Stability and instability of nonlinear waves:

Introduction
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1 Nonlinear waves

e particular solutions of PDEs:
— well-defined spatial and temporal structure —

e observed in nature, experiments, numerical simulations

e role in the dynamics of PDEs

o
=

HP



1.1 Examples

One-dimensional waves

e Standing and travelling waves

u(x —ct) with ¢=0 or ¢#0

periodic wave pulse/solitary wave front/kink

— found as solutions of an ODFE with “time” x — ct

e Modulated waves

1.2 Questions

e Existence: no time dependence

— solve a steady PDE

— 1d waves: solve an ODE
e Stability: add time
— solve an initial value problem

- initial data wu.(z) + ev(z)
? what happens as t — oo ?
e Interactions: nitial value problem

- initial data: superposition of two/several nonlinear waves

? what happens ?

e Role in the dynamics of the PDE



1.3 PDEs
e Dissipative problems: e.g. reaction diffusion systems
U =DAU+ F(U)

U(z,t) e RY;  t>0time; z=(x1,...,24) € R? space
D diffusion matrix: D = diag (dy,...,dy) >0
F(U) kinetics (smooth map)

e Dispersive problems: e.g. the Korteweg-de Vries equation

Up = Uggy + Uz, u(z,t) €ER, x €R, t€R

o Abstract initial value problem: U, = F(U,0,)
U(-,t) € space of functions defined on R (L*(R), CP(R),...)

2 Stability problems

PDE
U, = F(U,0,)

Travelling wave U, (x — ct): set y =z — ct

—cd,U, = F(U,.,0,)

Moving reference frame: y = x — ct

U, = cd,U + F(U,0,)

We regard U, (y) as an equilibrium of this infinite-dimensional dynamical system (in a space
X of functions depending upon y: L*(R), CP(R),...)

Question: stability of the equilibrium U, ?

2.1 Finite dimensions

ODE
U,=FU), Ut)€eR", F:R"—R"

—  Equilibrium U, with F(U,) =0



Stability
e Lyapunov stability

“if U(0) = Uy is close to Uy,
then U(t) stays close to U, for allt >0 7

Definition. An equilibrium U, is stable (in the sense of Lyapunov) if
Ve>0 er.6>0: VU =U(0), [|[U —U| <6 = ||U(t) —U,| <e.

An equilibrium U, is unstable if it is not stable.

o Asymptotic stability

“if U(0) = Uy is close to U,
then U(t) — Uy ast — o0 7

Definition. An equilibrium U, is asymptotically stable if it is stable and

ex.0>0: YUy =U(0), |[U—U. <d = ||U(t)—-U.|| =0, t = +o0.

Linear systems
U, = AU, A is an n X n matrix

Stability of U, = 0 is determined by the eigenvalues of A:

spec(A) = {A € C/ (A — A) not invertible}

l

asymptotically unstable stable / unstable
stable (mq(X) =mg(N), V X € iR/otherwise)

Nonlinear systems
U, =F(U), F :R" — R" smooth

Equilibrium U, with F(U,) = 0.

e Linearized system: V, = F'(U,)V



Eigenvalues of F'(U.,):

asymptotically unstable
stable

2.2 Notions of stability

PDE:
U =F({U), U(t)e X, Banach space

e Equilibrium U, with F(U,) =0
e Linearized problem: V, = F'(U,)V,V(t) € X

F'(U,) (closed) linear operator in the space X

e Nonlinear stability — as before
IUQO) Ui <6 = [[U@) —Us|| <€ t=0
— asymptotic nonlinear stability

IUQO) Ul <6 = |U({#) - Ul =0

e Linear stability: stability of the equilibrium V, = 0 of the linearized equation V; = F'(U,)V
VO <é = V@) <e, 20
— asymptotic linear stability

VO <é = [V =0

e Spectral stability: spectrum of the linear operator F'(U,)
spec (F'(U,)) c{A € C /ReX <0}

