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Traveling Wave

Consider the evolution equation
Uy = F(Uy Ugy Uggesy - - -)-

A traveling wave with speed s is a solution
u(x,t) = u(x — st).

Or equivalently a stationary solution of

Up — SUgy = F (U, Uz, Ugzey - - ).

BYU e

MATHEMATICS

Existence of Profile

» A front is a heteroclinic point
A pulse is a homoclinic point

« A wavetrain is a periodic solution
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Nonlinear Stability

Examine flow “near” the stationary solution
u(z,0) = u(z) + v(z,0),
where ||v(z,0)|| is small.

Asymptotically orbital stability when
lim u(z,t) = u(x + 9).
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Example
* Isentropic Navier Stokes

v — Uy =0

ug + p(v) = (%)m

(play movie)
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Spectral Stability

Linearization about the profile

vy = (dF(0) — $0,)v+ Q(V, Vgy Uy - - ).
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Lv Higher order

Spectral Stability when o (L) N P = (), where
P = {X|Re(\) > 0}\{0}.
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EVANS FUNCTION
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Eigenvalue Problem

Write the eigenvalue problem
Av = Lo, —00 < x < 00,
as a first-order system
W = Az, )W, W ecCn
W(+o0) = 0.
Assume: A(z, ) is consistently split and
asymptotically constant inz.
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Evans Function

Define
DA)=W{ A AWTAW A AW

-
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St(A) U=—(\)

where {W;"}ioi and {W; }j—y11 are analytic
bases of the stable/unstable manifolds of
x = o0, respectively.
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Problems with Stiffness

Maintaining linear independence of (W, Y
and {W; }j—x+1 is hard.
Common Options:

 Orthogonalization — bad for winding
numbers due to loss of analyticity.

» Compound-Matrix Method — numerically
prohibitive for moderate values of n.
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COMPOUND-MATRIX METHOD
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Compound-Matrix Method |

» Developed by Gilbert & Bakkus (1966) and
Ng & Reid (1979).

 First used to numerically compute Evans
functions by Pego (1995).

« Use in Evans functions rediscovered and
further developed by Brin & Zumbrun
(1998) and Bridges & collaborators (2002).
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Compound Matrix Method II

Lift to wedge-product space
W' =AW (z, W, W e ).

Flow of smallest simple mode at x = co
corresponds to the k-form spanning the
stable manifold. Similar approach holds for
r = —OQ.
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Lifting to wedge-product space |

o Let {w;}! , beabasis for C*. Then
{wi, Ao ANw;y, |31 < o<t

is a basis for A*(C").

Hence A : C™ — C™ induces a linear map
AF) 2 AF(C™) — AR (CT)

satisfying...
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Lifting to wedge-product space II

A, AL AWy,

k
=) wi, A ANAwg AL A wg,
j=1




BYU -ah

MATHEMATICS

Lifting to wedge-product space 111

If in an eigenbasis Aw; = p;w;,
then A(k)w“ ANAN /7

:szl SN Awg AN wy,
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Example

“Good” Boussinesq equation
Ut = Ugz — Uggre — (U7)aa)
admits the profile
u(€) = 3(1 — s?)sech” (@ﬁ) , &=ux— st,
which is known to be stable when 1 <|s| <1

and unstable when |s| < 1.
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Example (cont)

Linearization about the profile yields

N2y — 28 u’ = (1 — s?)u” —u'"" — (2uu)”,

hence
0 1 0 0 u
0 0 1 0 u'
AlzA) = 0 0 0 R Y
~A% — 22Uy, 2Xs —4u, (1—5?)—2u 0 u'”
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Example (cont)

Lifting to wedge-product space yields

0 1 0 0 0 0
0 0 1 1 0 0

2 s —4a, (1—-s3)—2a 0 0 1 0

AP (,2) = 0 ( 0) 0 0 1 0
A2+ 20y 0 0 (1-s%)—2a 0 1

0 M 42, 0 —2Xs+4a, O 0
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Compound-Matrix Blow-Up

Note: )
» Matrix-vector multiplication scales as (%)

e Note:
(3) =70, () = 3432, (3) = 184, 756.

» Sparse matrix-vector multiplication scales as
(k(n—k)+1)(%)-

MATHEMATICS

POLAR-COORDINATE METHOD

-& ‘%‘

11



MATHEMATICS

Evans Function Reformulation |

Let w, =W, .. w5)and W_=W_,...W,)
then fora k& x k matrix oy anda(n — k) x (n — k)
matriX a_, we have W_ =Q_a_and W, = Q a,
where QfQ, =1, and QFQ_ =1, 4.
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Evans Function Reformulation 11

Then
WA AW = (det ap)(QF A AQY)
——
and T+
Wi A AW = (det a ) (2 Ao AQy).

——
o

Hence, we define the Evans function to be
D(A) = det (W, W_) |o=0= y4+7-det (Q4,Q) [z=0.
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Continuous Orthogonalization

Choose k x k matrix-valued function «a(z)
such that

W(z) = Qx)a(z), W,QecC™k QHQ=1,.

Then W’ = A(z, \)W becomes
V' (z) = Az, \)Q(z) + Qz) o (z)r(x) 1.
—— ——

g(z)
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Drury Method |

g =—QTAQ
then

QO = AQ — QOH AQ
= (I — QOf)AQ.

13
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Drury Method 11

* |nvariant on Stiefel Manifold
Vi(C) = {Q e C*k | QHQ = I,,)
or
E71(0) where £(Q):=Q"Q - I,.
* Numerically unstable

E'=gHE + &y.
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Davey Method |

Let
g=—(QEQ) 10 AQ
then of
QO = AQ — QOQTAQ
= (I — QO AQ.

14
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Davey Method I

* Numerically stable & = 0.

 But still not attracting on the Stiefel
manifold.

» One variation is to add a damping term
Q' = (I -QQHAQ+~Q(I — QFQ),
then & = —2v(I +&)E.
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Polar Coordinate Method |

Note
AQa = Q' + Qd'.
We can left multiply by QF to get
o = QT AQao
since

QT = QI — QO AQ = 0.

15



Bvu WL

MATHEMATICS

Polar Coordinate Method 11

By Abel’s theorem, we get
v =tr (QATAQ)y, v =deta.
All combined, we have
{Q’ = (I — QQHAQ
7 =tr (QTAQ)y
Shooting on both ends yields
D(A) = v4y-det (24,0-) [a—o.
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Operational Count

» With damping the polar-coordinate method
grows as
kn? + 4k°n.

» With sparse solver, the compound-matrix
method grows as

(k(n—k)+1)(}).
* Break even between n=7 and n=8.

16



BYU %

MATHEMATICS

OTHER NUMERICAL ISSUES
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Other Issues

Kato’s Method

Integrated Coordinates

Geometric Integrators
Contours...how big is big enough?
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EXAMPLES
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“GOOd,’
Boussinesq
(revisited)

0 0.05 0.1 0.15 0.2

We compute the Evans function along real axis from A =0 to A = 0.2

18
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“Good” 2
Boussinesq
(re-revisited) - \
R S e
The image of the closed contour I'(t) = 0.16 + 0.05¢>™.
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Isentropic Navier Stokes

(show Matlab figures)
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Future Directions

Push the limits of the method.

Test different continuous orthogonalization
methods (e.g., geometric integrators).

Semi-spectral methods instead of shooting?
Further development of STABLAB.
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