− ln (λ0u) = ln
(

u

λ0u

)
= ln

(
1
λ0

)
,

in agreement with (8) and (11). ThusF [u] cannot be recovered from the above expression.
In order to obtain the desired answer for the casep = −1, we can exploit the fact that the

homotopy operator is defined up to a constant of integration. Using (10), we can remove
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the singularity atp = −1 by subtracting the constant of integration1/(p + 1) (this choice
is unique among integration constants that cause an indefinite form asp → −1):

∫
u′

u
dx = lim

p→−1

(
u(p+1)

p + 1
− 1

p + 1

)
= ln (u) .

Example.Only if a singularity is present in the obtained solution (depending on a parame-
ter) is it necessary to subtract a suitable integration constant (depending on this parameter)
to obtain the correct result, as in the previous example. Otherwise, a simple substitution of
the desired parameter suffices. This second scenario is illustrated here. Let

E =
(

up

u′2

)′
=

pup−1

u′
− 2upu′′

u′3
,

which does not vanish at zero or infinity forp = 2. Proceeding forp 6= 2 gives

Hλ0(E) =
up

u′2
− λp−2

0

(
up

u′2

)
.

Evaluating atλ0 = ∞ for p < 2 or λ0 = 0 for p > 2 gives

F =
up

u′2
,

which is correct. Note that this expression is well defined forp = 2. Taking the limitp → 2
gives

∫ (
2u

u′
− 2u2u′′

u′3

)
dx =

u2

u′2
,

as desired.

3. Integrating non-exact expressions

If an expressionE is not exact, we aim to integrate as many total derivatives inE as pos-
sible, while optimizing the number and type of terms remaining in the integral. We use the
following six-step method, which we refer to asthe homotopy method with optimization.

Step 1. Integrate total derivatives inE. Calculate

F = Hλ0(E),

whereλ0 is equal to zero or infinity. SinceE is not exact,F 6=
∫

Edx.

Step 2. Construct the set of all terms ofF . Let p be the number of terms ofF =∑p
i=1 ciF

(i), such that no twoF (i)’s are constant multiples of each other and eachci

is a constant. Form the setR = {F (1), F (2), . . . , F (p)} of all terms inF . Several choices
may be possible for the setR. Preference should be given to the set with the largestp. To
this end, expressions should be expanded when possible. It should be noted that working
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with a smaller setR will not result in a wrong answer, but merely in a less than optimal
answer.

Step 3. SeparateE into its derivative part and its non-derivative part. UsingR,

∫
Edx =

p∑
i=1

αiF
(i) +

∫ (
E −

p∑
i=1

αiDxF (i)

)
dx. (12)

Note that choosingαi = ci for all i gives
∫

Edx = F +
∫

(E − DxF )dx, which is
obviously true. Doing this is referred to as thehomotopy method without optimization.

Step 4. Construct an ordered list of termsS occurring in E −
∑p

i=1 αiDxF (i). Re-
duceS to ensure no two elements are constant multiples of each other. The list starts
with elements containing the highest derivatives, ending with those containing the lowest
derivatives. Different choices for this ordering are possible, which may result in different
but correct final results.

Step 5. Construct a linear algebraic system forα = (α1, . . . , αp). Construct a system
of q linear equations such that thej-th equation is the coefficient ofSj in

∑p
i=1 αiDxF (i)

equated to the coefficient ofSj in E. These equations are linear in the components ofα,
and the system of equations may be written as

Cα = b, (13)

where the matrixC is of dimensionq × p and the vectorb is of dimensionq. Note that
q > p, sinceS contains at leastp elements obtained by taking a derivative of all elements
of R. Thus, (13) is typically overdetermined.

Step 6. Solve forα = (α1, . . . , αp). Typically, the rank ofC is p, andp of the equations
in (13) can be satisfied. In any case, the goal is to solve as many as possible (= rankC)
equations of (13) for the components ofα. For every equation satisfied, a term disappears
from the integrand of (12). It is preferable to solve the equations in the order they appear in
(13), so as to minimize the order of differentiation of the remaining integrand of (12). This
may be accomplished by Gaussian elimination, using a minimal number of row switching
operations. Once this solution is obtained, (12) provides the final answer for

∫
Edx.

Example.Consider

E = 2uu′3 + 3u2u′u′′ + 2uu′,

which is easily checked not to be exact:L(0)
u (E) 6= 0.

Step 1. Applying the homotopy operator withλ0 = 0 we get

F = Hλ0(E) =
3
4
u2u′2 + u2.

