
Using AUTO for Stability Problems

Björn Sandstede and David Lloyd

June 6, 2012

1 Installation and documentation material for AUTO

We have set up an AUTO website at http://www.dam.brown.edu/people/sandsted/auto.php where informa-

tion and links about installing and using AUTO can be found. The source codes used in this tutorial are also

available at this website. AUTO07P is written in Fortran95, and the codes we supplied are written in a mixture

of Fortran and Fortran95. The supplied codes are documented and can be used as templates for other projects.

2 Newton’s method

Newton’s method provides a way of solving nonlinear equations numerically using an iterative scheme that starts

from a given, sufficiently accurate initial guess of the solution. For definiteness, assume that we are interested in

solving G(U) = 0 for a given smooth function G : RN → RN . We assume that this equation has a regular zero:

in other words, we assume that there is a U∗ ∈ RN with G(U∗) = 0 such that the Jacobian GU (U∗) is invertible.

We are then interested in finding arbitrarily accurate approximations of U∗ starting from a reasonable guess for

U∗. Newton’s method works as follows: there exists an ε > 0 such that the sequence Un ∈ RN , defined by

Un+1 := Un −GU (Un)−1Un, n ≥ 0, (2.1)

converges to U∗ as n → ∞ for each given U0 with |U∗ − U0| < ε. Thus, given a sufficiently accurate initial

guess U0 of a regular zero U∗ of G, Newton’s method will converge to the solution U∗. If N = 1, the iterates Un

are obtained by approximating the nonlinear function G by its tangent at Un and solving the associated linear

problem exactly.

3 Continuation methods

AUTO is a continuation code: it finds branches (that is, curves) of solutions of systems of the form F (U) = 0,

where F : RN+1 → RN is a given smooth function. Note that the solution set {U : F (U) = 0} consists typically

U⇤

Ũ⇤

V⇤

h

{U : F (U) = 0}

{U : hU � U⇤, V⇤i = h}

Figure 1: A graphical illustration of the continuation algorithm used in AUTO.

1

http://www.dam.brown.edu/people/sandsted/auto.php

of one-dimensional smooth curves, and the issue of solving F (U) = 0 is equivalent to traces out these curves.

Thus, given a solution U∗ of F (U) = 0, we want to continue this solution to trace out a curve of solutions to this

system as illustrated in Figure 1. The continuation algorithm implemented in AUTO works as follows:

• Assume that we found a solution U∗ of F (U∗) = 0: then calculate a solution V∗ with |V∗| = 1 of the linear

problem FU (U∗)V = 0 (such a V∗ exists since FU (U∗) : RN+1 → RN).

• Next, choose 0 < h� 1 and solve

G(U) =

(
F (U)

〈U − U∗, V∗〉 − h

)
= 0 (3.1)

using Newton’s method with initial guess U0 = U∗ or U0 = U∗ +hV∗ to obtain another solution Ũ∗ of F (U)

close to U∗.

• Iterate this process by replacing U∗ with the new solution Ũ∗.

The geometric intuition behind this method is illustrated in Figure 1. Among many other enhancements, AUTO

adds step-size and accuracy control to this basic continuation method. AUTO can also identify bifurcation points

along the solution branch and allows branch-switching not new solution branches that emerge as bifurcation

points.

The key requirements that assure that the continuation algorithm outlined above works are:

(i) A good (that is, sufficiently accurate) initial guess U∗ of F (U) = 0.

(ii) The Jacobian FU (U) : RN+1 → RN is onto along the branch (or, equivalently, the null space of FU (U) is

one-dimensional), except possibly at isolated points along the branch.

The first requirement (i) ensures that the first application of Newton’s method can converge. The second

requirement (ii) ensures that the branch is one-dimensional so that the system FU (U∗)V = 0 has a unique

solution, up to scalar multiples; the surjectivity of FU (U) also guarantees that the Jacobian GU (U) of the

extended system G(U) = 0 defined in (3.1) is invertible, so that the individual Newton steps taken during the

continuation algorithm are well defined.

Strategies for finding good initial guesses depend strongly on the underlying specific problem: often, finding good

starting data is the main obstacle for using AUTO successfully. A few key strategies are:

• Matlab has an excellent built-in Newton trust-region solver (it is called fsolve and available as part of the

optimization toolbox) that often converges even for very poor initial guesses; the solution obtained using

Matlab can then be used in AUTO.

• Use continuation (or homotopy) from a simpler problem or from parameter values at which explicit solutions

are known.

• AUTO can import column-formatted data files: this allows to import initial guesses obtained from initial-

value problem solvers for ODEs or PDEs as appropriate.