— neutral stability: spec (F'(U,)) C iR



Finite dimensions

e spectral stability is necessary for linear and nonlinear stability

e spectral stability =& linear stability (A €1R, ma(A) # mg(A))
e linear stability =% qonlinear stability (u' = eu?)
Remark.

e nonlinear stability: many different methods
e linear stability: semi-group theory

e spectral stability: spectral theory for linear differential operators, dynamical systems

3 Stability of pulses and fronts

Spectral stability of pulses and fronts
e Study of the spectrum of the linearization L := F'(U,)

e Closed linear operator L : D(L) C X — X, X Banach space

— resolvent set: p(L) = {A € C/ A — L invertible}
— spectrum: spec (L) = C\ p(L)

Allen-Cahn equation

ut:um—i—u—ug

e Steady waves — ODE: u,, = —u + u?

— phase portrait — 2 heteroclinic orbits

— translation invariance — 2 one-parameter families of fronts

T+ o
u+(r + ) = tanh , a€R
+{@+ o) <\/§)



e Linearization about the front w4
_ 2
Vp = Ugg + U — 3UL0V

Linear operator

x
L0 = vy — 20 + 3sech? (—) v
V2

Closed linear operator in L*(R) with domain H*(R).

e Spectrum of £

— (=00, —2] «— essential spectrum
— {—32,0} simple eigenvalues «— point spectrum

— 0 s an etgenvalue due to translational invariance
E(c’“)xui) =0 '

I nonlinear stability — orbital stability

Korteweg-de Vries equation
Up = Ugpr + UL,

e Travelling waves u(z + ct): set y = x + ct

) _ _ 3.2
—> ODE: cuy = uyyy + 3uuy, = uyy = cu — Su”+const.

— phase portrait — homoclinic orbit to zero, ¢ > 0

— translation tnvariance

— one-parameter family of solitary waves

ue(y + ) = csech® (M) , a€R

2

e Linearization about the solitary wave u,
Lo = vy, — cvy + 3 (ucv),

Closed linear operator in L*(R) with domain H?(R).



e Spectrum of £

— 0 s an eigenvalue due to translational invariance
— L(0yu.) =0 !

— 0 is a double eigenvalue due to Galilean invariance

(c—ctoa,u—utyg)

L(0cuc) = Oyuc !

Remark.

Allen-Cahn equation KdV equation

J
T

~ reaction-diffusion systems

~ dissipative problems ~ Hamiltonian systems

. ~ dispersive problems
— sectorial operator

— holomorphic semi-group — C° — semi-group

3.1 FEssential and point spectra

Definitions. Let X be a Banach space and let L : D(L) C X — X be a closed linear operator.

e [ is Fredholm if it has closed range R(L) and
dimker(L) < 400, codim R(L) < +o0.
Fredholm index: ind(L) = dim ker(L) — codim R(L)
e Spectrum: spec(L) ={A € C /X — L is not invertible}
e Essential spectrum:

speCes(L) ={A € C / A= L is not Fredholm with index zero}

e Point spectrum: spec, (L) = spec(L) \ spec.. (L)

spec, (L) = {A € C/ A — L is Fredholm with index zero and not invertible}



Definitions. A nonlinear wave wu, is called
e spectrally stable if
spec(Ly) C{A € C/ ReX <0}
e essentially spectrally stable if
SpeCes(Lx) C {A € C/ Re A <0}
Essential spectra

Theorem. [Kato (1980), Chapter IV, Theorem 5.35]

Assume that L is a relatively compact perturbation! of a closed operator Ly : D(Lg) C
X — X. Then

o \— L is Fredholm <= M\ — Lo is Fredholm and

ind(\ — L) = ind(\ — Lo).
i Specess(L) = SpeCeSS(LO)

Reaction-diffusion systems [Sandstede & Scheel, 20XX; Fiedler & Scheel, 2003]

Ui = DU, + F(U), Uz, t) € RY
Hypothesis. Ezxistence of a (smooth) travelling wave

Uz, t) = U.(x — ct), ceR
satisfying

Udy) = Uy, asy— £o0
(U, is either a pulse U_ = Uy, or a front U_ # U, ).

e Set y = x — ct and find the linearized problem
Vi = DV, + ¢V, + F'(U.)V
Spectral problem
Find the essential spectrum of the linear operator?