Step 2. The aboveF gives,

R = {u2u′2, u2},
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thusp = 2.

Step 3. Applying the homotopy method without optimization results in

∫
Edx =

3
4
u2u′2 + u2 +

1
2

∫ (
uu′3 + 3u2u′u′′

)
dx, (14)

which is correct, but not optimal. Instead, using (12) we get

∫
Edx = α1u

2u′2+α2u
2+
∫ (

(2− 2α1) uu′3 + (3− 2α1) u2u′u′′ + (2− 2α2) uu′
)
dx.

Step 4. Using this expression to construct the listS gives

S =
[
u2u′u′′, uu′3, uu′

]
,

so thatq = 3. Note that we have placed the term with the higher derivative first. The
two terms of differential order 1 were ordered by degree of nonlinearity in their highest
derivative.

Step 5. The resultingq × p = 3× 2 linear system is

 2 0
2 0
0 2

( α1

α2

)
=

 3
2
2

 .

Step 6. As announced, this system is overdetermined. Performing Gaussian elimination
with a minimal number of row switching operations gives the equivalent system

 1 0
0 1
0 0

( α1

α2

)
=

 3/2
1
−1

 .

Solving the first two of these equations results inα1 = 3/2 andα2 = 1, at which point no
more equations can be solved. Therefore, our final answer is

∫
Edx =

3
2
u2u′2 + u2 −

∫
uu′3dx,

which is to be preferred over (14).

Example.Let

E = 3u′v2 sinu− u′3 sinu− 6vv′ cos u + 2u′u′′ cos u + 8v′v′′ + v + uv3 + euu′′′.

Here we have two unknown functions and known functions of these. Using the homotopy
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method without optimization we obtain∫
Edx = −3

(
u′

u

)2

− 3
u′2eu

u
+ u′2 cos u + euu′2 + 3

euu′2

u2
+ euu′′ − 3v2 cos u

+4v′2 +
∫ (

v + uv3 + 6
u′u′′

u2
− 6
(u′

u

)3

− 6
u′3eu

u2
+ 6

u′u′′eu

u2

+3
u′3eu

u
− euu′3 − 3euu′u′′ + 6eu

(u′

u

)3

− 6eu u′u′′

u2

)
dx,

not a desirable result. In this case, the homotopy method with optimization gives∫
Edx = u′2 cos u− 1

2
euu′2 + euu′′ − 3v2 cos u + 4v′′2+

∫ (
v + uv3 +

1
2
euu′3

)
dx,

which is a significant improvement over the non-optimized version.

Remarks:

• In essence, the homotopy operator is used as a guessing mechanism to generate a
list of possible integrated terms, so that the size and the order of differentiation of
the integrand in (12) can be reduced. However this does not always work as desired.
Consider the example

E = uu′′.

ThenL(0)
u (E) = 2uu′′ 6= 0, so thatE is not exact. Next,L(1)

u (E) = −2u′ and
L(2)

u (E) = u. The action of all remaining higher Euler operators results in zero.
Then

I(E) =
1∑

i=0

Di
x

(
uL(i+1)

u (E)
)

= u(−2u′) + (u2)′ = 0 ⇒ Hλ0(E) = 0.

ThusE = uu′′ is in the kernel of the homotopy operator and this calculation gives
no progress toward achieving∫

Edx = uu′ −
∫

u′2dx, (15)

which has a remaining integrand of lower differential order. This is a consequence
of the cancellation occurring in (7). This problem may be avoided by introducing

Jji(E) = Di
x

(
u(j) L(i+1)

u(j)(x)
(E)
)

, so thatIj(E) =
∑N−1

i=0 Jji(E). Now use (6)

with Jji(E) instead ofIj(E) for i ∈ [0, N − 1]. This results inN homotopy-like
constructions from which a setR may be constructed which will not suffer from
cancellations internal toIj(E). For the above exampleJ1(E) = −2uu′ = −J2(E).
The resultingR = {uu′}. Using thisR, our procedure gives the desired result.

• It should be noted that (12) is an identity forall choices ofα1, . . . , αp. Even without
using the previous remark, the obtained answer,∫

Edx =
∫

uu′′dx,
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is correct, even though (15) may be more desirable. In summary, our procedure
always gives a correct result, even though other guessing mechanisms may prove
equally or more successful.

4. Application: modulo derivatives

In many applications [4, 5, 11], terms are considered equivalent if they are the same up
to a total derivative. Applying the homotopy method with optimization may considerably
simplify such computations.