• AUTO’s built-in branch-switching facility can be used to switch branches at bifurcation points, for instance

from equilibria to bifurcating periodic orbits at Hopf bifurcations.

4 Scope of AUTO’s capabilities

AUTO can solve the following types of problems (this is not a complete list but suffices for our purposes):

• Algebraic problems:

F (U) = 0 with F : RN+1 → RN . (4.1)

2

U(x)

U

x

Figure 2: A solution profile of (6.2) with µ = 0.2 and ν = 1.6 is plotted.

• Boundary-value problems:

du

dt
= f(u, µ), 0 < t < 1, (u, µ) ∈ Rn × Rp

g(u(0), u(1), µ) = 0, g maps into Rnbc (4.2)∫ 1

0

h(u(t), µ) dt = 0, h maps into Rnint .

AUTO uses collocation with Lagrange polynomials, whose degree can be chosen by the user, to discretize the

boundary-value problem (4.2) in the time variable t. To check whether the system can possibly satisfy the

requirement (ii) above, calculate the following count, which gives a necessary condition for (ii) to hold:

(n+ p)︸ ︷︷ ︸
remaining variables after solving the ODE

− (nbc + nint)︸ ︷︷ ︸
remaining equations

!
= 1︸︷︷︸

one extra dimension for continuation

or

p = nbc + nint + 1− n, (4.3)

where p is the number of free parameters that AUTO adjusts during continuation.

5 Implementation

As input, AUTO requires two files. The first file, named PROBLEM.f90 or PROBLEM.f, contains the description

of the function F for algebraic problems or the right-hand side f of the ODE, the boundary conditions g and

the integral conditions h for boundary-value problems. In the constants file c.PROBLEM, the user sets various

constants that specify what problem AUTO should solve and how. Here, PROBLEM is a placeholder that the user

can set to any name as desired.

The file PROBLEM.f90 contains a number of subroutines whose purpose we now explain briefly:

• func: defines the right-hand side of the ODE (for boundary-value problems) or the function F for which

we want to solve F (U) = 0 (for algebraic problems);

• bcnd: defines the boundary conditions;

• icnd: defines the integral conditions;

• stpnt: sets parameter values and initial guess for the start of the continuation;

• pvls: can be used to access solutions and parameter during continuation;

• fopt: used for optimization problems.

Example codes can be found in Appendix A.1 and will be explained later.

6 Case study: Localized rolls in the one-dimensional Swift–Hohenberg equation

Goal: We want to compute stationary localized roll solutions of the Swift–Hohenberg equation

Ut = −(1 + ∂2x)2U − µU + νU2 − U3, x ∈ R. (6.1)

3

Such solutions satisfy the ODE

− (1 + ∂2x)2U − µU + νU2 − U3 = 0, x ∈ R, (6.2)

and a typical solution profile is shown in Figure 2.

Problem formulation: There are two feasible approaches for finding such solutions in AUTO:

(a) Discretize in x (for instance, using centered finite differences) and solve the resulting algebraic problem in

AUTO.

(b) Set up (6.2) as a boundary-value problem and let AUTO handle the discretization.

We follow the second strategy as it is much more robust: AUTO includes a very efficient mesh-adaptation

algorithm that allows us to keep the number of required mesh points low. Here are the main steps involved in

preparing (6.2) for implementation in AUTO:

• Fix L � 1 and consider x ∈ (0, L) with appropriate boundary conditions at x = 0, L. We use Neumann

conditions and require that Ux(x) = Uxxx(x) = 0 at x = 0, L (other options are to use the Dirichlet

conditions U = Uxx = 0 at x = 0, L or periodic boundary conditions, which require that (U,Ux, Uxx, Uxxx)

coincide at x = 0, L).

• Next, write the system (6.2) and the boundary conditions as the first-order system

du

dx
= f(u, µ, ν) :=


u2

u3

u4

−2u3 − (1 + µ)u1 + νu21 − u31

 , 0 < x < L (6.3)

(
u2

u4

)
= 0, at x = 0, L,

where u = (U,Ux, Uxx, Uxxx) ∈ R4.

• Rescale x by setting x = Lt with 0 < t < 1 to get

du

dt
= Lf(u, µ, ν), 0 < t < 1 (6.4)(

u2

u4

)
= 0, at t = 0, 1.

It is instructive to consider this system more abstractly in the following form:

F : C1([0, 1],R4)× R3 −→ C0([0, 1],R4)× R4, (6.5)

(u, µ, ν, L) 7−→ (u̇− Lf(u, µ, ν), u2(0), u4(0), u2(1), u4(1)).

