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Abstract

The homotopy algorithm is a powerful method for indefinite in-
tegration of total derivatives, and for the indefinite summation of
differences. By combining these ideas with straightforward Gaus-
sian elimination, we construct an algorithm for the optimal sym-
bolic integration or summation of expressions that contain terms
that are not total derivatives or differences. The optimization con-
sists of minimizing the number of terms that remain unintegrated
or are not summed. Further, the algorithm imposes an ordering of
terms so that the differential or difference order of these remaining
terms is minimal.

1. Introduction

Homotopy methods are powerful tools originating in differential geometry and the cal-
culus of variations for the integration and summation of exact expressions. In one contin-
uous spatial dimension, this amounts to integrating total derivatives of expressions con-
taining unknown functions and their derivatives. Such calculations occur frequently in ap-
plications. For instance, in soliton theory, the form of consecutive conserved densities and
their fluxes are given by functional expressions of unknown functions and their derivatives.
As shown in B], the fluxes may be reconstructed by the indefinite integration of such ex-
pressions. A second application is the solution of an exact differential equation of arbitrary
order [LQ].

The question addressed in this paper is the desigfiwdfygautomated procedur®r the
integration of expressions containing unknown functions and their derivatives, usable by
a computer algebra system (CAS) such as Maple or Mathematica, especially if the input
expressions araot exact. The current versions of both Maple (Release 10) and Mathe-
matica (Release 5.1) are unable to integrate expressions that contain both derivative and
nonderivative terms, even when the vast majority of the terms is exact. For example, sup-
pose one wants to integrate the expression

E =4/ (z)v(x) + v (x)u(z) + u(z),

wherew(z) andv(x) are unspecified functions of the independent variabnd v’ ()
denotes the derivative af with respect tac. Immediately

/ Edz = u(z)v(z) + /u(m)dx
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Symbolic integration and summation

Below we present an algorithm to obtain this answer systematically. The algorithm is es-
pecially suited for expressions containing many terms, not all of which are exact.

In addition to expressions depending on a continuous variabte R, we also con-
sider expressions with a discrete variablec Z. Such expressions also occur frequently
in applications (seeg| 17). All of the above statements remain true, by replacing “inte-
gral” with “sum” and “derivative” with “shift”. To illustrate this, consider the example of
summing the expression

2
B, =upt1 —up +u,.

Immediately

2
D Bu = ungr + ) i,
n n

where}  denotes indefinite summation with respect:to

The current implementations of the symbolic integration and summation algorithms
used by Maple 10 or Mathematica 5.1 do not perform these calculations, in part because
of their refusal to make choices about which terms to integrate (sum) and which terms to
leave unintegrated (unsummed). Indeed, this is a legitimate concern for more complicated
expressions and one may argue about whether or not the answer our algorithm produces
is optimal. Be that as it may, there should be no discussion on the resulting answer being
an improvement over leaving the expressions untouched, which is the response of Maple
10 or Mathematica 5.1. This is demonstrated in examples. An implementation in Maple of
the algorithm presented in this paper is available fr8mnlf should be noted that the ideas
in this paper are easily generalized to the multidimensional casethe inversion of the
divergence operator (or its discrete analog)1]] . We state everything in one dimension
because it is the most important and transparent case.

2. Integrating exact expressions

In this section we are concerned with expressidis, u, u,, uas, ..., un,) Of an
unknown (vector) functions and its derivatives with respect o Here NV is the order of
the highest derivative of any componentwfvith respect tar appearing inE' . For ease
of presentation, we assume thtis free of terms of the forn#(z), i.e., terms that are
independent of the dependent variable. Such expressions are exact in a trivial sense. We
also use the notatioD,. F' to denote the derivative of the expressiBmwith respect tar.

We begin by introducing some mathematical tools from the calculus of variations and
differential geometry, the Euler operators and the homotopy operator. These operators al-
low us to answer the following questions:

e Question 1:How does one check if an expressibris exact,.e., a total derivative,
E = D, F for some functionf'?

e Question 2:If an expressiork is exact, how does one determifie= D, !(E) =
[ Edx?

For clarity, we first introduce the more familiar zeroth-order Euler operator or the vari-
ational derivative, before introducing the higher-order versions. With the Euler operators
in hand, we introduce the homotopy operator and demonstrate how it is used to integrate

2
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exact expressions. Most of the material presented in this section is not new. It may be found
in a more abstract form ir2] 11], e.g, or in a more concrete form i6[ 7], for instance.

2.1. The continuous Euler operators
DEeFINITION 1. The one-dimensiond&uler operator of order zero (variational deriva-
tive), with independent variable and dependent variable = (u((z),...,u*)(z)),

is defined as the operataﬁgzzz) with M components

© _ (0 0
Loty = (L5 s £00 0))

e D) e 9 1)
- <Z(Dm)ka(l),...,2(m)kw> .

k=0 Uy k=0 kx

In particular, the explicit formula for the variational derivative with scalar component
and variable is

© _N~_py 9 _0 0 2 0 3 0

The Euler operator of order zero allows us to answer Question 1 by the following theo-
rem [11].

THEOREM1. A necessary and sufficient condition for an expresgido be exact is that
E;Szw)(E) =0.

Example. Consider

E =uw' +vu' =D, (uv). (3)
Then

LY (E) =v' = Dy (v) =0.