Example.Consider

E1 = 2uu′3 + 3u2u′u′′,

E2 = 3u′v2 sinu− u′3 sinu− 6vv′ cos u + 2u′u′′ cos u + 8v′v′′ + v + uv3.

Applying the homotopy method with optimization and only keeping terms which are left
inside the resulting integral gives

E1 ∼ −uu′3,

and

E2 ∼ v + uv3,

whereE ∼ Ê meansE − Ê is a total derivative.
Thus, the homotopy method with optimization allows one to efficiently reduce an ex-

pression to one of equal or lower differential order, equivalent to the original one up to a
total derivative.

5. Summing exact expressions

We now turn our attention to the discrete case, where we are concerned with expressions
of the formEn = E(n, un,un+1, . . . ,un+N ) of an unknown (vector) functionun and
a finite number of its positive shifts, whereN is the order of the highest shift of any
component ofun appearing inEn. As in the continuous case, we assume thatEn contains
no termsÊ(n) that are independent of the dependent variable. We will make use of the
shift operator D, DEn = En+1. The identity operator is denoted byI, IEn = En, and
∆ = D− I, is theforward difference operator, ∆En = (D− I)En = En+1 − En.

We begin by introducing the discrete analogs of the previously stated mathematical
tools from the calculus of variations and differential geometry, the discrete Euler operators
and the discrete homotopy operator. These operators will allow us to answer the following
questions:

• Question 1:How does one check if an expressionEn is exact, i.e., a total difference,
En = ∆Fn = Fn+1 − Fn for some functionFn?

• Question 2:If an expressionEn is exact, how does one determineFn+1 =
∑

n En?

We first introduce the zeroth-order discrete Euler operator or the discrete variational
derivative, before proceeding to introduce the higher-order versions. With the discrete Eu-
ler operators in hand, we introduce the discrete homotopy operator and demonstrate how it
is used to sum exact expressions. Most of the material presented in this section is not new.
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It may be found in a more abstract form in [8], or in a more concrete form in [6, 7], for
instance.

5.1. The discrete Euler operators
DEFINITION 4. The one-dimensionaldiscrete Euler operator of order zero (discrete
variational derivative), with the discrete independent variablen and dependent variable

un =
(
u

(1)
n , . . . , u

(M)
n

)
, is defined as the operatorL(0)

un
with M components

L(0)
un

=
(
L(0)

u
(1)
n

, . . . ,L(0)

u
(M)
n

)
=

(
N∑

k=0

D−k ∂

∂u
(1)
n+k

, . . . ,
N∑

k=0

D−k ∂

∂u
(M)
n+k

)
(16a)

=

(
∂

∂u
(1)
n

(
N∑

k=0

D−k

)
, . . . ,

∂

∂u
(M)
n

(
N∑

k=0

D−k

))
.(16b)

Note the similarity of (16a) to the continuous Euler operator of order zero (1). In what
follows, we use the second formulation (16b) because of its computational convenience.

The discrete variational derivative allows us to answer Question 1 by the following
theorem [8].

THEOREM 3. A necessary and sufficient condition for an expressionEn, with positive
shifts, to be exact is thatL(0)

un
(En) ≡ 0.

Example.Consider

En = un+3v
2
n+2 + u2

n − v5
n − un+1v

2
n + v5

n+1 − u2
n+1. (17)

Note thatEn = ∆Fn, Fn = −u2
n + un+1v

2
n + un+2v

2
n+1 + v5

n. Indeed,

L(0)
un

(En) =
∂

∂un
(un+3v

2
n+2 + v5

n+1 − u2
n+1 + un+2v

2
n+1 − un−1v

2
n−2

+u2
n−3 − v5

n−3 − un−2v
2
n−3)

= 0

and

L(0)
vn

(En) =
∂

∂vn
(un+3v

2
n+2 + v5

n+1 − u2
n+1 + un+2v

2
n+1 − unv2

n−1 + u2
n−2

−v5
n−2 − un−1v

2
n−2)

= 0.

To computeFn+1 =
∑

n En, we need the discrete higher Euler operators.