We have three free parameters, namely (µ, ν, L), in which we can continue. The count (4.3) gives

p = nbc + nint + 1− n = 4 + 0 + 1− 4 = 1;

hence we can continue in one of the three available parameters, while the others are kept constant: one option

is to continue in µ for fixed (ν, L), another option is to continue in L for fixed (µ, ν).

Implementation in AUTO: The AUTO files for this problem are contained in the directory

auto-tutorial/course-materials/sh-auto-bvp

The relevant files are named c.auto SH phase and auto SH phase.f90: these are listed in Appendix A.1. In-

structions for running AUTO on this example problem are provided in the file README.txt in the aforementioned

directory and are also listed below.

4

Starting data: We obtained starting data by solving a finite-difference approximation of the Swift–Hohenberg

equation (6.2) in Matlab using the built-in Matlab routine fsolve from a rough initial guess in form of a very

approximate explicit function that resembles the profile we seek. The Matlab codes for generating this guess are

contained in the directory

auto-tutorial/course-materials/sh-matlab

to which we refer for details. AUTO can start its continuation algorithm from a column-formatted data file such

as the one supplied here as auto SH phase.dat.

Running AUTO: To run the AUTO code, type the following at the command line in a terminal (without the

leading ”>”, which is used here to indicate the beginning of the command line in the terminal):

> @r auto_SH_phase

AUTO will print two lines: the first line marked with EP corresponds to the solution we start from. The second

line contains an MX, which indicates that AUTO did not converge to a solution. Type

> ls -l

and you will see that AUTO generated the three files fort.7, fort.8, and fort.9. We can inspect their content

by typing

> more fort.7

> more fort.8

> more fort.9

You see that fort.7 contains information about each continuation step; fort.8 contains the solution data in a

format that is explained in Appendix A.3. Finally, fort.9 contains auxiliary information about each continuation

step and, in fact, about each individual Newton step during each continuation step; in particular, if the constant

IID is set to 3 in the constants file, then AUTO lists the residuals for the reduced system of equations that it

attempts to solve. The residuals are the remainders upon substituting the initial guess into the ODE and the

boundary and integral conditions: they serve as an excellent indicator for (1) errors in the implementation of

the right-hand sides and (2) the accuracy of the initial guess. Our residuals are

Residuals of reduced system:

-0.435E-02 -0.266E-02 -0.329E-02 0.385E-02 0.109E-20 0.153E-20 -0.154E-20 0.000E+00 0.812E-02

and therefore quite small. So, why does AUTO fail? The reason is that our system violates the requirement

(ii), namely that the derivative of our system (6.4) in u, evaluated at the initial guess or a genuine solution,

is invertible. Indeed, Figure 3 indicates that we can shift the initial guess in x without changing the values of

the boundary conditions much; since the shifted function will still satisfy the ODE, we obtain an approximate

one-parameter family of solutions to (6.4). This shows that the derivative Fu(u∗, µ∗, ν∗, L∗) of (6.5) in u will have

an eigenvalue close to zero, thus precluding invertibility: we can therefore not expect that Newton’s method will

converge. We therefore need to select a single element from the family of shifted functions to make the solution

unique. A good selection criterion, often referred to as a phase condition as it selects the phase or shift of the

translated functions, is the integral condition

Φ(u) :=

∫ 1

0

〈u̇old(t), u(t)− uold(t)〉dt = 0, (6.6)

where uold refers to the solution at the previous continuation step, or the initial guess when AUTO begins

continuation. Indeed, omitting the arguments (µ, ν, L) of F for the sake of clarity, we know that F (u∗(· + ε))

5

U(x)

U

x0 L

Figure 3: The solution profile of (6.4) on the bounded interval [0, L] can be shifted back and forth without a

noticeable change of the boundary conditions: this indicates that the linearization of (6.4) in u will have an

eigenvalue close to zero. In the case of periodic boundary conditions, we can, in fact, shift the profile arbitrarily

in the x-direction: the shifted functions remain solutions, and the linearization of (6.4) in u will always have an

eigenvalue at the origin.

will be approximately equal to zero as ε varies near zero. Assuming for simplicity that F (u∗(·+ ε)) = 0 for all ε

near zero, we find that

0 =
d

dε
F (u∗(·+ ε))

∣∣
ε=0

= Fε(u∗)u̇∗

so that u̇∗ lies in the null space of Fu(u∗), and will, in fact, be a basis of the null space unless there are additional

generacies in the system. If u̇∗ spans the null space of Fu(u∗), then the new map F̃ : u 7→ (F (u),Φ(u)) has

trivial null space since Fu(u∗)v = 0 implies v = u̇∗, up to scalar multiples, while

Φu(u∗)v = 〈u̇∗, v〉 v=u̇∗= 〈u̇∗, u̇∗〉 6= 0.