L.V =DV, +cV,+ F'(U,)V, U.y) — Us, asy — too
e L, is a closed linear operator
in X := L*(R;RY) with domain X? := H?(R;RY)
'Relatively compact perturbation if

e D(Ly) C D(L)

e for any (u,) C D(Lg) with (u,) and (Lou,) bounded = (Lu,,) contains a convergent subsequence

2Same results when replacing L?(R;RY) by LP(R;RY), 1 < p < oo, or Cg’

unif
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e Use the result in the theorem and the asymptotic operator
LoV = DVy, +cV, + F'(Ux)V
in which

U, ify >0

U°°<y):{ U_ify <0

Perturbation result

Theorem.

e L, is a relatively compact perturbation of L.

o \— L, is Fredholm <= \— L is Fredholm and
ind(A — L,) = ind(A — L).
® SPeCegs(Ls) = sPeCes(Loo)
Ezamples

e Allen-Cahn equation: L, v = v, — 20
— operator with constant coefficients: Fourier analysis

ess(‘c*) = {_kQ —2 / ke R} = (_007 _2]

— spec

o Korteweg-de Vries equation: Loov = vy, — cv,
— operator with constant coefficients: Fourier analysis

— specy(Ly) = {—ik® — cik | k € R} = iR

Essential spectra for pulses

Pulse U.(y) = Uy, as y — 00 (U =U_ =U,)

e asymptotic operator: constant coefficients

LoV = DV, + cV, + F'(Uy)V

e Fourier transform

LoV = —k2DV +ikeV + F'(U)V

o \— L. invertible <= det (A + k2D — ikc — F'(Uy)) £ 0,V k € R

SPeCess(L4) = {N € C / det (A + k*D — ikc — F'(Uy)) = 0, for some k € R}

10



Essential spectra for fronts

Front U.(y) — Uy, asy — oo (U- # Uy)

e Asymptotic operator:
LoV = DVy, +cV, + F'(Ux)V

in which
Upify>0

U°°<y):{ U_ify <0

e Spectral problem: AV =L,V AeC

AV = DV, + ¢V, + F'(Uy)V, AeC

e Regard the spectral problem as an ODE! [Henry, 1981; Palmer, 1988; .. ]

Dynamical system
ANV =L, V=DV, +cV,+ F(Us)V, XeC
e First order ODE

Vv, = W
W, = D' (=cW — F'(Uy)V + V)

e First order differential operator

o (3) = (4) o (3)-

M(X) is a closed linear operator in H*(R;RY) x L2(R; RY) with
domain H?(R;RY) x H'(R; RY)

Equivalence
LoV =DV, +cVy+ F(Uy)V, Lo:H(R;RY) — L*(R;RY)

M) = d% — Ay, A, Ay, A) ( 1‘4// ) - ( D! (—cW — ?V’(UOO)V+AV) )

M) H2(R;RY) x HY(R;RY) — H'(R;RY) x L*(R;RY)

11



Proposition.

A — Lo is Fredholm (resp. invertible) <= M(\) is Fredholm (resp. invertible)

ind(\ — Loo) = ind(M(N))

Fredholm index of M()\)

MO = = a0 AN = (st ot )
o Write
AN, y>0 B 0 id
Al A) = { Ai(A), y <0’ Ax(N) = ( D™ (=F'(Uy)+)\) —cD™!

— Ai(A) are 2N x 2N matrices with constant coefficients!

