Computing Spectra of Linear Operators Using Finite Differences

J. Nathan Kutz

Department of Applied Mathematics
University of Washington
Seattle, WA 98195-2420
Email: [kutz@amath.washington.edu]

Introduction: Spectral Stability

Consider the nonlinear PDE evolution

$$
\dot{u}=N\left(x, u, u_{x}, u_{x x}, \ldots\right)
$$

Equilibrium solution

$$
N\left(x, U, U_{x}, U_{x x}, \ldots\right)=0
$$

Linear stability

> perturbation

$$
u(x, t)=U(x)+\epsilon v(x, t)
$$

Associated Eigenvalue Problem

Separation of variables

$$
v(x, t)=w(x) \mathrm{e}^{\lambda t}
$$

Eigenvalue problem $\mathscr{L}[U(x)]=\frac{\partial N}{\partial U}+\frac{\partial N}{\partial U_{x}} \partial_{x}+\frac{\partial N}{\partial U_{x x}} \partial_{x}^{2}+\cdots$

$$
\mathscr{L}[U(x)] w(x)=\lambda w(x)
$$

Linear stability
$\operatorname{Re}(\lambda) \leq 0 \quad$ spectrally stable
$\operatorname{Re}(\lambda)>0 \quad$ spectrally unstable

Finite Differences and Taylor Series

Taylor expand

$$
\begin{aligned}
& f(t+\Delta t)=f(t)+\Delta t \frac{d f(t)}{d t}+\frac{\Delta t^{2}}{2!} \frac{d^{2} f(t)}{d t^{2}}+\frac{\Delta t^{3}}{3!} \frac{d^{3} f\left(c_{1}\right)}{d t^{3}} \\
& f(t-\Delta t)=f(t)-\Delta t \frac{d f(t)}{d t}+\frac{\Delta t^{2}}{2!} \frac{d^{2} f(t)}{d t^{2}}-\frac{\Delta t^{3}}{3!} \frac{d^{3} f\left(c_{2}\right)}{d t^{3}}
\end{aligned}
$$

Add

$$
\begin{array}{cc}
\text { approximation } \\
\frac{d f(t)}{d t}=\frac{f(t+\Delta t)-f(t-\Delta t)}{2 \Delta t}-\frac{\Delta t^{2}}{6} \frac{d^{3} f(c)}{d t^{3}}
\end{array}
$$

Higher-Order Accuracy

Taylor expand again

$$
\begin{aligned}
& f(t+\Delta t)-f(t-\Delta t)=2 \Delta t \frac{d f(t)}{d t}+\frac{2 \Delta t^{3}}{3!} \frac{d^{3} f(t)}{d t^{3}}+\frac{\Delta t^{5}}{5!}\left(\frac{d^{5} f(c 1)}{d t^{5}}+\frac{d^{5} f(c 2)}{d t^{5}}\right) \\
& f(t+2 \Delta t)-f(t-2 \Delta t)=4 \Delta t \frac{d f(t)}{d t}+\frac{16 \Delta t^{3}}{3!} \frac{d^{3} f(t)}{d t^{3}}+\frac{32 \Delta t^{5}}{5!}\left(\frac{d^{5} f(c 3)}{d t^{5}}+\frac{d^{5} f(c 4)}{d t^{5}}\right)
\end{aligned}
$$

$8 \times$ (first) and subtract

$$
\frac{d f(t)}{d t}=\frac{\text { approximation }}{\text { | }} \frac{-f(t+2 \Delta t)+8 f(t+\Delta t)-8 f(t-\Delta t)+f(t-2 \Delta t)}{12 \Delta t}+\frac{\Delta t^{4}}{30} f^{(5)}(c)
$$