Thus, we should add the phase condition (6.6) to our system (6.4) and the AUTO code. However, since we add

an equation, we need an additional parameter that compensates for the additional phase constraint we added.

Here is how we can identify an appropriate parameter: The reason we have a one-parameter family of solutions

is that the original PDE (6.1),

Ut = −(1 + ∂2x)2U − µU + νU2 − U3, x ∈ R,

is invariant under translations in x. This, in turn, implies that we can seek travelling-wave solutions of the form

U = U(x − ct) of (6.1). Our solutions are stationary, that is have c = 0, but we can add the wave speed c as a

free parameter to our problem. The rationale for this choice is explained in detail, and in much more generality,

in [2]: in a nutshell, the derivative with respect to c corresponds to taking the partial derivative ∂x with respect

to x which generates the semigroup of translations. Introducing the new moving coordinate x 7→ x− ct in (6.1)

gives the PDE

Ut = −(1 + ∂2x)2U + cUx − µU + νU2 − U3, x ∈ R

with the additional term cUX . Incorporating this additional term by going through the previous steps, we end

up with the new right-hand side

f(u, µ, ν, c) :=


u2

u3

u4

cu2 − 2u3 − (1 + µ)u1 + νu21 − u31

 .

We implement this in AUTO by making the following changes in auto SH phase.f90:

• comment out line 25 and uncomment line 26, which contains the new right-hand side;

• uncomment line 79, which contains the phase condition (6.6)

and the following changes in the constants file c.auto SH phase:

6

• change the line for NICP to ”2 1 3” to include the wave speed c =par(3) as free parameter;

• change NINT from 0 to 1 to tell AUTO that we added an integral condition.

Now, we can start AUTO again:

> @r auto_SH_phase

and see that AUTO successfully computes a branch of solutions. Note that the wave speed c is very close to

zero as expected. We can plot the bifurcation diagram and the solution profiles using AUTO’s built-in plotting

program by typing

> @pp

We can save the data we just computed and which are currently stored in fort.7, fort.8, and fort.9 in the

new files b.run1, d.run1, and s.run1, respectively, by typing

> @sv run1

The solutions labelled LP and BP correspond to fold and branch points, respectively: the branch points cor-

respond to pitchfork bifurcations at which asymmetric profiles emerge that are odd in x. AUTO allows us to

switch branches from the curve of symmetric profiles to the bifurcating branch of asymmetric solutions: we

pick the branch point corresponding to label 4 and therefore make the following changes in the constants file

c.sh auto phase:

• set IRS=4 to indicate that we wish to restart from the solution with label 4;

• set ISW=-1 to tell AUTO that we want to switch branches;

• set NMX=20 so that we take only 20 steps along the new branch.

Our data are now stored in *.run1, and we therefore restart from these data files by typing

> @r auto_SH_phase run1

To save the data in the files *.run2 and plot them, we type

> @sv run2

> @pp run2

Note that we indeed computed asymmetric solutions that bifurcate at the branch point from the symmetric

localized rolls. AUTO can plot data from only one set of files: to plot symmetric and asymmetric branches

together, we copy and append the data as follows in the new files *.run all:

> @cp run1 run_all

> @ap run2 run_all

> @pp run_all

Finally, we discuss how we can compute the PDE spectra of the profiles we computed in Matlab. First, we

re-compute the profiles: make the following changes in the constants file c.sh auto phase:

• set IRS=0, ISP=1, ILP=0, NPR=2, DSMAX=0.01.

and start AUTO:

> @r auto_SH_phase

> @sv run

7

Next, we convert the solution data to Matlab format by typing

> autox to_matlab_sh.xauto run run

This command generates the files run bifur, run label, and run solution *, which contain, respectively, the

bifurcation diagram, the labels plus par(1), and the individual solutions. The file to matlab sh.xauto is a

python script that extracts and reformats AUTO data. Next, open Matlab and run

> sh_spectrum

which computes and plots the spectra of the localized rolls we computed.

Outline of other methods for finding localized rolls:

• The directory

auto-tutorial/course-materials/sh-auto-bvp

also contains the AUTO code auto SH half.f90 with the constants files c.auto SH half, which can be

used to compute half of a symmetric roll structure. In this case, no phase condition is needed, but the code

cannot detect the pitchfork bifurcations. Instructions for running this code are provided in the README.txt

file.