Solve two ODEs with constant coefficients ®

— y>0: diy—AJr()\)

— y <0 d%—A_()\)

Eigenvalues of A, (\): v.()\), j=1,...,2N

Morse indices of AL (\):

iL(A) = Z ma(V.(\)) = dimension of the unstable subspace
Re v/ (\)>0

Theorem.
o M()) is Fredholm <= Rev(\) #0, for all j.

e ind(M(N)) =i_(A) =i (V)
Example: bistable reaction-diffusion equation

Up = Ugy + f(u)

£(0) = f(1) =0
W A\ /(1) < f/(0) < 0
N \ fol f(u)du < 0

3dynamics determined by the eigenvalues of A (\)

12



e Fuxistence of a unique travelling front, speed ¢, > 0

07 Yy— =

m@—m)—a{

1, y— +o0
e Linear operator: set y = x — c,t

L.v = vy, + vy + f(u)v

o Asymptotic operator

f(0), y<0

»COO'U:’Uyy—l-C*’Uy—I—fOOU, foo:{ f/(l) y>0

equivalently,
r _{L’, y <0 {EZ by + 0y + f'(0)
* £+, y > 0’ £+ = (9yy + C*ay + f/(l)

o Asymptotic matrices

AU = Eoov : { wy = —C,Ww — fOO'U + AU
d 0 I
M) =g, = AN, Al (_R+A—@>

o Figenvalues of A_(\)

AJM:(—ﬂ&+A;;>’AAM:(-ﬂ%+A;;)

The eigenvalues 7 ()), j = 1,2 satisfy
det(v—A_(\)=0 <= v*+ve.+f(0)=A=0
e Purely imaginary eigenvalues v = ik, k € R, satisfy
—k* +ike, + f'(0) = A
— A_(X) has purely imaginary eigenvalues for A € C on the curve
I ke —k* +ike. + f(0)

— M(]A) is not Fredholm for A € C on the curve T'_

13
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Figure 1: Location of the eigenvalues 17 (N\) of A_(X\) (left), Fredholm indices of M()\), and
spectrum of L. (right) (ind(M(A)) =1-(N) —ip(N))

Remarks.

o The eigenvalues Vi satisfy the dispersion relation
det (v —AL(\) =0 <= vV +ve,+ foo =\
and can be computed directly from the asymptotic operators

r _{L’, y<0 {Ez by + 0y + f(0)
* £+, y>0 ’ £+:(9yy—|—c*8y+f’(1)

e The curves I'y are precisely the spectra of the operators with constant coefficients L.
e The operators A — L, are Fredholm precisely outside I'_ U T .
We call 'y Fredholm borders.
e The Fredholm index changes when crossing I'y.

e The Fredholm index is zero to the right of the “first” curve I'y.

3.2 Dispersion relation, Fredholm borders, and group velocity

Dispersion relation

e Asymptotic operator

L y<0 L. = DV + eV, + F(U )V
o £+, Yy > 0 ’ £+ :D‘/Yyy+c*‘/;y+F/(U+)V
— First order operator: M(\) := & — A(y, \)

dy

AN, y>0 _ 0 id
Aly,A) = { A\, y<0’ Ax(A) = ( D' (—=F'(Us)+A) —c.D! )

14



— Eigenvalues V.(\) of Ay(\) satisfy
det(v—AL(N) =0 <= det (D’ +cv+F'(ug)—A) =0
e Dispersion relation
di(\,v) :=det (DV? + cov + F'(uy) — N)

— A — temporal eigenvalue

— v — spatial eigenvalue

Fredholm borders

e Spatial eigenvalues v = ik give the spectra of L4

I, = {)\ / di(A,lk) =0, ke R}

e The operators X\ — L, are Fredholm precisely outside ' _UT,.
We call I'y. Fredholm borders.
o The Fredholm index changes when crossing I'+.

e The Fredholm index is zero to the right of the “first” curve I'y.

e d, are polynomials in A of degree N
— N complex roots No(ik), £ =1,..., N

— the Fredholm borders consist of 2N algebraic curves

N
Mo =Jri, ri={(ALGk), keR}
(=1

Group velocity*
AN (—ik)
¢ +
Cg+ (k) =TIm (T)

e Oriented curves T'y

cg <0 cg >0

4Similar to the notion of group velocity in the dispersive case.