Finite Difference Tables

$O\left(\Delta t^{2}\right)$ center-difference schemes

$$
\begin{aligned}
& f^{\prime}(t)=[f(t+\Delta t)-f(t-\Delta t)] / 2 \Delta t \\
& f^{\prime \prime}(t)=[f(t+\Delta t)-2 f(t)+f(t-\Delta t)] / \Delta t^{2} \\
& f^{\prime \prime \prime}(t)=[f(t+2 \Delta t)-2 f(t+\Delta t)+2 f(t-\Delta t)-f(t-2 \Delta t)] / 2 \Delta t^{3} \\
& f^{\prime \prime \prime \prime}(t)=[f(t+2 \Delta t)-4 f(t+\Delta t)+6 f(t)-4 f(t-\Delta t)+f(t-2 \Delta t)] / \Delta t^{4}
\end{aligned}
$$

$$
O\left(\Delta t^{4}\right) \text { center-difference schemes }
$$

$$
\begin{aligned}
& f^{\prime}(t)=[-f(t+2 \Delta t)+8 f(t+\Delta t)-8 f(t-\Delta t)+f(t-2 \Delta t)] / 12 \Delta t \\
& f^{\prime \prime}(t)= {[-f(t+2 \Delta t)+16 f(t+\Delta t)-30 f(t)} \\
&+16 f(t-\Delta t)-f(t-2 \Delta t)] / 12 \Delta t^{2} \\
& f^{\prime \prime \prime}(t)=[-f(t+3 \Delta t)+8 f(t+2 \Delta t)-13 f(t+\Delta t) \\
&\quad+13 f(t-\Delta t)-8 f(t-2 \Delta t)+f(t-3 \Delta t)] / 8 \Delta t^{3} \\
& f^{\prime \prime \prime \prime}(t)=[-f(t+3 \Delta t)+ 12 f(t+2 \Delta t)-39 f(t+\Delta t)+56 f(t) \\
&\quad-39 f(t-\Delta t)+12 f(t-2 \Delta t)-f(t-3 \Delta t)] / 6 \Delta t^{4}
\end{aligned}
$$

Forward and Backward Differences

$O\left(\Delta t^{2}\right)$ forward- and backward-difference schemes

$$
\begin{aligned}
& f^{\prime}(t)=[-3 f(t)+4 f(t+\Delta t)-f(t+2 \Delta t)] / 2 \Delta t \\
& f^{\prime}(t)=[3 f(t)-4 f(t-\Delta t)+f(t-2 \Delta t)] / 2 \Delta t \\
& f^{\prime \prime}(t)=[2 f(t)-5 f(t+\Delta t)+4 f(t+2 \Delta t)-f(t+3 \Delta t)] / \Delta t^{3} \\
& f^{\prime \prime}(t)=[2 f(t)-5 f(t-\Delta t)+4 f(t-2 \Delta t)-f(t-3 \Delta t)] / \Delta t^{3}
\end{aligned}
$$

Required for incorporating boundary conditions

Numerical Round-Off

Consider the error in approximating the first derivative

$$
\frac{d y}{d t}=\frac{-f(t+2 \Delta t)+8 f(t+\Delta t)-8 f(t-\Delta t)+f(t-2 \Delta t)}{12 \Delta t}+E(y(t), \Delta t)
$$

The error includes round-off and truncation

$$
E=\frac{-e(t+2 \Delta t)+8 e(t+\Delta t)-8 e(t-\Delta t)+e(t-2 \Delta t)}{12 \Delta t}+\frac{\Delta t^{4}}{30} \frac{d^{5} y(c)}{d t^{5}}
$$

Assume round-off $|e(t+\Delta t)| \leq e_{r}$ and $M=\max \left\{\left|y^{\prime \prime \prime \prime \prime}(c)\right|\right\}$

$$
|E|=\frac{3 e_{r}}{2 \Delta t}+\frac{\Delta t^{4} M}{30} \quad \text { minimum at } \quad \Delta t=\left(\frac{45 e_{r}}{4 M}\right)^{1 / 5}
$$

Boundary Conditions: Pinned $u(0)=u(l)=0$

$$
\frac{\partial^{2} u}{\partial x^{2}} \rightarrow \frac{1}{\Delta x^{2}}\left[\begin{array}{rrrrrr}
-2 & 1 & 0 & \cdots & 0 & 0 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & \\
\vdots & & & & & \vdots \\
& & & & & 0 \\
\vdots & \cdots & 0 & 1 & -2 & 1 \\
0 & 0 & \cdots & 0 & 1 & -2
\end{array}\right]\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