• The directory

auto-tutorial/course-materials/sh-auto-finite-differences

contains AUTO codes that implement the computation of localized rolls using finite-difference approxima-

tions together with AUTO’s capability to solve and continue solutions of algebraic problems. In the case

of computing localized structures that are centered in the interior of the interval [0,L], we again need a

phase condition, which is implemented as an additional equation. The advantage of these codes is that

they provide information about the PDE spectrum; the disadvantage is that the underlying spatial mesh

is fixed. Caveat: The eigenvalues that AUTO computes along a branch are those of the linearization of

the algebraic problem that we solve; since we added a phase condition, it is not obvious (and in general

wrong) that the eigenvalues AUTO computes agree with the eigenvalues of the PDE linearization we are

interested in: For the self-adjoint problem considered here, it can be shown that they indeed agree.

7 Tips and tricks for using AUTO

• Debugging:

– Always set IID=3 so that AUTO writes the residuals to fort.9. The residuals are extremely helpful

in checking for errors in the code or the initial guess.

– The error ”A null space may be multi-dimensional” indicates that the requirement (ii) is violated:

check that your solution is unique or modify your system to make the solution unique.

– If you encounter MX errors, try to reduce the accuracy by making the EPS constants larger; often,

it also helps to reduce or increase the step-size constant DS. For problems on large intervals, it often

helps to make the interval smaller or larger. Also, vary the number NTST of mesh points. Over

time, you will get a feeling for what might go wrong and which of these recipes works best in a given

situation.

– Try to make your system simpler: start with a reduced system if at all possible

• Newton’s method: By default, AUTO’s first continuation step will always be a genuine continuation step.

If your initial data are not particularly accurate or if AUTO does not converge, try to continue in a dumb

parameter, that is in a parameter that you actually do not use in your code. Continuing in a dummy

parameter means that AUTO solves the underlying system using Newton’s method.

8

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

LOCALIZED HEXAGON PATTERNS 1053

Figure 3. Color plots of two stationary fronts are shown for the planar Swift–Hohenberg equation (1.1):
Both fronts connect hexagons to the trivial state along the horizontal x-direction, are periodic in the vertical
y-direction, and differ in the way in which their interfaces are aligned in a fixed hexagonal lattice.

Figure 4. Part of the bifurcation curve corresponding to localized hexagon patches of (1.1) with ν = 1.6 is
shown. Color plots of representative solutions are shown in panels 1–4. The entire snaking curve and color plots
of the associated stationary solutions can be viewed in the accompanying animation (70762 01.mpg [10.8MB]).

Our third result is a comprehensive numerical study of localized hexagon patches in the
planar Swift–Hohenberg equation (1.1). Instead of giving a detailed list of these results, which
can be found in section 5, we focus here on the observation that these localized structures
snake.

Observation 1 (snaking of localized hexagon patches). Localized hexagon patches of the
Swift–Hohenberg equation exist and snake in a wedge-shaped region in the (µ, ν)-parameter
plane. The shape of the hexagon patches changes along the snaking curve: their interfaces
resemble planar hexagon fronts with different orientations with respect to a fixed hexagonal
lattice; see Figures 3 and 4. The saddle-node bifurcations of the localized hexagon patches
are aligned with saddle-nodes of planar hexagon fronts, which are shown as vertical lines in
Figure 4.

The remainder of this paper is organized as follows. We begin in section 2 with a review
of snaking in one space dimension as this case motivated our paper to a large extent. We
also review known results about regular hexagons and planar hexagon fronts. In section 3,

Figure 4: Left: Shown is the spatial profile at a fixed time of a radially symmetric localized oscillon pattern that

satisfies a certain planar four-component reaction-diffusion system. Right: Stationary localized hexagon patch of

the planar Swift–Hohenberg equation.

• Large-scale problems: For large problems, it helps to specify the Jacobian of the right-hand side and the

boundary and integral conditions explicitly in the AUTO code. If the Jacobian is not specified, AUTO

computes it internally by finite differences.

• Export and import to Matlab: A common issue is to combine AUTO data from two different problems

to compute a solution to a larger problem. For instance, once we computed a localized roll profile, we

might want to add the most unstable eigenvalue and its eigenfunction and set up a problem that computes

simultaneously the profile and this eigenvalue with the associated eigenfunction as parameters vary. The

best way of generating initial data in these circumstances is to export the original AUTO data using the

command

> autox to_matlab.xauto AUTO_DATA_FILENAME OUTPUT_FILENAME

and manipulate the data in Matlab to generate new initial guesses that combine the two data sets. AUTO

can then be restarted from the columnn-formatted data file as illustrated in our case study.