DEFINITION 5. The one-dimensionaldiscrete higher Euler operator of order k with
discrete independent variablen is given by

L(k)
un

=
N∑

m=k

(
m

k

)
D−m ∂

∂un+k
=

∂

∂un

N∑
m=k

(
m

k

)
D−m. (18)

12
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In particular, the first four higher Euler operators for componentun are

L(0)
un

=
∂

∂un
(1 · I + 1 ·D−1 + 1 ·D−2 + 1 ·D−3 + · · · ), (19a)

L(1)
un

=
∂

∂un

(
1 ·D−1 + 2 ·D−2 + 3 ·D−3 + 4 ·D−4 + · · ·

)
, (19b)

L(2)
un

=
∂

∂un

(
1 ·D−2 + 3 ·D−3 + 6 ·D−4 + 10 ·D−5 + · · ·

)
, (19c)

L(3)
un

=
∂

∂un

(
1 ·D−3 + 4 ·D−4 + 10 ·D−5 + 20 ·D−6 + · · ·

)
. (19d)

As in the continuous case, the higher-order analog of Question 1 is answered by the discrete
higher Euler operators,En = ∆mFn for someFn if and only if L(k)

un
(En) ≡ 0 for k =

0, . . . ,m − 1 (the proof is analogous to the continuous version [9], usingL(k)
un

(∆En) =
L(k−1)

un
(En)).

5.2. The discrete homotopy operator
Next, we define the discrete homotopy operator, which reduces summation of an ex-

pression involving unknown functions to integration of a known function with respect to a
single scalar variable.

DEFINITION 6. The one-dimensionaldiscrete homotopy operatorwith discrete indepen-
dent variablen is

Ĥλ0(En) =
∫ 1

λ0

M∑
j=1

Ij(En)[λun]
dλ

λ
, (20)

with

Ij(En) =
N−1∑
i=0

∆i
(
u(j)

n L(i+1)

u
(j)
n

(En)
)

. (21)

The integrand (21) involves the one-dimensional higher Euler operators andM is the

number of components ofun =
(
u

(1)
n , . . . , u

(M)
n

)
. The notationIj(En)[λun] implies that

in Ij(En) one replacesun with λun, un+1 with λun+1, etc.

The discrete homotopy operator allows us to answer Question 2 by the following theo-
rem [8].

THEOREM 4. For an exact functionEn = ∆Fn, one has

Ĥλ0(En) = Fn[un]− Fn[λ0un]. (22)

As in the continuous case, the kernel of the discrete homotopy operator is non-trivial (see
Appendix Appendix A). Thus, we consider two cases: expressions whichvanish at zero or
infinity and expressions which do not. Again, we can exclude mixed cases sinceĤλ0 is a
linear operator.

• Expressions which vanish at zero or infinity: If limλ→λ0 En[λun] = 0 for λ0

equal to zero or infinity, then evaluatinĝHλ0(En) givesFn[un], up to a summa-
tion constant, according to (22). This can be seen by noting that∆Fn[λ0un] =

13
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En[λ0un] = 0 ⇒ Fn+1[λ0un] = Fn[λ0un], thusFn[λ0un] is a constant indepen-
dent ofn.

• Expressions which do not vanish at zero or infinity:If limλ→λ0 En[λun] 6= 0 for
bothλ0 = 0 andλ0 = ∞, then as in the continuous case, the limiting value is in the
kernel of the discrete homotopy operator (see Appendix A), and must be dealt with
separately. One method of dealing with such terms is the introduction of a parameter,
as demonstrated in the examples below. A modified version of the homotopy operator
may be used as well, as discussed in the remark at the end of the next section. Also,
non-homotopy methods can be used (see Appendix B, for example).

Example.Returning to (17),

En = un+3v
2
n+2 + u2

n − v5
n − un+1v

2
n + v5

n+1 − u2
n+1.

In this case,un = (un, vn) and

lim
λ→λ0

En[λun, λvn] = lim
λ→λ0

(
λ3un+3v

2
n+2 + λ2u2

n − λ5v5
n − λ3un+1v

2
n

+λ5v5
n+1λ

2u2
n+1

)
= λ2

0

(
λ0un+3v

2
n+2 + u2

n − λ3
0v

5
n − λ0un+1v

2
n + λ3

0v
5
n+1

−u2
n+1

)
.

Thus we chooseλ0 = 0. Proceeding without this, we have

Ĥλ0(En) =
∫ 1

0

(Iun
(f)[λun] + Ivn

(f)[λun])
dλ

λ
,

with

Iun(En) =
∞∑

i=0

∆i
(
unL(i+1)

un
(En)

)
and Ivn(En) =

∞∑
i=0

∆i
(
vnL(i+1)

vn
(En)

)
.