15



Proposition. The Fredholm index
e increases by one upon crossing a curve Fﬂ from right to the left with respect to
1ts orientation;

o decreases by one upon crossing a curve I'C from right to the left with respect to
1ts orientation.

7/

Ezxample:

3.3 Weighted spaces

Exponential weights

o The essential spectrum is the same in function spaces such as LP, C%, H*, ...

— for translation invariant norms

e The location of the Fredholm borders changes in spaces with exponential weights:

LR = {uc L/ [ )P+ [ [ty < +oc)
Ry

— exponential rates 7 = (n-,74) € R?

— - <0 — disturbances decay exponentially at —oo

ny >0 — disturbances decay exponentially at +oo

— suitable decay rates for nonlinearities: n— < 0 and ny > 0.

Example: Transport equation
Ut = Uy

o Spectrum in L*(R)

d\v)=A—v /*\

—  A(ik) =ik |

— =1

16



o Weight €": eMu(y) € L*(R) —  operator 9, —n

e Spectrum in L2(R): A(ik) =ik — 17

n>0 n<0

Essential spectrum in exponentially weighted spaces

® ¢, <0 — transport to the left — weight ™, n > 0, moves the spectrum to the left

® ¢, >0 — transport to the right — weight e, n < 0, moves the spectrum to the left

Example: KdV equation
LoV =Vyyy —cv, = dA\v)=A—1"+cv, ¢>0
M—ik) =ik +ick = ¢, =3k*+c>0
—  weight €™, n < 0: [Pego& Weinstein, 1994]

Theorem.

o The essential spectrum in the weighted space L%(R) is determined by the translated
dispersion relations -

d:ﬁt()\, v) :=de(A\v—mny).
e Small weights n ~ 0 change the Fredholm borders
P4 (ne) = {AL(k —na), k € R}
according to the formula

ORe /\i(—ik —n4) _ (k)
5’7& n+=0 TR

17



3.4 Instability mechanisms

Essential stability

e Spectral stability

°
spec(L,) C{A e C/ ReX <0}
°
e Essential spectral stability
SpeCess (L) C{A € C/ Re A <0}
°
ex. A € spec,, ReA >0
—— finite-dimensional space of
°

exponentially growing disturbances

Essential instability

What happens?

absolute instability convective instability

How to detect these instabilities?

[Briggs, 1964; Brevdo & Bridges, 1996; Sandstede & Scheel, 2000]

18



Roots of the dispersion relation d(\,v) =0

e Essential instability: unstable essential spectrum

— ez. root v € iR, for ReA >0

e Transient instability: stable essential spectrum in Lf,

— ex. n so that the roots v +n ¢ iR, for ReA > 0

e Eigenvalues v4()\) of AL()\)

Absolute spectrum ‘

Absolute spectrum

Revi(A) > Revi()\) > ... > ReviV())

e For Re A >> 1 (to the “right” of the essential spectrum) we have i_(\) = i, () =: i (),
so that we can order the eigenvalues

Revi(A) > ...>Revi®(A) > 0> Revie H(\) >... > ReviV(\)

19



Definition. \ € spec,, (L) if

Rev>=(\) = Rev'™"1())
or
Revi®(\) = Rev/="())

e Transient instability: unstable essential spectrum and stable absolute spectrum

\"r\
\
\ ) AN
/I Ng7 Sea>

Convective (not transient) and absolute instabilities

Sa={A€C/v=(\) =v=""(\) or = (A) = v{= 7 (A)} C spec,,(L.)