• If you need access to the independent variable x, we can add the equation ẋ = L to the problem. To adjust

the initial data, we need to add the values of x to the starting data, which can be done, for instance, as

outlined under the previous bullet item.

8 Computation of multi-dimensional patterns

We outline briefly how AUTO can be used to compute multi-dimensional patterns that depends on x ∈ Rd

with d > 1 and spatiotemporal time-periodic patterns that depend on (x, t). In all these cases, the only possible

approach is to discretize in all but independent variables and to solve the resulting ODE in the remaining variable

in AUTO as a boundary-value problem. Possible discretizations are finite-differences or spectral methods such

as Fourier series or Chebyshev polynomials. In some cases, there will be a natural choice for which variable is

best suited to be handled by AUTO; in other cases, many choices are possible. We focus on the two patterns

shown in Figure 4.

The left image in Figure 4 is of an oscillon, a time-periodic radial localized solution of the form U(x, t) = U∗(r, t),

where x ∈ R2, r = |x| and U∗(·, t+T) = U∗(·, t) for all t for some period T > 0. Thus, the profile U∗(r, t) depends

on two independent variables. The oscillon shown in Figure 4 was computed by discretizing in r using centered

finite differences and implementing the resulting problem in t as a boundary-value problem in AUTO. This

allowed us to continue in external parameters, whilst keeping track of the temporal period. In addition, period-

doubling bifurcations of oscillons could be detected efficiently using this approach.

The right image in Figure 4 shows a localized planar hexagon patch [3]. It was computed by writing the planar

Swift–Hohenberg equation in polar coordinates, truncating the Fourier series in the angle ϕ, and formulating

the resulting problem in the remaining radial variable r as a boundary-value problem in AUTO. This allowed us

9

to adjust the domain length during continuation and furthermore enabled us to exploit the symmetries of the

pattern by restricting to those Fourier modes compatible with the underlying symmetry of the pattern.

Other examples of patterns computed with AUTO can be found in [1]

10

A.1 AUTO files for the case study auto SH phase

The right-hand sides are specified in the file auto SH phase.f90, We list the content of this file below with all

declarations of variables removed for ease of reading:

!--

subroutine func(ndim,u,icp,par,ijac,f,dfdu,dfdp)

mu = par(1)

nu = par(2)

c = par(3)

f(1) = u(2);

f(2) = u(3);

f(3) = u(4);

f(4) = -(1+mu)*u(1) + nu*u(1)*u(1) - u(1)*u(1)*u(1) - 2*u(3)

! f(4) = -(1+mu)*u(1) + nu*u(1)*u(1) - u(1)*u(1)*u(1) - 2*u(3) + c*u(2)

do j=1,ndim

f(j) = par(11)*f(j)

end do

end subroutine func

!--

subroutine stpnt(ndim,u,par,t)

par(1) = 0.2 ! mu

par(2) = 1.6 ! nu

par(3) = 0.0 ! c (wave speed: should be zero)

par(11) = 100.0 ! interval length L

end subroutine stpnt

!--

subroutine bcnd(ndim,par,icp,nbc,u0,u1,fb,ijac,dbc)

! Neumann boundary conditions

fb(1) = u0(2)

fb(2) = u0(4)

fb(3) = u1(2)

fb(4) = u1(4)

end subroutine bcnd

!--

subroutine icnd(ndim,par,icp,nint,u,uold,udot,upold,fi,ijac,dint)

! fi(1) = upold(1)*(u(1)-uold(1)) ! phase condition

! fi(2) = u(1)*u(1)-par(4) ! L^2 norm

end subroutine icnd

!--

subroutine pvls

end subroutine pvls

subroutine fopt

end subroutine fopt

!--

11

Various constants that AUTO needs to now about are specified in the file c.auto SH phase:

dat=’auto_SH_phase.dat’

4 4 0 1 NDIM,IPS,IRS,ILP

1 1 NICP,(ICP(I),I=1 NICP)

400 4 3 2 1 0 4 0 NTST,NCOL,IAD,ISP,ISW,IPLT,NBC,NINT

100 -1.e+8 1.e+8 -1.e+8 1.e+8 NMX,RL0,RL1,A0,A1

10 10 3 8 5 3 0 NPR,MXBF,IID,ITMX,ITNW,NWTN,JAC

1.e-7 1.e-7 1.e-5 EPSL,EPSU,EPSS

-0.01 0.001 0.1 1 DS,DSMIN,DSMAX,IADS

0 NTHL,(/,I,THL(I)),I=1,NTHL)

0 NTHU,(/,I,THU(I)),I=1,NTHU)

0 NUZR,(/,I,PAR(I)),I=1,NUZR)

These constants are explained in Appendix A.2

12

A.2 Explanation of the constants that appear in the constants file10.10 Quick reference
e, s, dat, sv Define file names: equation prefix (.f,.f90,.c), restart solution su�x (s.),

user data prefix (.dat), output su�x (b.,s.,d.)
unames, parnames Dictionary (mapping) of U(*) and PAR(*) to user-defined names
NDIM Problem dimension
IPS Problem type; 0=AE, 1=FP(ODEs), -1=FP(maps), 2=PO, -2=IVP,

