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Traveling Wave
Consider the evolution equation

A traveling wave with speed     is a solution

Or equivalently a stationary solution of

ut = F(u, ux, uxx, . . .).

ut − sux = F(u, ux, uxx, . . .).

u(x, t) = û(x− st).
s

Existence of Profile
• A front is a heteroclinic point

• A pulse is a homoclinic point

• A wavetrain is a periodic solution
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Nonlinear Stability
Examine flow “near” the stationary solution

where                  is small.

Asymptotically orbital stability when

u(x, 0) = û(x) + v(x, 0),

kv(x, 0)k

lim
t→∞

u(x, t) = û(x+ δ).

Example
• Isentropic Navier Stokes

(play movie)

vt − ux = 0
ut + p(v) =

³ux
v

´
x
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Spectral Stability
Linearization about the profile

Spectral Stability when                           where

vt = (dF(û)− s∂x)v| {z }
Lv

+Q(v, vx, vxx, . . .).| {z }
Higher order

σ(L) ∩ P = ∅,
P = {λ | <e(λ) ≥ 0}\{0}.

EVANS FUNCTION
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Eigenvalue Problem
Write the eigenvalue problem

as a first-order system

Assume:                  is consistently split and 
asymptotically constant in
A(x,λ)

(
W 0 = A(x,λ)W, W ∈ Cn
W (±∞) = 0.

x.

λv = Lv, −∞ < x <∞,

Evans Function
Define

where                 and                     are analytic 
bases of the stable/unstable manifolds of

respectively.

{W+
i }ki=1 {W−j }nj=k+1

x = ±∞,

D(λ) = W+
1 ∧ . . . ∧W+

k| {z }
S+(λ)

∧W−k+1 ∧ . . . ∧W−n| {z }
U−(λ)
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Problems with Stiffness

Maintaining linear independence of                   
and                     is hard.  

Common Options:
• Orthogonalization – bad for winding 

numbers due to loss of analyticity.
• Compound-Matrix Method – numerically 

prohibitive for moderate values of 

{W+
i }ki=1

{W−j }nj=k+1

n.

COMPOUND-MATRIX METHOD
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Compound-Matrix Method I
• Developed by Gilbert & Bakkus (1966) and 

Ng & Reid (1979).
• First used to numerically compute Evans 

functions by Pego (1995).
• Use in Evans functions rediscovered and 

further developed by Brin & Zumbrun
(1998) and Bridges & collaborators (2002).

Compound Matrix Method II
Lift to wedge-product space

Flow of smallest simple mode at      
corresponds to the k-form spanning the 
stable manifold.  Similar approach holds for

x =∞

W 0 = A(k)(x, λ)W, W ∈ C(
n
k).

x = −∞.
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Lifting to wedge-product space I
• Let                be a basis for          Then

is a basis for
Hence                            induces a linear map

satisfying…

{wi}ni=1 Cn.
{wi1 ∧ . . . ∧ wik | i1 < . . . < ik}

Λk(Cn).
A : Cn −→ Cn

A(k) : Λk(Cn) −→ Λk(Cn)

Lifting to wedge-product space II

A(k)wi1 ∧ . . . ∧ wik

=

kX
j=1

wi1 ∧ . . . ∧ Awij ∧ . . . ∧ wik .
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Lifting to wedge-product space III

If in an eigenbasis
then 

Awi = µiwi,

A(k)wi1 ∧ . . . ∧ wik

=

kX
j=1

wi1 ∧ . . . ∧ Awij ∧ . . . ∧ wik

=

⎛⎝ kX
j=1

µij

⎞⎠wi1 ∧ . . . ∧ wik .

Example
“Good” Boussinesq equation

admits the profile

which is known to be stable when
and unstable when

utt = uxx − uxxxx − (u2)xx,

ū(ξ) = 3
2(1− s2)sech2

³√
1−s2
2 ξ

´
, ξ = x− st,

1
2 ≤ |s| < 1

|s| < 1
2 .
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Example (cont)
Linearization about the profile yields

hence
λ2u− 2sλu0 = (1− s2)u00 − u0000 − (2ūu)00,

A(x,λ) =

⎛⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1

−λ2 − 2ūxx 2λs− 4ūx (1− s2)− 2ū 0

⎞⎟⎟⎠ , W =

⎛⎜⎜⎝
u
u0

u00

u000

⎞⎟⎟⎠ .