These formulas give

Iun
(En) = unL(1)

un
(En) + ∆

(
unL(2)

un
(En)

)
+ ∆2

(
unL(3)

un
(En)

)
= un

∂

∂un

(
D−1 + 2D−2 + 3D−3

)
(En) + ∆

(
un

∂

∂un

(
D−2 + 3D−3

)
(En)

)
+∆2

(
un

∂

∂un
D−3(En)

)
= −2u2

n + un+1v
2
n + un+2v

2
n+1,

and

Ivn
(En) = vnL(1)

vn
(En) + ∆

(
vnL(2)

vn
(En)

)
= vn

∂

∂vn

(
D−1 + 2D−2

)
(En) + ∆

(
vn

∂

∂vn
D−2(En)

)
= 5v5

n + 2un+1v
2
n + 2un+2v

2
n+1.

14
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Thus, (20) gives

Ĥλ0(En) =
∫ 1

λ0

(Iun(En)[λun] + Ivn(En)[λun])
dλ

λ

=
∫ 1

λ0

(
−2λu2

n + 3λ2un+1v
2
n + 3λ2un+2v

2
n+1 + 5λ4v5

n

)
dλ

= −u2
n + un+1v

2
n + un+2v

2
n+1 + v5

n + λ2
0u

2
n − λ3

0u
2
nun+1v

2
n

−λ3
0u

2
nun+2v

2
n+1 − λ5

0u
2
nv5

n.

Evaluating atλ0 = 0 results in

Fn = −u2
n + un+1v

2
n + un+2v

2
n+1 + v5

n,

as desired.

Example.Consider

En = un+2u
p
n+1 − un+1u

p
n. (23)

Here we have

En[λun] = λ(p+1)
(
un+2u

p
n+1 − un+1u

p
n

)
.

A similar calculation to that given above establishes thatλ0 = 0 for p > −1, whereas
λ0 = ∞ for p < −1. Forp 6= −1, (21) gives

Iun
(En) = (p + 1)un+1u

p
n.

Therefore,

Ĥλ0(En) =
∫ 1

λ0

λp(p + 1)un+1u
p
ndλ = un+1u

p
n − λ

(p+1)
0 un+1u

p
n.

Evaluating atλ0 = ∞ for p < −1 or λ0 = 0 for p > −1 gives

∑
n

En = un+2u
p
n+1, p 6= −1. (24)

Example. Supposep = −1 in (23) from our previous example, thenEn is homogeneous
of degree zero. In this case (21) gives

Iu(En) = 0,

resulting in

Ĥλ0(En) =
∫ 1

λ0

0 · 1
λ

dλ = 0. (25)

This is correct: upon inspection one has

Fn+1 =
∑

n

En =
un+2

un+1
,

15
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giving

Fn[un]− Fn[λ0un] =
un+1

un
− λ0un+1

λ0un
= 0,

in agreement with (22) and (25). However,Fn[un] cannot be recovered from the above
expression.

In order to obtain the desired answer forp = −1, we proceed as we did in the contin-
uous case. Returning to our previous example, making note of the fact that there are no
singularities with respect to the parameterp in (24), we make the substitutionp = −1
giving

Fn+1 =
∑

n

En =
un+2

un+1
,

as desired.

6. Summing non-exact expressions

If an expressionEn is not exact, we aim to sum as many differences inEn as possible,
while optimizing the number and type of terms remaining in the sum. We use the following
six-step method, which we refer to asthe discrete homotopy method with optimization.

Step 1. Sum total differences inEn. Calculate

Fn = Ĥλ0(En),

whereλ0 is equal to zero or infinity. SinceEn is not exact,Fn+1 6=
∑

n En.

Step 2. Construct the set of all terms ofFn. Let p be the number of terms ofFn =∑p
i=1 ciF

(i)
n , such that no twoF (i)

n ’s are constant multiples of each other and eachci is a

constant. Form the setR = {F (1)
n , F

(2)
n , . . . , F

(p)
n } of all terms inFn. Several choices may

be possible for the setR. Preference should be given to the set with the largestp. To this
end, expressions should be expanded when possible. It should be noted that working with
a smaller setR will not result in a wrong answer, but merely in a less than optimal answer.

Step 3. SeparateEn into its difference part and its non-difference part. UsingR,∑
n

En =
p∑

i=1

αiF
(i)
n+1 +

∑
n

(
En −

p∑
i=1

αi∆F (i)
n

)
. (26)

Note that choosingαi = ci for all i gives
∑

n En = Fn+1 +
∑

n (En − (Fn+1 − Fn)),
which is obviously true. Doing this is referred to as thediscrete homotopy method without
optimization.