e Convective (not transient) instability: unstable absolute spectrum and stable Sq

20



Large bounded domains

Example: advection-diffusion equation

1
wt:wm—kwx—kgw:: Lw

o L*(R):spece L ={\=—k*+ik+ 3, k € R}

Specabsﬁ = (_007 _%]

7 Bounded domain (—L,L)

e Periodic boundary conditions:

L={\=—- (”—€)2 +i%+ 1 (eZ} ooy SPECes L

spec T

per
e Dirichlet boundary conditions:

T 2 L—oo
specp, L = { A\ = — (%) - %, (€ Z} —= specy L

e Neumann boundary conditions:

L—
specyenl > specy L U {1}

.. o L—oo0
e Periodic boundary conditions: spec,, L — SpeCq L

o L—o0
o “Separated boundary conditions:” “ specy L — spec, L7

4 Stability of periodic waves

4.1 Spectral problems

Periodic waves
/\/\/\/

Ut = Uppe + SUUL

Example: KdV equation

e Travelling waves u(z + ct): set y = x + ct

) _ _ 3.2
—> ODE: cuy = uyyy + 3uuy, = uyy = cu — Su”+const.

21



— phase portrait —  family of periodic orbits, pe., for ¢ <0

— three-parameter family of periodic waves
Dac(bacly+a)) =..., a € R, with p,.(-) 2 — periodic and even
e Linearization about the periodic wave p, .

L0 = Vyyy — Uy + 3 (Da,c0)y

Spectral problems
e Linearization about the periodic wave p, .
LacV = Vyyy — Uy + 3 (DacV)y

e Spaces for disturbances

— periodic functions

— localized functions /\/\/\/

— bounded functions

Periodic perturbations: same period as p,. .

2 2
e.g. Lao: H3 <o, k” > 12 (o, kﬁ >

)

— linearized operator has compact resolvent

—  point spectrum

— Localized/bounded perturbations: e.g. L,.: H* (R) — L*(R)
— no point spectrum

— e.g. Schridinger operators with periodic potentials

—_——

4.2 Bloch-wave decomposition

— localized /bounded perturbations —

e reduces the spectral problem for localized/bounded perturbations to the study of the spectra of
an (infinite) family of operators with point spectra

[Reed & Simon, 1978; Scarpelini, 1994, 1995; Mielke, 1997]
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e One spatial dimension: Floquet theory

Example: KdV equation

LacV = Vyyy — Uy + 3 (Da,cV)y

Paclkacly+a))=..., a € R, with p,.(-) 2 — periodic and even
o Set z = k,.y — operator with 27-periodic coefficients
£a,cw = kicwzzz - Cka,cwz + 3kt}t,c (pa,cw)z

— Localized perturbations — spectrum in L?(R)

— Bounded perturbations — spectrum in CP(R)

e Eigenvalue problem: solve

Aw = Ea,cw - kicwzzz - Cka,cwz + Bka,c (pa,cw)z

Floquet theory

e First order system

q w
d_W = Az, )WV, W=\ w =w,
: Wy = Wiz

A(z, \) matrix with 27-periodic coefficients

e Floquet theory: any solution is of the form
W (2) = Qa(2)e“ D= (0)

— Q\(+) is a 2m-periodic matriz function

— C(X\) matriz with constant coefficients °

Spectral problem

%W = A(z, )\W,  W(z) = Qx(2)e“MW(0)

Seigenvalues of C'(\): Floquet exponents

23



The ODFE has a nontrivial bounded solution for A\ € C
— A€ kercg(R) (/Ca,c)
<= ex. solution of the form W (z) = Q(2)e"*, Q(-) 2w — periodic, v € [—%, %)

<= the eigenvalue problem has a nontrivial solution

1
w(z) = q(z)e™, 7€ {—— —) . q(+) 27 — periodic
<= ez. nontrivial 2m-periodic solution to