4=BVP, 7=BVP with Floquet multipliers, 5=algebraic optimization
problem, 15=optimization of periodic solutions

IRS, TY Start solution label, start solution type
ILP Fold detection; 1=on, 0=o↵
ICP Continuation parameters
NTST # mesh intervals
NCOL # collocation points
IAD Mesh adaption every IAD steps; 0=o↵
ISP Bifurcation detection; 0=o↵, 1=BP(FP), 3=BP(PO,BVP), 2=all
ISW Branch switching; 1=normal, -1=switch branch (BP, HB, PD),

2=switch to two-parameter continuation (LP, BP, HB, TR)
3=switch to three-parameter continuation (BP)

IPLT Select principal solution measure
NBC # boundary conditions
NINT # integral conditions
NMX Maximum number of steps
RL0, RL1 Parameter interval RL0  �  RL1
A0, A1 Interval of principal solution measure A0  k · k  A1
NPR Print and save restart data every NPR steps
MXBF Automatic branch switching for the first MXBF bifurcation

points if IPS=0, 1
IBR, LAB Set initial branch and label number; 0=automatic
IIS Control solution output of branch direction vector; 0=never, 3=always
IID Control diagnostic output; 0=none, 1=little, 2=normal, 4=extensive
ITMX Maximum # of iterations for locating special solutions/points
ITNW Maximum # of correction steps
NWTN Corrector uses full newton for NWTN steps
JAC User defines derivatives; 0=no, 1=yes
EPSL, EPSU, EPSS Convergence criterion: parameters, solution components, special points
DS Start step size
DSMIN, DSMAX Step size interval DSMIN  h  DSMAX

IADS Step size adaption every IADS steps; 0=o↵
NPAR Maximum number of parameters
THL, THU list of parameter and solution weights
UZR, UZSTOP list of values for user defined output
SP, STOP list of bifurcations to check and bifurcation stop conditions
NUNSTAB, NSTAB HomCont: unstable and stable manifold dimensions
IEQUIB, ITWIST, ISTART HomCont: control solution types adjoint, starting
IREV, IFIXED, IPSI HomCont: control reversibility, fixed parameters, test functions

115

13

A.3 Format of AUTO output files

The files fort.8 or s.NAME have the following format:

first identifying line:

ibr : the index of the branch

ntot : the index of the point

itp : the type of point

lab : the label of the point

nfpr : the number of free parameters used in the computation

isw : the value of isw used in the computation

ntpl : the number of points in the time interval [0,1]

for which solution data are written

nar : the number of values written per point

(nar=ndim+1, since t and u(i), i=1,..,ndim are written)

nrowpr: the number of lines printed following the identifying line

and before the next data set or the end of the file

(used for quickly skipping a data set when searching)

ntst : the number of time intervals used in the discretization

ncol : the number of collocation points used

nparx : the dimension of the array par

following this are ntpl lines containing

t u_1(t) u_2(t) ... u_ndim(t)

following this is a line containing the indices of the free parameters

icp(i) for i=1,...,nfpr

followed by a line containing the derivative of parameters wrt arclength

rl_dot(i) for i=1,...,nfpr

following this are ntpl lines containing the derivative of the solution wrt arclength

u_dot_1(t) u_dot_2(t) ... u_dot_ndim(t)

followed by the parameter values

par(i) for i=1,...,nparx

If we set IID=3, then the files fort.9 or d.NAME contain the residuals of the reduced system in the following

format:

Residuals of reduced system:

NDIM differential equations, NBC boundary conditions, NINT integral conditions,

pseudo-arclength condition

14

A.4 AUTO-07P projects

The following three sample projects could be pursued by participants:

• Demo pp2: if you would like to use prepared auto files, try this demo to continue equilibria of the planar

ODE, locate and continue saddle-node and Hopf bifurcations, and continue periodic orbits.

• Compute a circle using continuation: this problem allows you to implement an algebraic problem in auto.

• Compute and continue a pulse solution: this project is about the computation of travelling waves in auto

via a boundary-value-problem formulation. Starting data come from an explicit solution.

The source files for the solutions of these projects are contained in the directory

auto-tutorial/projects

Other sample project are listed in the following section.