Step 4. Construct an ordered list of termsS occurring in En−
∑p

i=1 αi∆F
(i)
n . Reduce

S to ensure no two elements are constant multiples of each other. The list starts with ele-
ments which contain the highest degree of non-locality (the difference between the highest
shift and the lowest shift). Different choices for this ordering are possible, which may result
in different but correct final results.

Step 5. Construct a linear algebraic system forα = (α1, . . . , αp). Construct a system

of q linear equations such that thej-th equation is the coefficient ofSj in
∑p

i=1 αi∆F
(i)
n

16
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equated to the coefficient ofSj in En. These equations are linear in the components ofα,
and the system of equations may be written as

Cα = b, (27)

where the matrixC is of dimensionq × p and the vectorb is of dimensionq. Note that
q > p, sinceS contains at leastp elements obtained by applyingD to all elements ofR.
Thus, (27) is typically overdetermined.

Step 6. Solve forα = (α1, . . . , αp). Typically, the rank ofC is p, andp of the equations
in (27) can be satisfied. In any case, the goal is to solve as many as possible (= rankC)
equations of (27) for the components ofα. For every equation satisfied, a term disappears
from the summand of (26). It is preferable to solve the equations in the order they appear
in (27), so as to minimize the degree of non-locality of the remaining summand of (26).
Once this solution is obtained, (26) provides the final answer for

∑
n En.

Example.Consider

En = 2u2
n+3un+2 − u2

n+1un + un+2, (28)

which is easily checked not to be exact:L(0)
un 6= 0 .

Step 1. Applying the discrete homotopy operator withλ0 = 0 we get

Ĥλ0(En) =
2
3
u2

nun−1 + 2u2
n+1un + 2u2

n+2un+1 + un+1 + un.

Step 2. The above gives

R = {u2
n+1un, u2

n+2un+1, u
2
nun−1, un+1, un},

thusp = 5.

Step 3. Applying the discrete homotopy method without optimization results in∑
n

En =
2
3
u2

n+1un + 2u2
n+2un+1 + 2u2

n+3un+2 + un+2 + un+1

+
∑

n

(
1
3
u2

n+1un +
2
3
un

2un−1 + un

)
,

(29)

which is correct, but not optimal. Instead, using (26) we get

∑
n

En = α1u
2
n+2un+1 + α2u

2
n+3un+2 + α3u

2
n+1un + α4un+2 + α5un+1

+
∑

n

(
(2− α2)u2

n+3un+2 + (α2 − α1)u2
n+2un+1 + (1− α4)un+2 + α5un

+(−1 + α1 − α3)u2
n+1un + α3u

2
nun−1 + +(α4 − α5)un+1

)
.

Step 4. Using this expression to construct the listS gives

S =
[
u2

n+3un+2, u
2
n+2un+1, u

2
nun−1, u

2
n+1un, un+2, un+1, un

]
,

17
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so thatq = 7. Note that in this case the first four terms have the same degree of non-
locality, 1, while the last three terms have degree of non-locality 0. Terms with the same
degree of non-locality have been ordered by the absolute value of their lowest shift, from
highest to lowest (with negative shifts before positive shifts).

Step 5. The resultingq × p = 7× 5 linear system is



0 1 0 0 0
−1 1 0 0 0

0 0 1 0 0
1 0 −1 0 0
0 0 0 1 0
0 0 0 1 −1
0 0 0 0 1




α1

α2

α3

α4

α5

 =



2
0
0
1
1
0
0


.

Step 6. As announced, this system is overdetermined. Performing Gaussian elimination
with a minimal number of row switching operations gives the equivalent system



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0




α1

α2

α3

α4

α5

 =



2
2
0
1
1
−1
−1


.

Solving the first five of these equations results inα1 = α2 = 2, α3 = 0, andα4 = α5 = 1
at which point no more equations can be solved. Therefore, our final answer is

∑
n

En = 2un+2u
2
n+3 + 2un+1u

2
n+2 + un+2 + un+1 +

∑
n

(
u2

n+1un + un

)
,

which is to be preferred over (29).

Example.Let

En = 7u9
n+3v

3
n+2 + u2

n+1vn − eunv5
n+1 − u9

n+2v
3
n+1 + eun+1v5

n+2 − 3 u2
n+2vn+1.