pinned boundaries $\quad u_{0}=u_{n+1}=0$

Boundary Conditions: Periodic $u(0)=u(l)$

$$
\frac{\partial^{2} u}{\partial x^{2}} \rightarrow \frac{1}{\Delta x^{2}}\left[\begin{array}{rrrrrr}
-2 & 1 & 0 & \cdots & 0 & 1 \\
1 & -2 & 1 & 0 & \cdots & 0 \\
0 & \ddots & \ddots & \ddots & & \\
\vdots & & & & & \vdots \\
& & & & & 0 \\
\vdots & \cdots & 0 & 1 & -2 & 1 \\
1 & 0 & \cdots & 0 & 1 & -2
\end{array}\right]\left(\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{n}
\end{array}\right)
$$

periodic boundaries

$$
u_{0}=u_{n+1}
$$

Boundary Conditions: No Flux $\frac{\partial u(0)}{\partial x}=\frac{\partial u(l)}{\partial x}=0$

no flux condition

$$
\left.\begin{array}{c}
\frac{\partial u(0)}{\partial x}=\frac{-3 u_{0}+4 u_{1}-u_{2}}{2 \Delta x}=0
\end{array} \rightarrow u_{0}=\frac{4}{3} u_{1}-\frac{1}{3} u_{2}\right)
$$

General Boundaries

General [Sturm-Liouville] boundary conditions

$$
\begin{aligned}
& \alpha_{1} u(0)+\beta_{1} \frac{\partial u(0)}{\partial x}=\gamma_{1} \\
& \alpha_{2} u(l)+\beta_{2} \frac{\partial u(l)}{\partial x}=\gamma_{2}
\end{aligned}
$$

Difficult to incorporate into matrix structure

- shooting methods

- relaxation methods

Algorithm

- choose domain length and discretization size
- construct linear operator
- implement boundary conditions
- use eigenvalue/eigenvector solver: $\mathrm{O}\left[\mathrm{N}^{3}\right]$ [or shooting/relaxation methods]
- construct eigenfunctions

Example: Mathieu Equation

Classic Example

$$
y^{\prime \prime}+(a-2 q \cos (2 x)) y=0 \Longleftrightarrow-y^{\prime \prime}+2 q \cos (2 x) y=a y
$$

Operator $-\partial_{x}^{2}+2 q \cos (2 x)$ is self-adjoint (real spectrum)

Spectrum for Mathieu Equation

UW Applied Mathematics \square

Computing the Ground State

Convergence study and CPU time $[\mathrm{q}=2$)

	Accuracy: 10^{-3}		Accuracy: 10^{-6}		Accuracy: 10^{-9}	
	Matrix size	CPU time	Matrix size	CPU time	Matrix size	CPU time
FDM2	239	$\begin{aligned} & 0.43 \mathrm{sec} \\ & 0.01 \mathrm{sec} \end{aligned}$	$\begin{aligned} & 8000 \\ & 293 \end{aligned}$	$\begin{aligned} & 1 \text { hour } \\ & 0.77 \mathrm{sec} \end{aligned}$	$\begin{array}{r} \text { - } / \mathrm{A} \\ 1630 \end{array}$	$2.5 \mathrm{~min}$
FDM4	52					

What about band-gap structure

- increase domain length

- Floquet theory

Calculating the Bands: Domain Length

Increase the domain length $[q=2$]

Calculating the Bands: Floquet Theory

Make use of Floquet [Bloch] theory

$$
y(x+L)=\mathrm{e}^{{ }^{\mathrm{i} \mu L} y(x)}
$$

with Floquet [characteristic] exponents $\mu \in[0,2 \pi / L)$

- keep fixed domain
- discretize $\mu_{k}=2(k-1) / P, k=1, \ldots, D$
- solve D O[N^{3}) equations