Predator-prey model: Consider the predator-prey model

u̇ = bu(1− u)− uv − a(1− e−cu), v̇ = −v + duv

where u, v ≥ 0 and a, b, c, d > 0. This system is used for the auto demo pp2 for which details are given in the

auto manual. The code is set up in the directory auto-pp2-demo: go to this directory and follow the commands

outlined in the README file.

Compute a circle with auto: Trace out the circle x2 + y2 = 1 numerically with auto using continuation.

The solution can be found in the directory auto-circle.

Pulses in a bistable partial differential equation: Consider the bistable PDE

ut = uxx − u+ au3, x ∈ R,

which admits the standing pulse solution u(x, t) =
√

2 sech(x) when a = 1. Compute and continue these pulses

numerically in auto starting from the exact solution. Experiment with using different truncation intervals and

different values of ntst. The solution can be found in the directory auto-bistable.

15

A.5 Additional AUTO-07P projects

Computation of real eigenvalues: Take your favorite n × n matrix A and determine its real eigenvalues

numerically with auto via continuation:

• auto: solve the algebraic system (A−λ)v = 0 for v by continuation in λ ∈ R with starting data (v, λ) = 0.

Enable detection of branch points. What do you find?

• Theory: investigate why this algorithm works.

Hopf bifurcations and branch switching: Consider the Brusselator

u̇ = a− (b+ 1)u+ u2v, v̇ = bu− u2v

where u, v ≥ 0 and a, b > 0. This system has the unique equilibrium (u, v) = (a, b/a).

• auto: continue the equilibrium numerically and investigate its Hopf bifurcations. Trace out the curve

of Hopf bifurcations in (a, b)-space, and compute the periodic orbits that bifurcate from the equilibrium.

Check fort.9 to see whether the periodic orbits are stable or unstable.

• Theory: compare the location of the Hopf bifurcation curve in (a, b)-space with the theoretical prediction.

Pitchfork bifurcations and branch switching: Consider the second-order equation

ü = sin(u)

[
cos(u)− 1

γ

]
that describes a bead that slides on a wire hoop. This system has the equilibrium u = 0 for all values of γ.

Investigate its bifurcations numerically using auto: branch switch onto any bifurcating solutions by (i) using

the branch switching algorithm built into auto and (ii) adding a symmetry-breaking term.

Fronts in the Nagumo equation: Consider the Nagumo PDE

ut = uxx + u(u− a)(1− u), x ∈ R,

which admits the travelling fronts u(x, t) = 1 + tanh((x+ ct)/2) with c = (1− 2a)/
√

2 for 0 < a < 1. Compute

and continue these fronts numerically in auto starting from the exact solution. Experiment with using different

truncation intervals and different values of ntst.

Finite-difference approximations of PDEs: Consider the Nagumo PDE

ut = uxx − cux + u(u− a)(1− u)

in a moving coordinate frame on a large interval (−L,L) with Dirichlet boundary conditions at x = ±L.

Discretize this PDE in space using centered finite differences and implement the resulting large algebraic system

in auto. Using appropriate values of L and the step size (you need to experiment), find the travelling waves

u(x) = 1+tanh(x/2) with c = (1−2a)/
√

2 in auto and determine the stability of the front by checking fort.9.

Plot the solution profiles in matlab and compare them with the exact solution.

16

References

[1] D. Avitabile, D. J. B. Lloyd, J. Burke, E. Knobloch and B. Sandstede. To snake or not to snake in the planar

Swift–Hohenberg equation. SIAM Journal on Applied Dynamical Systems 9 (2010) 704–733.

[2] A. R. Champneys and B. Sandstede. Numerical computation of coherent structures. In: Numerical Contin-

uation Methods for Dynamical Systems (B. Krauskopf, H. M. Osinga and J. Galan-Vioque, eds.). Springer,

2007, 331–358.

[3] D. J. B. Lloyd, B. Sandstede, D. Avitabile and A. R. Champneys. Localized hexagon patterns of the planar

Swift–Hohenberg equation. SIAM J. Appl. Dynam. Syst. 7 (2008) 1049–1100.

17

	Installation and documentation material for AUTO
	Newton's method
	Continuation methods
	Scope of AUTO's capabilities
	Implementation
	Case study: Localized rolls in the one-dimensional Swift–Hohenberg equation
	Tips and tricks for using AUTO
	Computation of multi-dimensional patterns
	AUTO files for the case study auto_SH_phase
	Explanation of the constants that appear in the constants file
	Format of AUTO output files
	AUTO-07P projects
	Additional AUTO-07P projects