Here we have two unknown functions and a known function of these. Using the discrete
homotopy method without optimization gives

∑
n

En = 7u9
n+3v

3
n+2 + 9/2 u9

n+1v
3
n + 6 u9

n+2v
3
n+1 + eun+1v5

n+2 − 4/3 u2
n+1vn

−3 u2
n+2vn+1 +

∑
n

(
− 2/3 u2

n+1vn + 3/2 u9
n+1v

3
n + 9/2 u9

nv3
n−1

−4/3 u2
nvn−1

)
.

In this case, the discrete homotopy method with optimization gives

18
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∑
n

En = 7u9
n+3v

3
n+2 + 6 u9

n+2v
3
n+1 + eun+1v5

n+2 − 3 u2
n+2vn+1

+
∑

n

(
6 u9

n+1v
3
n − 2 u2

n+1vn

)
,

which is an improvement over the non-optimized version.

Remark: The homotopy method with optimization also provides a way of summing exact
expressions which do not vanish as the homotopy parameterλ approaches zero or infinity.
As in the continuous case, we introduce

Jji(En) = ∆i
(
u(j)

n L(i+1)

u
(j)
n

(En)
)

,

so thatIj(En) =
∑N−1

i=0 Jji(En). Now use (20) withJji(En) instead ofIj(En) for
i ∈ [0, N − 1]. This results inN homotopy-like constructions from which a setR may
be constructed which will not suffer from cancellations internal toIj(En). For example,
returning to (23) withp = −1 we have

En =
un+2

un+1
− un+1

un
.

This was shown to be in the kernel of the homotopy operator, thus, we were unable to
recoverFn. Instead, using the above givesJ1(En) = −un+1/un +un/un−1 = −J2(En).
This results inR = { un

un−1
,
un+1

un
}. Using thisR, our procedure gives the desired result.

7. Application: modulo differences

In many applications [6, 12], terms are considered equivalent if they are identical up to
differences. Applying the homotopy method with optimization may considerably simplify
such computations.

Example.Consider

E(1)
n = n2un+1 + 3 nun+1 + 2 un+1 − n2un − nun + u7

n,

E(2)
n = −unun+1vn − v2

n + un+1un+2vn+1 + v2
n+1 + un+3vn+2 − un+1vn + un+1

+v11
n − unun+1vn+5.

Applying the homotopy method with optimization and retaining the remaining summand
gives

E(1)
n ∼ u7

n,

and

E(2)
n ∼ v11

n + un − unun+1vn+5,

whereEn ∼ Ên meansEn − Ên is a difference.
Thus, the homotopy method with optimization allows one to efficiently reduce an ex-

pression to a simpler (difference free) expression, equivalent to the original one up to a
difference.
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Appendix A. The kernel of the homotopy operator

Here we discuss the kernel of the continuous and discrete homotopy operators.

Definition. An expressionE[u] is equivalent to a term of degree zeroif

E[λu] = E[u] + Cλ

whereCλ is a constant independent of(u,ux,u2x, . . .). E is ofdegree zeroif Cλ ≡ 0.

Theorem.An exact expressionE = DxF is in the kernel of the homotopy operator if and
only if E is of degree zero.

Remark: The kernel is defined only up to a constant of integration. All constants of inte-
gration are considered equivalent to 0.

Lemma. E is of degree zero if and only ifF is equivalent to a term of degree zero.

Proof of the lemma. First, supposeF is equivalent to a term of degree zero. Then

E[λu] = Dx (F [λu]) = Dx (F [u] + C) = DxF [u] = E[u].

ThereforeE is of degree zero.
Now, supposeE is of degree zero. Then

Dλ (E[λu]) = Dλ (E[u]) = 0.

Thus,

0 = Dλ (E[λu]) = Dλ (DxF [λu]) = Dx (DλF [λu]) .

This implies thatDλF [λu] is some constant,B(λ), independent ofx. Integrating with
respect toλ gives

∫ 1

λ0

DλF [λu]dλ =
∫ 1

λ0

B(λ)dλ ⇒ F [u]− F [λ0u] =
∫ 1

λ0

B(λ)dλ.

This implies,

F [λ0u] = F [u]−
∫ 1

λ0

B(λ)dλ.

Therefore, sinceλ0 is arbitrary,F is equivalent to a term of degree zero. �

Proof of the theorem. Now, supposeE is in the kernel of the homotopy operator. Then

Hλ0(E) = F [u]− F [λ0u] = A,

whereA is some constant. This implies that

F [λ0u] = F [u]−A.
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Thus,F is equivalent to a term of degree zero, which in turn impliesE is of degree zero
by the lemma.