0
Lo

To computeF’ = D *(E) = [ Edxz we need the higher Euler operators.

(E)=u"— D, (u) =0.

DEFINITION 2. The one-dimensionaligher Euler operator of orders with variablez is
given by

i k _; 0

oo
k=i

where 0 WL

i) il(k—d)!
In particular, the explicit formulas for the first four higher Euler operators (with component
u and variabler) are
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0 0 0 0

Luy =1 gy =1 Do+ 10 Diéi;”‘l Diaum;+"" 2
42&):1'85%73 D 5a3m+6 Diaam 10 Di555z+“" 0)
£y =1 gy 1Py +10- Dl 0Dl (6)

Though not explicitly used in what follows, it is interesting to note that the higher-order
analog of Question 1 is answered by the higher Euler operatorsqBe&[= D F' for
someF’ if and only |f£u( )( y=0fork=0,...,m—1.
2.2. The continuous homotopy operator

We now define the homotopy operator, which reduces integration of an expression in-
volving unknown functions to integration of a known function with respect to a single
scalar variable.

DEeFINITION 3. The one-dimensiondlomotopy operator with variablezx is given by

B = [ S 1 2 ©

0]1

with

N-—1
;U( VLU0 B)). )

The integrand (7) involves the one-dimensional higher Euler operators\amlthe num-
ber of components af(z) = (uM(z),...,u*)(z)). The notation;(E)[Au] implies
that in I;(E) one replacest(x) with Au(z), u,(x) with Au,(z), etc.

Remarks:

e This definition differs from that found ing} 11] to avoid singularities as a conse-
guence of the lower limit of integration, as discussediin]d. This is illustrated
below.

e We have not included the part of the homotopy operator that deals with expressions
whose onlyz-dependence is explicit (Sections 1.5 and 5.41if]); as we have as-
sumed that all such expressions are removed ffom

e The homotopy operator defined above is one of many homotopy operators introduced
in [11] and elsewhere. For our purposes here, we simply refer to it as the homotopy
operator.

The homotopy operator allows us to answer Question 2 by the following theorem (Sec-
tion 5.4 in [11], with a more general lower bound used throughout).
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THEOREM2. For an exact functiorF = D, F' one has

Hx, (E) = Flu] — F[Aoul. (8)

Itis important to note that the kernel of the homotopy operator is non-trivial (see Appendix
A). Because of this, different cases have to be considered: expressionssahish at zero

or infinity and expressions which do not. We can exclude mixed cases (containing both
types of limit terms) sincét,, is a linear operator.

e Expressions which vanish at zero or infinity:If limy_, », E[Au] = 0 for A equal
to zero or infinity, then evaluatingt,,(E) gives F[u], up to an integration con-
stant, according to (8). This can be seen by applying the chainlbyl&{\ou] =
E[Xu] = 0, from which F[A\gu] is a constant independent of

e Expressions which do not vanish at zero or infinity:If limy_,, F[\u] = Ep[u] #
0 for both Ay = 0 and Ay = oo, then: (i) Ep[u] is exact (since&[u] is exact) and
(i) Eo[u] is an expression of degree zero (see Appendix A). Therefarpy] is
in the kernel of the homotopy operator (see Appendix A), and must be dealt with
separately. One method of dealing with such terms is the introduction of a parameter,
as demonstrated in the examples below. For an alternative approach].s&led,
non-homotopy methods can be used (dé®, ffor instance).

Example. Returning to (3)
E=w'+vu'.

In this caseu = (u, v) and

lim Ewu, Av] = lim ((Au)(M\) + (M) (M) = (uv’ +ou’) lim A2 = (uv’ +vu')A3.
A— Ao A— Ao A— Ao

Thus we choose = 0. Proceeding without this, we have

Hou(E) = [ (LB + 1(B)Dd) T

with

X:DZ ( uZ(Jr;) )) and I,( ZD’ ( Eff(i)l ))

These formulas give

L(E) = ull) (B) = WOE

— (1)
oL, =uv, [,(F )—vﬁv(gﬂ)( ) =

Thus, (6) gives

1 1
Hr, (E) = / (Nuv + Nuv) % =2uv [ A\ = uv — uv)i.
)\0 )\U

Using A\g = O results in
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F =,
as desired.

Example. Consider

E =v/uP. 9)

Here

Ewu) = XPHDy/ P,
A similar calculation to that given above establishes that= 0 for p > —1, whereas
Ao = oo forp < —1. Forp # —1, (7) gives
I, (E) = u®*),

Therefore,

1
1 1
E)= [ 2\u@tDgy = = e+ _ = (0+1)\(p+1)
H)\n( ) /\ u p+1u p+1u 0

0

Evaluating at\y = co for p < —1 or A\g = 0 for p > —1 gives

wP+D)

Example. Suppose» = —1 in (9) from our previous example, thetiis homogeneous of
degree zero. In this case (7) gives

resulting in

1
Hao (E) :A %dA =In (;()) (11)

0

which is independent af(z). Nevertheless, this is correct since upon inspection one has

Flu] = /de =In(u),
so that

Flu] — Flhou] = In (u) — In (Aou) = In (AZU> —In <A10> :

in agreement with (8) and (11). Thi#§u] cannot be recovered from the above expression.
In order to obtain the desired answer for the gase—1, we can exploit the fact that the
homotopy operator is defined up to a constant of integration. Using (10), we can remove

