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1 Introduction and motivation

In this talk, I will discuss how to compute a numerical

approximation to the spectrum of a linear operator

with periodic coefficients. This is useful for several

reasons. In the framework of this workshop, it tells us

something about the spectral stability of periodic

equilibrium solutions of partial differential equations.



Spectral stability

Consider the evolution system

ut = N(u). (∗)

with an equilibrium solution ue:

N(ue) = 0.

Is this solution stable or unstable? Start with linear

stability analysis first: let

u = ue + εψ.

Substitute in (∗) and retain first-order terms in ε:

ψt = L[ue(x)]ψ.



Separation of variables: ψ(x, t) = eλtφ(x):

L[ue(x)]φ = λφ.

• This is a spectral problem.

• If <(λ) ≤ 0 for all bounded φ(x), then ue is

spectrally stable.



2 Spectra of linear operators with periodic

coefficients

Let’s look at scalar problems in one spatial dimension:

Our starting point is

Lφ = λφ,

with

L =
∑M
k=0 fk(x)∂kx, fk(x + L) = fk(x).



2 Spectra of linear operators with periodic

coefficients

Let’s look at scalar problems in one spatial dimension:

Our starting point is

Lφ = λφ,

with

L =
∑M
k=0 fk(x)∂kx, fk(x + L) = fk(x).

We wish to determine

• The spectrum σ(L) = {λ ∈ C : ||φ|| < ∞}.

• For any λ ∈ σ(L): what are the corresponding

eigenfunctions φ(λ, x)?



What space do the eigenfunctions live in? There are

several natural options:

1. The eigenfunctions are periodic with the same

period as the coefficients

2. The period of the eigenfunctions is an integer

multiple of that of the coefficients

3. The eigenfunctions are bounded
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Comments:

• (3) is the most natural one for almost all

applications

• (1) or (2) are easy to do numerically, but are not

always justified by the applications.

• All three approaches would lead us to conclude

“instability” in the previous example. They do not

always lead to the same conclusion.



3 Hill’s method for scalar 1-D problems

Let’s return to our original spectral problem:

Lφ = λφ,

with

L =
∑M
k=0 fk(x)∂kx, fk(x + L) = fk(x).

We have

fk(x) =
∞∑

j=−∞
f̂k,j e

i2πjx/L
,

with

f̂k,j =
1

L

∫ L/2

−L/2
fk(x) e

−i2πjx/L
dx.



How about the eigenfunctions φ? For this, we need

Floquet’s theorem.



How about the eigenfunctions φ? For this, we need

Floquet’s theorem.

Floquet’s theorem: Consider

φx = A(x)φ, A(x + L) = A(x). (∗)

Floquet’s theorem states that the fundamental matrix

Φ for this system has the decomposition

Φ(x) = P (x)eRx,

with P (x + L) = P (x) and R constant.



Conclusion: all bounded solutions of (∗) are of the

form

φ = e
iµx

∞∑
j=−∞

φ̂j e
i2πjx/L

,

with µ ∈ [0, 2π/L).



Conclusion: all bounded solutions of (∗) are of the

form

φ = e
iµx

∞∑
j=−∞

φ̂j e
i2πjx/L

,

with µ ∈ [0, 2π/L).

Thus the eigenfunctions are expanded as

φ = e
iµx

∞∑
j=−∞

φ̂j e
i2πjx/PL

,

with µ ∈ [0, 2π/PL)



Next:

• Substitute in the equation, cancel eiµx

• Determine the n-th Fourier coefficient



Next:

• Substitute in the equation, cancel eiµx

• Determine the n-th Fourier coefficient

This gives

⇒ L̂(µ)φ̂ = λφ̂ ,

with φ̂ = (· · · , φ̂−2, φ̂−1, φ̂0, φ̂1, φ̂2, · · · )T and

L̂(µ)nm =


0 if P |/n−m

M∑
k=0

f̂
k,n−m

P

[
i

(
µ +

2πm

PL

)]k
if P |n−m



More transparently:

fk(x)∂kx ↔


∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


with P − 1 zero “diagonals” between any pair of

successive non-zero “diagonals”.



More transparently:

fk(x)∂kx ↔


∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗


with P − 1 zero “diagonals” between any pair of

successive non-zero “diagonals”.

Note:
so far, no approximations have been made. At this

point: Cut off at N modes → (2N + 1) × (2N + 1)

matrix.
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Algorithm:

• Find Fourier coefficients of all functions

• Fix P

• Choose a number of µ values µ1, µ2, . . .