Now, supposeE is of degree zero. This implies thatF is equivalent to a term of degree
zero by the lemma. Thus,

F [λu] = F [u] + Cλ.

Therefore,

Hλ0(E) = F [u]− F [λ0u] = −Cλ0 ,

i.e.,E is in the kernel of the homotopy operator. �

We have the analogous result for the discrete case.

Theorem.An exact expressionEn = ∆Fn is in the kernel of the discrete homotopy oper-
ator if and only ifEn is of degree zero.

The proof closely resembles that of the continuous case, and it is omitted here.

Appendix B. A non-homotopy summation algorithm

Alternatively, we can use the following non-homotopy method to sum exact and non-
exact expressions in one dimension. This method is devoid of the problem with the homo-
topy method when summing terms that do not vanish in the limit asλ goes to 0 or infinity.
However, it is not easily generalized to the multi-dimensional setting unlike the homotopy
method (see remark below).

Our goal is to reduce the summand to astandard form, which we define as an expression
with every term having a lowest shift of zero. This will automatically eliminate differences
from the summand since the standard form of a difference,En = ∆Fn = Fn+1 − Fn

(assuming, without loss of generality, that the lowest shift inFn is 0), isFn − Fn = 0. To
accomplish this, we define theminimum shift operator, Z, such thatZ(En) = D−m(En),
wherem is the minimum shift occurring inEn. In other words,Z returns an expression
which has a minimum shift of zero. ApplyingZ to each term in the summand reduces it to
standard form. Since we wish to applyZ to terms inside a sum, we need thetelescoping
summand rule,

∑
n En = En +En−1 + · · ·+En−m+1 +

∑
n Z(En). This rule allows one

to compensate for the action ofZ on the summand. ForEn = ∆Fn, this rule reduces to
the more familiar identity

∑
n ∆Fn =

∑
n Fn+1−

∑
n Fn = Fn+1 +

∑
n Fn−

∑
n Fn =

Fn+1.
Using the above remarks, the algorithm is as follows. Letp be the number of terms of

En =
∑p

i=1 E
(i)
n , such that no twoE(i)

n ’s are constant multiples of each other (see Step 2
of the discrete homotopy method). Then one has∑

n

En = Tn +
∑

n

Gn,

where

Gn =
p∑

i=1

Z(E(i)
n )
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is in standard form, and is therefore difference free. HereTn is found by use of the tele-
scoping summand rule:

Tn =
p∑

i=1

T (i)
n ,

whereT
(i)
n = E

(i)
n + E

(i)
n−1 + · · ·+ E

(i)
n−mi+1 andmi is the lowest shift occurring inE(i)

n .
For example, consider

En =
un+2

un+1
− un+1

un
+ 2u2

n+3un+2 − u2
n+1un + un+2,

a combination of our previous examples. We have

Z (un+2/un+1) = D−1 (un+2/un+1) = un+1/un,

Z (−un+1/un) = D0 (−un+1/un) = −un+1/un,

Z
(
2u2

n+3un+2

)
= D−2

(
2u2

n+3un+2

)
= 2u2

n+1un,

Z
(
−u2

n+1un

)
= D0

(
−u2

n+1un

)
= −u2

n+1un,

Z (un+2) = D−2 (un+2) = un.

Thus,

Gn =
un+1

un
− un+1

un
+ 2u2

n+1un − u2
n+1un + un = u2

n+1un + un,

which is indeed difference free. Using the telescoping summand rule each time we apply
Z to a term inside the sum gives

Tn =
un+2

un+1
+ 2u2

n+3un+2 + 2u2
n+2un+1 + un+2 + un+1.

Therefore, our final result is∑
n

En =
un+2

un+1
+ 2u2

n+3un+2 + 2u2
n+2un+1 + un+2 + un+1 +

∑
n

(
u2

n+1un + un

)
,

in agreement with our results using homotopy methods.
Remark: This and other non-homotopy methods (see [10] for instance) rely on the fact
that summation (integration) and the inversion of the discrete (continuous) divergence op-
erator are equivalent in one-dimension. In the multi-dimensional setting, however, this
equivalence no longer holds,i.e., multiple summation (integration) is not the higher di-
mensional analog of the inversion of the discrete (continuous) divergence operator. As
explicitly shown in [7, 11], the homotopy operator reduces this inversion in any dimen-
sion to a single integration. We see no clear extension of the algorithm presented in this
appendix to higher dimensions, where as homotopy methods may still be used.
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