A =k (0. +17)°q — Ckac(0: +17)q + 3kac(0: +17) (Pacq)

11

for v € [=3.3)

<= the linear operator A\ — L, .,

Laend = ki (0. +17)°q — ckao(0: + 17)q + 3ka,c(0: +17) (Parcq)

has a nontrivial kernel in L*(0,2m)

<= Aespecrrgan)(Lacn); 7 E [—%, %)

Lemma.

e kercom)(Lae) = U specr2(g.2m) (Lacr)
ve[~5.3)

° kercg(R)(Ea,c) = speccg(R)(Ew) = specrz (g (Lac)
Proof.  Solve M\w — L, .w = f using Floquet theory and the variation of constant formula . . ..

Theorem.

SPeCco(R) (Lae) = SpeCL?(R)(ﬁa,c) = U SpeCLQ(o,zw)(ﬁa,c,v)
v€[-3:2)

Remarks.

o L.~ have only point spectra
o Aty =0 we find L, in L*(0,27), i.e. the operator for periodic perturbations.

Determine the point spectra of L, .~ 7
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4.3 KdV equation: stability of small periodic waves

The KdV equation
Up = Uggy + UL

possesses a three-parameter family of travelling periodic waves

Paclkac(x+ct+a))=..., a€R, ¢<0,

with p,c(-) 2m — periodic and even

o Translation invariance — o =0

e Scaling invariance — c¢= —1

—yY=x+ct — U+ ClUy = Uyyy + Uy

— u(y,t) = [clu(|e[' Py, |c[*?t) — v = Vyyy + vy + 30vy
e One-parameter family of even periodic waves

Pa(kay) = ..., with p,(-) 2 — periodic and even

Small periodic waves

e Parameterization of small waves (a small)

pa(2) = acos(z)+ az (cos(2z) — 3) + O(a?)

B 15 4
ke = 1 e + O(a”)

e Linearized operator: L, = k;gEa

1 3
‘Caw =Wy + 5W, + 5 (paw>z

k2 k2

a a

e Spectrum

SpeC(Za>: U SpeCLQ(O,ZW)(Ea,V)

el-hb)

Spectral stability

1 3
ﬁaw = Wiy, + ﬁwz + ﬁ (paw>z

a a

25



Theorem. For a sufficiently small,

e spec(L,) C iR

e the periodic travelling waves are spectrally stable.

Proof.  Show that
~ . 11
SpeCL2(0’27T) (Ea,’y> C IR, V ’}/ S |:_§, 5)

in which 1 3
Loy =(0.+17)"+ @(@ +iv) + @(@ +17) (pa’)

a

Step 0: perturbation argument

e a small — E,W 15 a “small perturbation” of Zoﬁ

»Ca,'y = ZO,'V + Zl,w EO,’y = (az + 1/7)3 + (az + 1/7)

- Zo,y operator with constant coefficients

- El,w operator with 2m-periodic coefficients and

I€1Allmr2 = O(a)

- LNa,, is a small relatively bounded perturbation of Egﬂ, -

Step 1: spectrum of EO,A,

e Fourier analysis
spec(Loy) = {i((n+7) — (n+7)?), n € Z}
(see Figure 3)

Figure 2: Dispersion relation w = (k—k*) (k=n+~, n€Z, v € [-3,3) — eigenvalue iw, )

Step 2: 7. <|y| < 3

e all eigenvalues are simple (see Figure 3)

e picture persists for small a 7
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_—— simple
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—triple

Figure 3: Spectrum of [:'Vo,7 for v = 0 (left) and v # 0 (right).

Difficulties

e infinitely many simple eigenvalues

e relatively bounded perturbation

Proposition 2.1.

< __o/Txn? For all v, >0, ¢ >0, ex. a; > 0 such that
spec(Lqy,) C U B(iwy, », V1 +n?),
nez
for la| < ay and v, <|y| < 1.