• For all chosen µ values, construct L̂N(µ)

• Use favorite eigenvalue/vector solver

• Reconstruct eigenfunctions corresponding to

eigenvalues
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History

• Fourier (1807), Floquet (1883)

• Hill (1886)

• various isolated papers (Hall (1978),. . . )

• Pavlenko and Petviashvili (1982)

• various isolated papers (Fil’chenkov et al. (1987),

Blennerhassett and Bassom (2002), . . . )



4 Vector, Multi-D, whole-line or nonlocal

problems

Vector problems

For vector problems

Lφ = λφ,

where L is a matrix of linear operators, replace every

matrix entry Lij by L̂ij



Multidimensional problems

• Expand the coefficient functions in a

multidimensional Fourier series.

• Expand the eigenfunctions using Bloch theory.

For instance, in 2-D:

φ = e
iµ1x+iµ2y

∞∑
j1,j2=−∞

φ̂j1j2 e
i2πj1x/P1L1+i2πj2x/P2L2,

with µ1 ∈ [0, 2π/P1L1), µ2 ∈ [0, 2π/P2L2).



Whole-line problems

Note: this is not supposed to work... Let’s push our

luck!

• Restrict the coefficient functions to large period

boxes.

• Proceed as before.

• Some bands will degenerate to isolated points

(eigenvalues), so one may judge the accuracy of

this limiting process.



Nonlocal problems

If the spectral problem contains convolutions∫∞
−∞R(x− y)φ(y)dy,

or antiderivatives ∫ x
a φ(y)dy,

these are easily incorporated to the Fourier-series

based approach.



5 Examples

the return of the algorithm:

• Find Fourier coefficients of all functions

• Choose a number of µ values µ1, µ2, . . .

• For all chosen µ values, construct L̂N(µ)

• Use favorite eigenvalue/vector solver

• Reconstruct eigenfunctions corresponding to

eigenvalues



5.1 The Mathieu equation

The Mathieu equation is

−y′′ + 2q cos(2x)y = ay.

We have: L = −∂2
x + 2q cos(2x), L = π, M = 2

f2(x) = −1 → f̂2 = (−1),

f1(x) = 0 → f̂1 = (),

f0(x) = 2q cos(2x) → f̂0 = (q, 0, q).



5.1 The Mathieu equation

The Mathieu equation is

−y′′ + 2q cos(2x)y = ay.

We have: L = −∂2
x + 2q cos(2x), L = π, M = 2

f2(x) = −1 → f̂2 = (−1),

f1(x) = 0 → f̂1 = (),

f0(x) = 2q cos(2x) → f̂0 = (q, 0, q).

The Mathieu equation is equivalent to

qφ̂n−P +
(
µ + 2n

P

)2
φ̂n + qφ̂n+P = aφ̂n, n ∈ Z.



Truncation leads to the family of matrices
(µ− 2N/P )2 q

· · · q

q (µ− 2/P )2 · · ·
q µ2 q

· · · (µ+ 2/P )2 q

q · · ·
q (µ+ 2N/P )2

 ,

of which the spectrum is computed for different µ

values.
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Numerical

approximations of the

spectrum for the

Mathieu equation, using

different values of the

Floquet resolution.
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to P = 1, P = 2,

P = 3, and Finite

differences, 4th order



Accuracy: 10−3 Accuracy: 10−6 Accuracy: 10−9

Matrix size CPU time Matrix size CPU time Matrix size CPU time

FFHM (P = 1) 5 0.5 7 0.6 9 0.5

FFHM (P = 2) 7 1 13 1 17 1

FFHM (P = 4) 9 1.5 25 2.6 33 3.3

FDM2 239 1075 8000 5.5E6 N/A N/A

FDM4 52 25 293 1100 1630 1.5E5

Comparing the FDM (2nd and 4th order) and FFHM for computing the lowest eigenvalue
ã ≈ −1.513956885056448 with q = 2. All CPU times are given relative to those of the
FFHM with P = 2, which are 0.0004s, 0.0007s and 0.0010s, respectively.



Accuracy: 10−3 Accuracy: 10−6 Accuracy: 10−9

Matrix size CPU time Matrix size CPU time Matrix size CPU time

FFHM (P = 1) 5 0.5 7 0.6 9 0.5

FFHM (P = 2) 7 1 13 1 17 1

FFHM (P = 4) 9 1.5 25 2.6 33 3.3

FDM2 239 1075 8000 5.5E6 N/A N/A

FDM4 52 25 293 1100 1630 1.5E5

Comparing the FDM (2nd and 4th order) and FFHM for computing the lowest eigenvalue
ã ≈ −1.513956885056448 with q = 2. All CPU times are given relative to those of the
FFHM with P = 2, which are 0.0004s, 0.0007s and 0.0010s, respectively.