6
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the singularity ap = —1 by subtracting the constant of integratibfip + 1) (this choice
is unique among integration constants that cause an indefinite foprm-as-1):

/ (r+1) 1
Ydr = lim (2 ——— | =In(u).
U p——1\p+1 p+1

Example.Only if a singularity is present in the obtained solution (depending on a parame-
ter) is it necessary to subtract a suitable integration constant (depending on this parameter)
to obtain the correct result, as in the previous example. Otherwise, a simple substitution of
the desired parameter suffices. This second scenario is illustrated here. Let

)
12 u u/3

B (up )l CopuPmt 2wy
u

which does not vanish at zero or infinity fpr= 2. Proceeding fop # 2 gives

uP _o [ UuP
Hao(E) = i Ao (u,2> .
Evaluating at\; = oo for p < 2 or Ay = 0 for p > 2 gives

uP

- w2’

which is correct. Note that this expression is well definegfer 2. Taking the limitp — 2

gives
2u  2uiu do — u?
v e )=

as desired.

3. Integrating non-exact expressions

If an expressiorF is not exact, we aim to integrate as many total derivatives & pos-
sible, while optimizing the number and type of terms remaining in the integral. We use the
following six-step method, which we refer to i homotopy method with optimization

Step 1. Integrate total derivatives inE. Calculate

F="H,,(E),
where) is equal to zero or infinity. Sinc# is not exactF' # [ Edz.

Step 2. Construct the set of all terms ofF. Let p be the number of terms of =
P e F9, such that no twaF(’s are constant multiples of each other and each

is a constant. Form the s&t= {F(1), F(2) . F(®)} of all terms inF. Several choices

may be possible for the sé&. Preference should be given to the set with the large$b

this end, expressions should be expanded when possible. It should be noted that working

7
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with a smaller sef? will not result in a wrong answer, but merely in a less than optimal
answer.

Step 3. Separate into its derivative part and its non-derivative part. Using R,

p P
/de = Z a FO + / <E - Z aliF(i)> dz. (12)
=1 =1

Note that choosingy; = ¢; for all i gives [ Edz = F + [(E — D,F)dx, which is
obviously true. Doing this is referred to as themotopy method without optimization

Step 4. Construct an ordered list of termsS occurring in E — Y%, a;D,F® . Re-
duce S to ensure no two elements are constant multiples of each other. The list starts
with elements containing the highest derivatives, ending with those containing the lowest
derivatives. Different choices for this ordering are possible, which may result in different
but correct final results.

Step 5. Construct a linear algebraic system forx = (v, ..., @,). Construct a system
of ¢ linear equations such that thieh equation is the coefﬂment of; in>"_, D, F@
equated to the coefficient &f; in £. These equations are linear in the components,of
and the system of equations may be written as

Ca=b, (13)

where the matrixC' is of dimensiong x p and the vectob is of dimensiong. Note that
q > p, sinceS contains at leagi elements obtained by taking a derivative of all elements
of R. Thus, (13) is typically overdetermined.

Step 6. Solve fora = (a, ..., o). Typically, the rank ofC is p, andp of the equations

in (13) can be satisfied. In any case, the goal is to solve as many as possialek(C')
equations of (13) for the componentsf For every equation satisfied, a term disappears
from the integrand of (12). It is preferable to solve the equations in the order they appear in
(13), so as to minimize the order of differentiation of the remaining integrand of (12). This
may be accomplished by Gaussian elimination, using a minimal number of row switching
operations. Once this solution is obtained, (12) provides the final answ¢rfdr:.

Example. Consider

E = 2uu’? + 3u*u/v" + 2u/,
which is easily checked not to be exaﬁfQ E) #0.

Step 1 Applying the homotopy operator witky = 0 we get
3 2,12
F="H,,(F)= v +u?.
Step 2 The abover’ gives,

R = {u2u/2 u2},



Symbolic integration and summation
thusp = 2.

Step 3 Applying the homotopy method without optimization results in

17
/Edz* Sutu? 4+ u +2/(uu’3+3u2 ! ")dx, (14)

which is correct, but not optimal. Instead, using (12) we get

/Edw = ajuu? +agu® +/((2 — 200) uu” + (3 — 200) WPu'u” + (2 — 200) uv') d.

Step 4 Using this expression to construct the lisgives

S = [wPu'v" w® un']

so thatg = 3. Note that we have placed the term with the higher derivative first. The
two terms of differential order 1 were ordered by degree of nonlinearity in their highest
derivative.

Step & The resulting; x p = 3 x 2 linear system is

Step 6 As announced, this system is overdetermined. Performing Gaussian elimination
with a minimal number of row switching operations gives the equivalent system

Solving the first two of these equations resultsiin= 3/2 anda, = 1, at which point no
more equations can be solved. Therefore, our final answer is

/Ed:): = u2u’2 + u? /uu’?’dac7

which is to be preferred over (14).

Example. Let

B ginu — 6vv’ cosu + 2u'u” cosu + 8'v" + v + uv® + e%u’".