Implementing Floquet Theory

Floquet theory modifies matrix corners

$$
D_{2}^{(4, h)}=\frac{1}{12 h^{2}}\left(\begin{array}{lllllllll}
-30 & 16 & -1 & 0 & \cdots & \ldots & 0 & -\mathrm{e}^{-\mathrm{i} \theta} & 16 \mathrm{e}^{-\mathrm{i} \theta} \\
16 & -30 & 16 & -1 & 0 & \ldots & \ldots & 0 & -\mathrm{e}^{-\mathrm{i} \theta} \\
-1 & 16 & -30 & 16 & -1 & 0 & \ldots & \ldots & 0 \\
0 & -1 & 16 & -30 & 16 & -1 & 0 & \cdots & \cdots \\
& & & \ddots & \ddots & \ddots & & & \\
\ldots & \ldots & 0 & -1 & 16 & -30 & 16 & -1 & 0 \\
0 & \ldots & \cdots & 0 & -1 & 16 & -30 & 16 & -1 \\
-\mathrm{e}^{\mathrm{i} \theta} & 0 & \ldots & \cdots & 0 & -1 & 16 & -30 & 16 \\
16 \mathrm{e}^{\mathrm{i} \theta} & -\mathrm{e}^{\mathrm{i} \theta} & 0 & \cdots & \cdots & 0 & -1 & 16 & 30
\end{array}\right)
$$

Floquet Theory vs. Domain Length

Compare methods for computing band $[\mathrm{q}=2$]

	$\delta_{2}=0.25$		$\delta_{2}=0.025$		$\delta_{2}=0.0025$	
	D	CPU time	D	CPU time	D	CPU time
FDM4 matrix size $=1172$	1	9 min	N/A	-	N/A	- .
FDM4, $D>1$	4	8 sec	32	1 min	310	10 min

Use Floquet Theory!

Example: Periodic NLS

Consider the system

$$
\left(\begin{array}{cc}
0 & L_{-}(k) \\
-L_{+}(k) & 0
\end{array}\right)\binom{U}{V}=\lambda\binom{U}{V}
$$

with

$$
\begin{aligned}
& L_{-}(k) u=-u^{\prime \prime}+\left(2 k^{2} \operatorname{sn}^{2}(x, k)-k^{2}\right) u \\
& L_{+}(k) v=-v^{\prime \prime}+\left(6 k^{2} \operatorname{sn}^{2}(x, k)-4-k^{2}\right) v
\end{aligned}
$$

and Jacobi sine function $\operatorname{sn}(x, k)$

Spectrum of Periodic NLS

Importance of Floquet Slicing

Accuracy and Convergence

Example: 2D Mathieu Equation

Consider

$$
-\frac{1}{2}\left(\psi_{x x}+\psi_{y y}\right)+f(x, y) \psi=\lambda \psi
$$

with

$$
f(x, y)=A \sin ^{2} x \sin ^{2} y
$$

Operation Count: $\mathrm{O}\left[\left(\mathrm{N}^{2}\right]^{3}\right]=\mathrm{O}\left[\mathrm{N}^{6}\right]$

Laplacian in 2D

$$
\nabla^{2} \psi=\frac{\partial^{2} \psi}{\partial x^{2}}+\frac{\partial^{2} \psi}{\partial y^{2}}
$$

Discretize: $\quad \frac{\psi(x+\Delta x, y, t)-2 \psi(x, y, t)+\psi(x-\Delta x, y, t)}{\Delta x^{2}}$

$$
+\frac{\psi(x, y+\Delta y, t)-2 \psi(x, y, t)+\psi(x, y-\Delta y, t)}{\Delta y^{2}}
$$

Let $\psi_{m n}=\psi\left(x_{m}, y_{n}\right)$
$-4 \psi_{m n}+\psi_{(m-1) n}+\psi_{(m+1) n}+\psi_{m(n-1)}+\psi_{m(n+1)}$

must stack 2D data: periodic boundaries add structure

Laplacian in 2 D

Laplacian in 2D

$\left[\begin{array}{ccccccccccccccc}-4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1\end{array}\right]$
$n x=n y=4$
I=eye(n) ; \% idendity matrix of size nXn
B=kron(I,A)+kron(A,I); \% 2-D differentiation matrix

Matlab easily builds 2D Laplacian

Band Gap Structure

First three band-gap structures

2D Dominant Eigenfunctions

First three eigenfunctions for $\mu_{\mathrm{x}}=\mu_{\mathrm{y}}=0$

2D Eigenfunctions

First three eigenfunctions for $\mu_{\mathrm{x}}=\mu_{\mathrm{y}}=1 / 4$

Summary and Conclusions

- simple, simple, simple
- boundary conditions at edge of matrices
- eigenvalue solvers make use of sparse structure
- Floquet theory for resolution of bands
- costly/impractical for 2D-3D problems