δ2 = 0.25 δ2 = 0.025 δ2 = 0.0025
D CPU time D CPU time D CPU time

FFHM (P = 1) 12 0.4 124 1 1190 1.3

FFHM (P = 2) 6 1 62 1 590 1

FFHM (P = 4) 3 2 31 1.3 295 1.3

FDM4

Matrix size=1172 1 5.4E5 N/A N/A N/A N/A

FDM4, D > 1 4 8100 32 2100 310 1700

Comparing the FDM (4th order) and FFHM for computing a uniform approximation to
the second spectral band with q = 2. All CPU times are given relative to those of the
FFHM, with P = 2, which are 0.001s, 0.03s and 0.35s, respectively.
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a

The spectrum of the Mathieu equation for varying

values of q



5.2 Hill’s equation with a finite number of gaps

Consider the two Hill equations

−u′′ +
(
2k2sn2(x, k) − k2

)
u= λu, (a)

−v′′ +
(
6k2sn2(x, k) − 4 − k2

)
v= λv. (b)

Here sn(x, k) is Jacobi’s elliptic sine function.



5.2 Hill’s equation with a finite number of gaps

Consider the two Hill equations

−u′′ +
(
2k2sn2(x, k) − k2

)
u= λu, (a)

−v′′ +
(
6k2sn2(x, k) − 4 − k2

)
v= λv. (b)

Here sn(x, k) is Jacobi’s elliptic sine function.

The spectra of these two equations are shown below.



Then

sn
2
(x, k) =

1

k2

(
1 −

E(k)

K(k)

)
−

2π2

k2K2(k)

∞∑
n=1

nqn

1 − q2n
cos

(
nπx

K(k)

)
,

with 

k′ =
√

1 − k2,

K(k) =

∫ π/2

0

(
1 − k

2
sin

2
x
)−1/2

dx,

E(k) =

∫ π/2

0

(
1 − k

2
sin

2
x
)1/2

dx,

q = e−πK(k′)/K(k).
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Matrix size

The accuracy of Hill’s method, compared to that of

the 4th order finite-difference method.
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The eigenfunction

sn(x, k)dn(x, k) of (b)

with k = 0.9 and the

pointwise error of its

approximation.
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The eigenfunction

sn(x, k)dn(x, k) of (b)

with k = 0.9 and the

pointwise error of its

approximation.
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5.3 An example from Bose-Einstein condensates

Consider

iψt = −1
2ψxx + |ψ|2ψ + ψV0 sin2 x.

This equation has an exact solution

ψ =
(√
B cosx + i

√
B − V0 sinx

)
e

−i(B+1/2)t
, (∗)

where B is a free parameter.



The dynamics of the exact

solution (∗) with V0 = −1,

B = 1/2 (bottom) and

B = 1 (top). The top

picture appears stable.



The spectra corresponding to the linear stability

problem of the exact solution (∗) for varying B values:

B ∈ [0, 1].



5.4 A 2-D NLS equation periodic example

Consider

iψt − ψxx + ψyy + 2|ψ|2ψ = 0.

This equation has exact 1-D solutions of the form

ψ = φ(x)eiωt = k sn(x, k)ei(1+k2)t.
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(ω − 6φ2 + ρ2 + ∂2
x)U= λV

−(ω − 2φ2 + ρ2 + ∂2
x)V= λU .



5.4 A 2-D NLS equation periodic example

Consider

iψt − ψxx + ψyy + 2|ψ|2ψ = 0.

This equation has exact 1-D solutions of the form

ψ = φ(x)eiωt = k sn(x, k)ei(1+k2)t.

The linear stability problem is:

(ω − 6φ2 + ρ2 + ∂2
x)U= λV

−(ω − 2φ2 + ρ2 + ∂2
x)V= λU .

Thus: for a given value of k, compute spectra for a

range of ρ values



In the literature, you may find graphs like (k =
√

0.8):

ρ

λ

Unstable eigenvalues for the linear stability problem of

the sn solution, using periodic perturbations.



We can now compute “all” unstable modes:

ρ

λ

Unstable eigenvalues for the linear stability problem of

the sn solution (k =
√

0.8).



5.5 A 2-D NLS equation soliton example

Consider

iψt + ψxx − ψyy + 2|ψ|2ψ = 0.

This equation has the one-dimensional soliton solution

ψ(x, t) = sech(x)eit.



5.5 A 2-D NLS equation soliton example

Consider

iψt + ψxx − ψyy + 2|ψ|2ψ = 0.

This equation has the one-dimensional soliton solution

ψ(x, t) = sech(x)eit.

The associated spectral problem is

(ω − 6φ2 − ρ2 − ∂2
x)U = λV

−(ω − 2φ2 − ρ2 − ∂2
x)V = λU,

which has received lots of attention in the literature.
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6 spectrUW: A black-box spectral calculator

• Hill’s method constitutes a black-box algorithm →

• SpectrUW: a black-box software package for the

computation of spectra of linear operators.

- One-dimensional scalar or vector operators

with parameters

- Two-dimensional scalar or vector operators

with parameters

- Three-dimensional scalar or vector operators

with parameters
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