E =3uv?sinu—u
Here we have two unknown functions and known functions of these. Using the homotopy

9
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method without optimization we obtain

U/ U/2 u uu/2
/de:—i% <> -3 +u cosu+e“u/2+3 + e"u" — 3v% cosu
w u
1,11 /Iy 3 13 ,u 1,1 Ju
+4v'2+/(v+uv3+6uz —6(3) —Gu 26 —|—6uu26
U u m U
30 s e 4 Ge (“,)376 WY )dm
U m u?

not a desirable result. In this case, the homotopy method with optimization gives
1 1

/Edm =u'? cosu — Ze“u’2 + e“u" — 3v% cosu + 42}”2—1—/(@ +uw® + = 5¢ e ’3) dz,

which is a significant improvement over the non-optimized version.

Remarks:

e In essence, the homotopy operator is used as a guessing mechanism to generate a
list of possible integrated terms, so that the size and the order of differentiation of
the integrand in (12) can be reduced. However this does not always work as desired.
Consider the example

E=uu.

Then £ (E) = 2uwu” # 0, so thatE is not exact. Nextﬁ&l)(E) = —2«' and

£ (E) = u. The action of all remaining higher Euler operators results in zero.
Then

ZDf ( L (E )) —u(=2u) + (W) =0 = Hy(E)=0.

ThusE = uu” is in the kernel of the homotopy operator and this calculation gives
no progress toward achieving

/Eda: =uu — /u’zdﬂc, (15)

which has a remaining integrand of lower differential order. This is a consequence
of the cancellation occurring in (7). This problem may be avoided by introducing

Jii(B) = Dy (u) £55) (E)), so thatl;(E) = Y15 Jji(E). Now use (6)
with J;;(E) instead of;(E) for ¢ € [0, N — 1]. This results inN_homotopy-like
constructions from Which a sét may be constructed which will not suffer from
cancellations internal td; (E). For the above examplg (E) = —2uu’ = —J5(E).

The resultingR = {uw’}. Using thisR, our procedure gives the desired result.

¢ It should be noted that (12) is an identity falf choices of4, . . ., «;,. Even without
using the previous remark, the obtained answer,

/Edw = /uu”dm,

10



Symbolic integration and summation

is correct, even though (15) may be more desirable. In summary, our procedure
always gives a correct result, even though other guessing mechanisms may prove
equally or more successful.

4. Application: modulo derivatives

In many applications4, 5, 11, terms are considered equivalent if they are the same up
to a total derivative. Applying the homotopy method with optimization may considerably
simplify such computations.

Example. Consider

Ey = 2uu’ + 3uu/y”,

1,1 1,1

E> = 3u'v?sinu — 3 sinu — 600’ cosu + 2u'u” cosu + 8v'v" + v + wvd.

Applying the homotopy method with optimization and only keeping terms which are left
inside the resulting integral gives

3
)

I
E1 ~ —UuU

and

FEy ~v+ uvg,

whereE ~ E meansE — E is a total derivative.

Thus, the homotopy method with optimization allows one to efficiently reduce an ex-
pression to one of equal or lower differential order, equivalent to the original one up to a
total derivative.

5. Summing exact expressions

We now turn our attention to the discrete case, where we are concerned with expressions
of the formE,, = E(n,u,, un41,-. ., U, n) Of @an unknown (vector) functiom,, and
a finite number of its positive shifts, wher¥€ is the order of the highest shift of any
component ok, appearing ink,,. As in the continuous case, we assume fiatontains
no termsE(n) that are independent of the dependent variable. We will make use of the
shift operator D, DFE,, = F, 1. The identity operator is denoted bylF,, = E,,, and
A =D —1, is theforward difference operator, AE,, = (D —-1)E,, = E,,41 — E,,.

We begin by introducing the discrete analogs of the previously stated mathematical
tools from the calculus of variations and differential geometry, the discrete Euler operators
and the discrete homotopy operator. These operators will allow us to answer the following
questions:

e Question 1:How does one check if an expressiby, is exact, i.e., a total difference,
E, = AF, = F, 1, — F, for some function¥,,?

e Question 2:If an expressiorE, is exact, how does one determifg,, = ) E,?

We first introduce the zeroth-order discrete Euler operator or the discrete variational
derivative, before proceeding to introduce the higher-order versions. With the discrete Eu-
ler operators in hand, we introduce the discrete homotopy operator and demonstrate how it
is used to sum exact expressions. Most of the material presented in this section is not new.

11
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It may be found in a more abstract form i8], or in a more concrete form ir6[ 7], for
instance.

5.1. The discrete Euler operators
DEeFINITION 4. The one-dimensionaliscrete Euler operator of order zero (discrete
variational derivative), with the discrete independent variabland dependent variable

u, = (uﬁf), cee, uﬁLM)), is defined as the operatm]fgfi with M components
) ) = 9 = 9
0 0 0 — _
E;LZL - (‘CuELl)”EELS?I)):(ZD kaT77ZD k@(]\j)) (16a)
k=0 Uyt k=0 Up+k

0 (& d N
=[—= DF),. .., —— D% ]].(16b)
o () (20))

Note the similarity of (16a) to the continuous Euler operator of order zero (1). In what
follows, we use the second formulation (16b) because of its computational convenience.

The discrete variational derivative allows us to answer Question 1 by the following
theorem §].

THEOREM 3. A necessary and sufficient condition for an expresdipn with positive
shifts, to be exact is thal({zi(En) = 0.

