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Introduction:  Spectral Stability 

Consider the nonlinear PDE evolution

Equilibrium solution

Linear stability
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perturbation
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Associated Eigenvalue Problem 

Separation of variables

Eigenvalue problem

Linear stability

€ 

Re(λ) ≤ 0
Re(λ) > 0

spectrally stable

spectrally unstable
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Finite Differences and Taylor Series 

Taylor expand

slope formula with error 
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Add
errorapproximation



Higher-Order Accuracy 

Taylor expand again

slope formula with improved error 
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8 x (first) and subtract
errorapproximation



Finite Difference Tables

neighboring points determine accuracy
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Forward and Backward Differences

asymmetric neighboring points
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Required for incorporating boundary conditions



Numerical Round-Off

round-off error dominates below 
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Consider the error in approximating the first derivative

The error includes round-off and truncation

Assume round-off and 

minimum at 

truncationround-off



Boundary Conditions:  Pinned 

tri-diagonal matrix structure 
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pinned boundaries



Boundary Conditions:  Periodic 

tri-diagonal matrix structure with corners 
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periodic boundaries



Boundary Conditions:  No Flux 

no longer symmetry matrix
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no flux condition



General Boundaries

no longer symmetry matrix
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General (Sturm-Liouville) boundary conditions

Difficult to incorporate into matrix structure

• shooting methods

• relaxation methods



Algorithm 

Easily extends to vectors and higher dimensions

• choose domain length and discretization size

• construct linear operator 

• implement boundary conditions

• use eigenvalue/eigenvector solver:  O(N3)
   (or shooting/relaxation methods)

• construct eigenfunctionsU
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Example:  Mathieu Equation

compute with matlab, maple, mathematica, or homemade code
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Classic Example

Operator                            is self-adjoint (real spectrum)



Spectrum for Mathieu Equation 

a is eigenvalue

q

a
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Computing the Ground State
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Convergence study and CPU time (q=2)

0.43 sec
0.01 sec

1 hour
0.77 sec

     -
  2.5 min

• increase domain length

• Floquet theory 

beyond Matlab7’s ability

What about band-gap structure



Calculating the Bands:  Domain Length
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Increase the domain length (q=2)

traditional way:  very costly for recovering bands

doubling gives 8x 
computational increase



Calculating the Bands:  Floquet Theory
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Make use of Floquet (Bloch) theory

with Floquet (characteristic) exponents

• keep fixed domain

• discretize 

• solve D O(N3) equations

larger period solutions



Implementing Floquet Theory
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Floquet theory modifies matrix corners

with Floquet slices



Floquet Theory vs. Domain Length
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Compare methods for computing band (q=2)

band density

beyond Matlab7’s ability

9 min
8 sec

  -
1 min

   -
10 min

  Use Floquet Theory!



Example:  Periodic NLS 

Consider the system

with

U
W

 A
pp

lie
d 

M
at

he
m

at
ic

s

and Jacobi sine function



Spectrum of Periodic NLS 

k=0.7k=0 k=0.9 k=1
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Importance of Floquet Slicing 

€ 

µ ≠ 0

€ 

µ = 0
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Accuracy and Convergence 
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Example:  2D Mathieu Equation 

Consider

with
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Operation Count:  O((N2)3)=O(N6)



Laplacian in 2D
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must stack 2D data:  periodic boundaries add structure

Consider

Discretize:

Let



Laplacian in 2D
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nx=ny=4



Laplacian in 2D
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Matlab easily builds 2D Laplacian

nx=ny=4



Band Gap Structure 

Quasi-momentum representation

First three band-gap structures
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A=1A=-0.3 A=0



2D Dominant Eigenfunctions 

First three eigenfunctions for µx = µy=0U
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2D Eigenfunctions

First three eigenfunctions for µx = µy=1/4
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Summary and Conclusions
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• simple, simple, simple

• boundary conditions at edge of matrices 

• eigenvalue solvers make use of sparse structure

• Floquet theory for resolution of bands

• costly/impractical for 2D-3D problems
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