Example (cont)
Lifting to wedge-product space yields

A(2)(x,λ) =

⎛⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 1 0 0

2λs − 4ūx (1− s2)− 2ū 0 0 1 0
0 0 0 0 1 0

λ2 + 2ūxx 0 0 (1 − s2)− 2ū 0 1
0 λ2 + 2ūxx 0 −2λs + 4ūx 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Compound-Matrix Blow-Up
Note:
• Matrix-vector multiplication scales as
• Note:

• Sparse matrix-vector multiplication scales as

¡
n
k

¢2
.

(k(n− k) + 1)
¡
n
k

¢
.

¡
8
4

¢
= 70,

¡
14
7

¢
= 3432,

¡
20
10

¢
= 184, 756.

POLAR-COORDINATE METHOD
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Evans Function Reformulation I
Let                               and
then for a           matrix       and a        
matrix        we have                    and
where                   and

W+ = (W
+
1 . . .W

+
k ) W− = (W

−
k+1 . . .W

−
n )

k × k
W+ = Ω+α+W− = Ω−α−

α+ (n− k)× (n − k)
α−,

ΩH−Ω− = In−k.ΩH+Ω+ = Ik

Evans Function Reformulation II
Then

and

Hence, we define the Evans function to be

W+
1 ∧ · · · ∧W+

k = (det α+)| {z }
γ+

(Ω+1 ∧ · · · ∧ Ω+k )

W−k+1 ∧ · · · ∧W−n = (det α−)| {z }
γ−

(Ω−k+1 ∧ · · · ∧ Ω−n ).

D(λ) = det (W+,W−) |x=0= γ+γ−det (Ω+,Ω−) |x=0.
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Continuous Orthogonalization
Choose            matrix-valued function        

such that

Then                            becomesW 0 = A(x,λ)W

k × k α(x)

W (x) = Ω(x)α(x), W,Ω ∈ Cn×k,ΩHΩ = Ik.

Ω0(x) = A(x,λ)Ω(x) +Ω(x)α0(x)α(x)−1| {z }
g(x)

.

Drury Method I
Let

then

g = −ΩHAΩ

Ω0 = AΩ− ΩΩHAΩ
= (I − ΩΩH)AΩ.
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Drury Method II
• Invariant on Stiefel Manifold

or
where

• Numerically unstable

Vk(C) = {Ω ∈ Cn×k | ΩHΩ = Ik}

E−1(0) E(Ω) := ΩHΩ− Ik.

E 0 = gHE + Eg.

Davey Method I
Let

then

Ω0 = AΩ− ΩΩ†AΩ
= (I − ΩΩ†)AΩ.

g = − (ΩHΩ)−1ΩH| {z }
Ω†

AΩ
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Davey Method II
• Numerically stable
• But still not attracting on the Stiefel

manifold.
• One variation is to add a damping term

then

E 0 = 0.

E 0 = −2γ(I + E)E .
Ω0 = (I − ΩΩ†)AΩ+ γΩ(I − ΩHΩ),

Polar Coordinate Method I
Note

We can left multiply by         to get

since

AΩα = Ω0 +Ωα0.

Ω†

α0 = Ω†AΩα

Ω†Ω0 = Ω†(I −ΩΩ†)AΩ = 0.
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Polar Coordinate Method II
By Abel’s theorem, we get

All combined, we have

Shooting on both ends yields

γ0 = tr (Ω†AΩ)γ, γ = det α.

(
Ω0 = (I −ΩΩ†)AΩ
γ0 = tr (Ω†AΩ)γ

D(λ) = γ+γ−det (Ω+,Ω−) |x=0.

Operational Count
• With damping the polar-coordinate method 

grows as

• With sparse solver, the compound-matrix
method grows as

• Break even between n=7 and n=8.
(k(n − k) + 1)

¡
n
k

¢
.

kn2 + 4k2n.
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OTHER NUMERICAL ISSUES

Other Issues
• Kato’s Method
• Integrated Coordinates
• Geometric Integrators
• Contours…how big is big enough?
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EXAMPLES

“Good”
Boussinesq
(revisited)
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We compute the Evans function along real axis from λ = 0 to λ = 0.2
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“Good”
Boussinesq

(re-revisited)
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(b)

The image of the closed contour Γ(t) = 0.16 + 0.05e2πit.

Isentropic Navier Stokes
(show Matlab figures)
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Future Directions
• Push the limits of the method.
• Test different continuous orthogonalization

methods (e.g., geometric integrators).
• Semi-spectral methods instead of shooting?
• Further development of STABLAB.