Example. Consider
2 2 5 2 5 2
En = tny3vy 10 +up — v — Ung1vy + 0500 — Up gy 17)

Note thatE,, = AF,, F,, = —u2 + u, 102 + un+gvi+1 +v2. Indeed,

0
0 _ 2 5 2 2 2
ESJ”) (En) - aT(un+3vn+2 + Un41 = Unt1 + Un4+2Vpy1 — Un—1Vp_2
n
2 5 2
tUp 53— Up3— ’LLn,Q’Un73)
=0
and
E(O)(E)—i( 2 + 5 2 + 2 2 + 2
VU, n) — v Un+3VUp 42 Upt1 = Upgq Un+2VUp 1 — UnUp_q Uy _o
n
5 2
L un—lvn—Q)
=0.

To computeF,, 11 = ). E,, we need the discrete higher Euler operators.

DEFINITION 5. The one-dimensionaliscrete higher Euler operator of order & with
discrete independent variableis given by

(k) L /m 0 0 L (m
k) _ —-m _ —m
£ _mz;k(k)D S - a%mZ:k(k)D . (18)

12



Symbolic integration and summation

In particular, the first four higher Euler operators for compongnéare

5593:%n(l-1+1.D—1+1-D—2+1~D—3+---), (19a)
ngj:%(1.D*I+2-D*2+3~D*3+4-D*4+-~), (19b)
5533=a%(1-D*2+3.D*3+6-Df4+10-D*"’+-~-)’ (19¢)
llq(ﬁ?:%(1~D‘3+4-D_4—|—10-D_5+20'D_6+"')- (19d)

As in the continuous case, the higher-order analog of Question 1 is answered by the discrete
higher Euler operatordy,, = A™F;, for someF,, if and only if Lgf) (E,) =0fork =
0,...,m — 1 (the proof is analogous to the continuous versig fising E%’;’i(AEn) =

(k—1)
Ly, (En)).

5.2. The discrete homotopy operator

Next, we define the discrete homotopy operator, which reduces summation of an ex-
pression involving unknown functions to integration of a known function with respect to a
single scalar variable.

DEFINITION 6. The one-dimensionaliscrete homotopy operatorwith discrete indepen-
dent variablen is

- el A
Fou(B) = [ 1B 5 (20)
0 j=1
with
N-1 )
(B = Y A (uf) £8P () - (21)
i=0 "

The integrand (21) involves the one-dimensional higher Euler operatorsidnid the
number of components of, = (uﬁf), e u%M)) . The notation/; (E,,) [Au,,] implies that
in I;(E,) one replaces,, with Aw,,, u,+1 With Adu,, 1, etc.

The discrete homotopy operator allows us to answer Question 2 by the following theo-

rem [8].

THEOREM4. For an exact functiorE,, = AF,,, one has
Fing (Bn) = Fyltn] — Fy[Aow,]. 22)

As in the continuous case, the kernel of the discrete homotopy operator is non-trivial (see
Appendix Appendix A). Thus, we consider two cases: expressions whitish at zero or
infinity and expressions which do not. Again, we can exclude mixed cases/jpds a

linear operator.

e Expressions which vanish at zero or infinity: If lim_.x, En [Au,] = 0 for Ag
equal to zero or infinity, then evaluatirig,, (F,) gives F,,[u,], up to a summa-
tion constant, according to (22). This can be seen by noting Afai[\ou,] =

13
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E,[Moun] =0 = Fhpr1[houn] = Fr[Aouns], thusF,[A\ou,] is a constant indepen-
dent ofn.

e Expressions which do not vanish at zero or infinity:If limy_,, F[\u,] # 0 for
both\y = 0 and\y = oo, then as in the continuous case, the limiting value is in the
kernel of the discrete homotopy operator (see Appendix A), and must be dealt with
separately. One method of dealing with such terms is the introduction of a parameter,
as demonstrated in the examples below. A modified version of the homotopy operator
may be used as well, as discussed in the remark at the end of the next section. Also,
non-homotopy methods can be used (see Appendix B, for example).

Example. Returning to (17),
2 2 5 2 5 2
E, = Un+3Vn42 T U, = Uy~ Ung1 Uy + Up41 = Upy1-

In this caseu,, = (u,, v,) and

)\lin}} E, My, dvy,] = /\ling ()\3u71+3v721+2 + A2 — N2 — Nuy, 02
A0 A0
5,5 12,2
+>‘ anrl)‘ unJrl)

2 2 2 3,5 2 3,5
= /\0 ()‘Oun+3vn+2 +ug, — )‘Ovn - )‘Oun-i-lvn + )‘Ovn+1

_“i+1)~
Thus we choosg, = 0. Proceeding without this, we have

1
Fiag (En) = / (L, (F) ] + Lo, (F) ) 2

77
with
L., (E.) = i A (un£EH(E))  and 1, (Ey) = i A (0 LGV (B))
i=0 i=0

These formulas give

L, (Bn) = un £LO(E,) + A (uncg%}(En)) +A? (un[,(?’)(En))

Un

:un

(D™'+2D72+3D7?%) (E,) + A @n aa

Un

7430 5)

0
A? (u,—D73(E,
* (U Ouy, ( ))
= —2u}, + Un410) + Un+27)721+1a
and

L (En) = 0a L8 () + A (0,2 (En))