Proof.  Use the resolvent formula

() = 0 2) (0B (-2 )

and the estimates

Q|

~ —1 ~
| (A= Los) e <= |Eisllm 12 = Oa)

which show that A — Ea,w is invertible for A outside these balls.

Proposition 2.2. Fix v, > 0 and choose ¢ > 0 small. Then

o the balls B(iw, ~, V1 + n?) are mutually disjoints;

° Za,w has precisely one simple eigenvalue inside each ball B(iw, ,cV'1 + n?),
for a sufficiently small, and v, < |y| < % This eigenvalue is purely imaginary.

Proof.  Choose a ball B(iwy, , cV'1 +n?).
° Eaﬂ has precisely one simple eigenvalue inside this ball.

27



— Construct spectral projectors® 15, for Zom and II7  for Ean

— Show that

1 1
I — 11 || < min ( —, )
o 1155, [ (11T, |

0,y a

— Conclude that IT7 . and IIj. have the same finite rank, equal to 1.

o This eigenvalue is purely imaginary.

— A€ spec(L,,) < —A € spec(L,) since p, is even:

Low(z) = w(z) <= Lo, w(z)=\w(z)
= Lo, w(z)=w(z)

Z——2Zz

= Lo, w(—z)=—

— This shows that the spectrum is symmetric with respect to the imaginary axis, so that
the simple eigenvalue lies on the imaginary axis.

Step 3: |y| <. (v small)

e Step 3.1: treat the (infinitely many) simple eigenvalues (corresponding to Fourier modes
|n| >2) as in Step 2.

e Step 3.2: consider the triple eigenvalue in the origin with Fourier modes n = 0,+1. A
standard perturbation argument shows that £, ., has three eigenvalues inside the ball B(0, 1),
provided a and v are sufficiently small.

Step 3.2: n=0,%1, |y] <

Locate the three eigenvalues inside B(0,1)?

Consider the associated spectral subspace (three-dimensional) and

e compute a basis {{(a,v), &(a,7), &(a,v)};

e compute the 3 x 3-matrix M, , representing the action of E(m on this subspace;
e show that this matrix has three purely imaginary eigenvalues for small a and ~.

operator with constant coefficients

Dunford integral formula I}, = 35 [, (A — L) 1A

2mi
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e Basis
£(0,7) = cos(z), &(0,7) = —sin(z), &(0,7) =1

e Matrix
—2iy — i'y3 372 0
My, = —37? —2iy —iy? 0
0 0 iy — i3

linearization about p,

e Translation invariance + Galilean invariance

3

~ ~ ~ 2K (1
£a70 (azpa) - Oa ‘Ca,D(l) = Eazpaa Ea,O (aapa - k = (§ +pa>) =0

e Basis
ok (1 1
&](CL, O) - aapa - 5 1t Pal 51 (CL, O) - _azpaa fg((l, 0) =1
ko \ 3 a
o Matrix
1 00 O
Mg =2 [ 0 0 30
“\N0 0 0
compute expansions
e Basis at order 2
1502 9a> i
&ola,y) = cos(z)+ %COS(QZ) — % + 4@ cos(z) + 6i4 cos(3z) — ? sin(2z) + ...
9a? i
&(a,y) = —sin(z) — a4 sin(2z) — - sin(3z) — tl cos(2z) + ...
2 64 2
Ela) = 1+...
e Matrix at order 3
—2iy + 3ia%y — in? 3v? 3iary
M *i —3ry? —2i7y + 3ia%y —ivy3 3
ar = 73 v iy + 3ia?y — iy a
. 3iay/4 3av? /4 iy — 3ia?y/2 — i3

...... and conclude.
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Spectral stability of nonlinear waves

— methods from the theory of dynamical systems —

e Stability of one-dimensional waves

/AN I VAVAY

e These methods can be adapted to study the stability of modulated waves

and of certain types of two-dimensional waves such as waves with a distinguished spatial
direction and doubly periodic waves
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