_ 0 -1 -2 0 o

5 2 2
= 50, + 2Uny1V, + 2Uni2V; -

14



Symbolic integration and summation

Thus, (20) gives

Fou () = [ (T (B, + 1 (B) D)) 5

1
/ (—2/\ui + 302Uy, 102 + 3)\2un+gvi+1 + 5/\411;:’1) dX
A

0
2 2 2 5 2,2 3,2 2
= —Up + Up41V, + Un+2Vn+41 + v, + )‘Oun - )‘OununJrlvn

3,2 2 52,5
7)‘Ounun+2vn+1 - )‘E))unv;;
Evaluating at\o = 0 results in
2 2 2 5
F”L = —u, + Un+1Uy, + Un+2Vp 41 =+ Ups
as desired.

Example. Consider
L, = u'rL+2u2:l+1 - un—i—lufb- (23)
Here we have

E,[Mu,) = A(P+1) (un+2uﬁ+1 — u"+1u£) .

A similar calculation to that given above establishes that= 0 for p > —1, whereas
Ao = oo forp < —1. Forp # —1, (21) gives

Iy, (En) = (p+ 1upq1ub,.

Therefore,

1
Hay (En) = / AP(p+ Dupprul dX = upprub — )\((Jpﬂ)unﬂuﬁ.
A

0

Evaluating at\g = co forp < —1 0or \g = 0 for p > —1 gives
ZE” = un+2u£+17 p 7é -1 (24)

Example. Supposer = —1 in (23) from our previous example, thdf), is homogeneous
of degree zero. In this case (21) gives

[u(En) = 0,
resulting in
1
. 1
HAO(E,L):/ 0-Lan—o. (25)
)\0 )\

This is correct: upon inspection one has

Un+2
Fn+1 - E En - 5
n un+1

15
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giving
Unt1  A0Un+1
Fn n] — Fn A n] — - = 07
1] = Fulgu,] = 2L — St

in agreement with (22) and (25). Howevét, [u,,] cannot be recovered from the above
expression.

In order to obtain the desired answer for= —1, we proceed as we did in the contin-
uous case. Returning to our previous example, making note of the fact that there are no

singularities with respect to the parametein (24), we make the substitution = —1
giving
Un+2
F,o1=)» E,= ,
as desired.

6. Summing non-exact expressions

If an expressiort,, is not exact, we aim to sum as many differenceg&’jnas possible,
while optimizing the number and type of terms remaining in the sum. We use the following
six-step method, which we refer to te discrete homotopy method with optimization

Step 1. Sum total differences in%,,. Calculate
Fn - 7:()\0 (En)a
where) is equal to zero or infinity. Sinc&,, is not exactF,, 1 # >, E,.

Step 2. Construct the set of all terms ofF,,. Let p be the number of terms aof,, =
- ciF,(f), such that no twd«“,(f)'s are constant multiples of each other and eadk a
constant. Form the sét = {F,El), F7(,,2), . ,FT(LP)} of all terms inF,,. Several choices may
be possible for the sdt. Preference should be given to the set with the large$o this
end, expressions should be expanded when possible. It should be noted that working with

a smaller seR will not result in a wrong answer, but merely in a less than optimal answer.

Step 3. Separately,, into its difference part and its non-difference part. Using R,

p
En=>Y o FY + E, — p a;AF | . (26)
D En=) aiF,
n =1 n =1

Note that choosingy; = ¢; for all i gives) | E,, = Fyy1 + >, (B — (Fag1 — Fr)),
which is obviously true. Doing this is referred to as thecrete homotopy method without
optimization

Step 4. Construct an ordered list of termsS occurringin £, —>°%_, aiAFff). Reduce

S to ensure no two elements are constant multiples of each other. The list starts with ele-
ments which contain the highest degree of non-locality (the difference between the highest
shift and the lowest shift). Different choices for this ordering are possible, which may result
in different but correct final results.

Step 5. Construct a linear algebraic system forx = (v, ..., @,). Construct a system

of ¢ linear equations such that thieh equation is the coefficient ¢f; in >°_, a; AR

16
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equated to the coefficient &f; in £,,. These equations are linear in the components,of
and the system of equations may be written as
Ca=0b, 27)

where the matrixC' is of dimensiong x p and the vectob is of dimensiorg. Note that
q > p, sinceS contains at leagt elements obtained by applyirig to all elements ofr.
Thus, (27) is typically overdetermined.

Step 6. Solve fora = (a4, ..., o). Typically, the rank ofC is p, andp of the equations

in (27) can be satisfied. In any case, the goal is to solve as many as possialek(C)
equations of (27) for the componentsf For every equation satisfied, a term disappears
from the summand of (26). It is preferable to solve the equations in the order they appear
in (27), so as to minimize the degree of non-locality of the remaining summand of (26).
Once this solution is obtained, (26) provides the final answey IQre,, .

Example. Consider

E, = 2u,2L+3un+2 — ugH_lun + Upo, (28)
which is easily checked not to be exacﬁﬁf #0.
Step 1 Applying the discrete homotopy operator with = 0 we get

~ 2
H)\o (En) == guiun—l + 2ui+1un + 2“%.‘.2“714—1 + Un+1 + Up.
Step 2 The above gives

2 2 2
R = {un+1um Upq2Un+1, UpUn—1, Unt1, un}»

thusp = 5.

Step 3 Applying the discrete homotopy method without optimization results in

2
2 2 2
§ E, = §U7L+1un + 2un+2un+1 + 2un+3un+2 + Unt2 + Unt1
n

1 2
+ Z (3ui+lun + gungunfl + un> )

which is correct, but not optimal. Instead, using (26) we get

(29)

§ 2 2 2
En = 01Uy 4 oUn1 + QoUp, 4 3UR4-2 + Q3Uy 4 1Un + Q4Un 42 + As5Un 41

n

Jrz ((2 — az)u%%unu + (g — al)ui_ﬂunﬂ + (1 — ag)upto + asuy,

n
+(_1 + o — O‘S)Ui,.l,-lun + 053Uiun—1 + —|—(O[4 - a5)un+1) .

Step 4 Using this expression to construct the lisgives

2 2 2 2
S = [un+3un+27un+2un+17unun717un+1un7un+27un+17un] )

17
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so thatg = 7. Note that in this case the first four terms have the same degree of non-
locality, 1, while the last three terms have degree of non-locality 0. Terms with the same
degree of non-locality have been ordered by the absolute value of their lowest shift, from
highest to lowest (with negative shifts before positive shifts).

Step 5 The resulting; x p = 7 x 5 linear system is

01 00 0 2
11 00 0 o 0
00 10 0 s 0
10 -10 0 as | =1 1
00 01 0 o 1
00 01 -1 s 0
00 00 1 0

Step 6 As announced, this system is overdetermined. Performing Gaussian elimination
with a minimal number of row switching operations gives the equivalent system

100 00 2
01 0 00O oy 2
0 01 00O o 0
0 0010 az | = 1
0 0 0 01 oy 1
0 00 0O as -1
0 00 0O -1

Solving the first five of these equations resultg&in= s = 2, a3 = 0, anday = a5 =1
at which point no more equations can be solved. Therefore, our final answer is

2 2 2
§ E, = 2un+2un+3 + 2un+1un+2 + Upt2 + Unt1 + § (un+1un + un) )
n n

which is to be preferred over (29).
Example. Let
By =Tty 3040+ Uy 100 — €00 11— Up oUn g + €00y — BUD L pUn
Here we have two unknown functions and a known function of these. Using the discrete

homotopy method without optimization gives

_ .9 3 9 .3 9 .3 Uni1,5 2
E Ep =Tuy 30, 0+ 9/2u, v, +6uy ov;, 1 + € oy o —4/3uy, v,

n

—3U2  yUpq1 + Z (— 2/3ui+1vn + 3/2u2+1v§ +9/2udv3 |
n

—4/3 uivn_l).
In this case, the discrete homotopy method with optimization gives

18
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9 .3 9 .3 15 2
E Ep =Tty 3040+ 6y ov g + € ug o — 3ug oUnp
n

+ Z (6 “2+1U2 - 2Ui+1vn) )
n

which is an improvement over the non-optimized version.

Remark: The homotopy method with optimization also provides a way of summing exact
expressions which do not vanish as the homotopy parametpproaches zero or infinity.
As in the continuous case, we introduce
Ji(B) = A (u) £8 0 (B, )
so thatl;(E,) = S.N.'J;i(E,). Now use (20) withJ;;(E,) instead ofI;(E,) for
i € [0, N — 1]. This results inN homotopy-like constructions from which a sRtmay
be constructed which will not suffer from cancellations internal fa¥,,). For example,
returning to (23) withp = —1 we have

En _ Un+42 _ Un+1 )

Un+1 Un,

This was shown to be in the kernel of the homotopy operator, thus, we were unable to
recoverk,,. Instead, using the above givés(E,,) = —unt1/tn +Upn/tn—1 = —J2(Ey).

This results inR = {uu—", M}. Using thisR, our procedure gives the desired result.

n—1 Un,

7. Application: modulo differences

In many applicationsd, 12, terms are considered equivalent if they are identical up to
differences. Applying the homotopy method with optimization may considerably simplify
such computations.

Example. Consider

1 2 2 7
Ey(L ) =n Up41 + 3NUp+1 + 2Upt1 — N Uy, — U, + Uy,
2 2 2
E7(l ) — —UpUn+1Vn — Uy + Un41Un+2Un+1 + Uppg + Unt3Unt2 — Un41Up + Unt

11
+v,, — UpUp1Vn45-

Applying the homotopy method with optimization and retaining the remaining summand
gives
E,(ll) ~ UZN
and
E7(12) ~ 'Urlll + uy — UnUn+1Un+5,
whereE,, ~ E,, meansE,, — E,, is a difference.
Thus, the homotopy method with optimization allows one to efficiently reduce an ex-

pression to a simpler (difference free) expression, equivalent to the original one up to a
difference.

19



Symbolic integration and summation

Appendix A. The kernel of the homotopy operator

Here we discuss the kernel of the continuous and discrete homotopy operators.

Definition. An expressior[u] is equivalent to a term of degree zerdf

E[\u] = E[u] + C,
whereC', is a constant independent @f, u,, us., . ..). F is ofdegree zeraf C, = 0.

Theorem. An exact expressiof = D, F' is in the kernel of the homotopy operator if and
only if £ is of degree zero.

Remark: The kernel is defined only up to a constant of integration. All constants of inte-
gration are considered equivalent to O.

Lemma. F is of degree zero if and only If is equivalent to a term of degree zero.

Proof of the lemma. First, supposé is equivalent to a term of degree zero. Then

E[Mu] =D, (F[Mu]) =D, (Flu] + C) = D, F|u] = E[ul].
ThereforeF is of degree zero.
Now, suppose¥ is of degree zero. Then
Thus,

0 = Dy (E[Aul) = Dy (D, FAu]) = D, (DyF[Au)

This implies thatD, F[\u] is some constantl3()), independent of:. Integrating with
respect to\ gives

1

/1 DaFuld) = [ BOYIA = Flu] — Flhgu] = / B(\)dA.

0 Ao Ao
This implies,
1
Flou] = Flu] - / B(\)dA,
Ao
Therefore, since, is arbitrary,F" is equivalent to a term of degree zero. |

Proof of the theorem. Now, supposd is in the kernel of the homotopy operator. Then

H/\o (E) = F[u] - F[)\()’LL] = A,
whereA is some constant. This implies that
F[Au] = Flu] — A.
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Thus, F' is equivalent to a term of degree zero, which in turn imples of degree zero
by the lemma.

Now, supposé is of degree zero. This implies thatis equivalent to a term of degree
zero by the lemma. Thus,

F[\u] = Flu] + C,.

Therefore,

H)\O (E) = F[u] — F[)\o’u,] = _C)\m
i.e., F is in the kernel of the homotopy operator. |
We have the analogous result for the discrete case.

Theorem. An exact expressiofy,, = AF,, is in the kernel of the discrete homotopy oper-
ator if and only if £, is of degree zero.

The proof closely resembles that of the continuous case, and it is omitted here.

Appendix B. A non-homotopy summation algorithm

Alternatively, we can use the following non-homotopy method to sum exact and non-
exact expressions in one dimension. This method is devoid of the problem with the homo-
topy method when summing terms that do not vanish in the limk @ses to 0 or infinity.
However, it is not easily generalized to the multi-dimensional setting unlike the homotopy
method (see remark below).

Our goal is to reduce the summand tstandard formwhich we define as an expression
with every term having a lowest shift of zero. This will automatically eliminate differences
from the summand since the standard form of a differefte= AF,, = F,1 — F,
(assuming, without loss of generality, that the lowest shiffins 0), isF,, — F,, = 0. To
accomplish this, we define tmeinimum shift operatorZ, such thatZ (E,,) = D~™(E,,),
wherem is the minimum shift occurring it,,. In other words,Z returns an expression
which has a minimum shift of zero. Applying to each term in the summand reduces it to
standard form. Since we wish to appltyto terms inside a sum, we need tiedescoping
summandrulg) ", E, = E,+E, 1+ +En_ny1+Y., Z(Ey). Thisrule allows one
to compensate for the action gfon the summand. FaE,, = AF,, this rule reduces to
the more familiar identity > AF, =3 Foi1—> , Fo=Fo+> , Fn—>, Fn=
F77,+1 .

Using the above remarks, the algorithm is as follows. . be the number of terms of
E,=>", E,(f), such that no tchT(f)'s are constant multiples of each other (see Step 2
of the discrete homotopy method). Then one has

where
=1
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is in standard form, and is therefore difference free. Heraés found by use of the tele-
scoping summand rule:

P
-y
i=1

whereTi\") = EY) + EY) | ...+ EY) .| andm; is the lowest shift occurring if,”.
For example, consider

En _ Up+2 . un+1

2
+ 2U] | gUpto — Uy Un + Ungo,
Un+1 Un

a combination of our previous examples. We have

Z (un+2/un+l) =D (un+2/un+1) = un-i-l/unv
Z (~Ung1/tn) = D° (—Ung1/Un) = —Uni1/Un,
Z ( ,L+3un+2) =D? (2u%+3un+2) = 2u%+1un,
Z( n+1u”) D’ ( n+1un) = —uiJrlun,
Z (Un+2) (Un+2) = Un.
Thus,

Un41 Un+1 2 2
Gp=—-— +2UD Uy — U Uy F Upy = U Uy + U,

U, U,
which is indeed difference free. Using the telescoping summand rule each time we apply
Z to aterm inside the sum gives

Un+2
T, = -+

2 2
" + 2y 3Uny2 + 2Up  oUnt1 + Unt2 + Uny1
n+1

Therefore, our final result is

un+2
Z E, = + 2un+3un+2 + 2un+zun+1 + Unt2 + Unt1 + Z n+1un + un) »

u
n+1 n

in agreement with our results using homotopy methods.

Remark: This and other non-homotopy methods (s&€] for instance) rely on the fact

that summation (integration) and the inversion of the discrete (continuous) divergence op-
erator are equivalent in one-dimension. In the multi-dimensional setting, however, this
equivalence no longer holdse., multiple summation (integration) is not the higher di-
mensional analog of the inversion of the discrete (continuous) divergence operator. As
explicitly shown in [7, 11], the homotopy operator reduces this inversion in any dimen-
sion to a single integration. We see no clear extension of the algorithm presented in this
appendix to higher dimensions, where as homotopy methods may still be used.
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