

Numerical Evans Function Computation

Jeffrey Humpherys

Brigham Young University

INTRODUCTION

Traveling Wave

Consider the evolution equation

$$
u_{t}=\mathcal{F}\left(u, u_{x}, u_{x x}, \ldots\right)
$$

A traveling wave with speed s is a solution

$$
u(x, t)=\hat{u}(x-s t)
$$

Or equivalently a stationary solution of

$$
u_{t}-s u_{x}=\mathcal{F}\left(u, u_{x}, u_{x x}, \ldots\right)
$$

Existence of Profile

- A front is a heteroclinic point
- A pulse is a homoclinic point
- A wavetrain is a periodic solution

Nonlinear Stability

Examine flow "near" the stationary solution

$$
u(x, 0)=\hat{u}(x)+v(x, 0)
$$

where $\|v(x, 0)\|$ is small.

Asymptotically orbital stability when

$$
\lim _{t \rightarrow \infty} u(x, t)=\hat{u}(x+\delta)
$$

- Isentropic Navier Stokes

$$
\begin{aligned}
v_{t}-u_{x} & =0 \\
u_{t}+p(v) & =\left(\frac{u_{x}}{v}\right)_{x}
\end{aligned}
$$

(play movie)

Spectral Stability

Linearization about the profile

$$
v_{t}=\underbrace{\left(d \mathcal{F}(\hat{u})-s \partial_{x}\right) v}_{L v}+\underbrace{Q\left(v, v_{x}, v_{x x}, \ldots\right)}_{\text {Higher order }}
$$

Spectral Stability when $\sigma(L) \cap P=\emptyset$, where

$$
P=\{\lambda \mid \Re e(\lambda) \geq 0\} \backslash\{0\} .
$$

EVANS FUNCTION

Write the eigenvalue problem

$$
\lambda v=L v, \quad-\infty<x<\infty
$$

as a first-order system

$$
\left\{\begin{array}{l}
W^{\prime}=A(x, \lambda) W, \quad W \in \mathbb{C}^{n} \\
W(\pm \infty)=0
\end{array}\right.
$$

Assume: $\quad A(x, \lambda)$ is consistently split and asymptotically constant in x.

Evans Function

Define
$D(\lambda)=\underbrace{W_{1}^{+} \wedge \ldots \wedge W_{k}^{+}}_{S^{+}(\lambda)} \wedge \underbrace{W_{k+1}^{-} \wedge \ldots \wedge W_{n}^{-}}_{U^{-}(\lambda)}$
where $\left\{W_{i}^{+}\right\}_{i=1}^{k}$ and $\left\{W_{j}^{-}\right\}_{j=k+1}^{n}$ are analytic bases of the stable/unstable manifolds of $x= \pm \infty$, respectively.

Problems with Stiffness

Maintaining linear independence of $\left\{W_{i}^{+}\right\}_{i=1}^{k}$ and $\left\{W_{j}^{-}\right\}_{j=k+1}^{n}$ is hard.
Common Options:

- Orthogonalization - bad for winding numbers due to loss of analyticity.
- Compound-Matrix Method - numerically prohibitive for moderate values of n.

COMPOUND-MATRIX METHOD

- Developed by Gilbert \& Bakkus (1966) and Ng \& Reid (1979).
- First used to numerically compute Evans functions by Pego (1995).
- Use in Evans functions rediscovered and further developed by Brin \& Zumbrun (1998) and Bridges \& collaborators (2002).

Lift to wedge-product space

$$
W^{\prime}=A^{(k)}(x, \lambda) W, \quad W \in \mathbb{C}^{\binom{n}{k}} .
$$

Flow of smallest simple mode at $x=\infty$ corresponds to the k-form spanning the stable manifold. Similar approach holds for $x=-\infty$.

Lifting to wedge-product space I

- Let $\left\{w_{i}\right\}_{i=1}^{n}$ be a basis for \mathbb{C}^{n}. Then

$$
\left\{w_{i_{1}} \wedge \ldots \wedge w_{i_{k}} \mid i_{1}<\ldots<i_{k}\right\}
$$

is a basis for $\Lambda^{k}\left(\mathbb{C}^{n}\right)$.
Hence $A: \mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$ induces a linear map

$$
A^{(k)}: \Lambda^{k}\left(\mathbb{C}^{n}\right) \longrightarrow \Lambda^{k}\left(\mathbb{C}^{n}\right)
$$

satisfying...

Lifting to wedge-product space II

$$
\begin{aligned}
A^{(k)} w_{i_{1}} & \wedge \ldots \wedge w_{i_{k}} \\
& =\sum_{j=1}^{k} w_{i_{1}} \wedge \ldots \wedge A w_{i_{j}} \wedge \ldots \wedge w_{i_{k}}
\end{aligned}
$$

Lifting to wedge-product space III

If in an eigenbasis $A w_{i}=\mu_{i} w_{i}$, then $A^{(k)} w_{i_{1}} \wedge \ldots \wedge w_{i_{k}}$

$$
\begin{aligned}
& =\sum_{j=1}^{k} w_{i_{1}} \wedge \ldots \wedge A w_{i_{j}} \wedge \ldots \wedge w_{i_{k}} \\
& =\left(\sum_{j=1}^{k} \mu_{i_{j}}\right) w_{i_{1}} \wedge \ldots \wedge w_{i_{k}}
\end{aligned}
$$

"Good" Boussinesq equation

$$
u_{t t}=u_{x x}-u_{x x x x}-\left(u^{2}\right)_{x x}
$$

admits the profile

$$
\bar{u}(\xi)=\frac{3}{2}\left(1-s^{2}\right) \operatorname{sech}^{2}\left(\frac{\sqrt{1-s^{2}}}{2} \xi\right), \quad \xi=x-s t,
$$

which is known to be stable when $\frac{1}{2} \leq|s|<1$ and unstable when $|s|<\frac{1}{2}$.

Example (cont)

Linearization about the profile yields

$$
\lambda^{2} u-2 s \lambda u^{\prime}=\left(1-s^{2}\right) u^{\prime \prime}-u^{\prime \prime \prime \prime}-(2 \bar{u} u)^{\prime \prime},
$$

hence

$$
A(x, \lambda)=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\lambda^{2}-2 \bar{u}_{x x} & 2 \lambda s-4 \bar{u}_{x} & \left(1-s^{2}\right)-2 \bar{u} & 0
\end{array}\right), \quad W=\left(\begin{array}{c}
u \\
u^{\prime} \\
u^{\prime \prime} \\
u^{\prime \prime \prime}
\end{array}\right) .
$$

Example (cont)

Lifting to wedge-product space yields

$$
A^{(2)}(x, \lambda)=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
2 \lambda s-4 \bar{u}_{x} & \left(1-s^{2}\right)-2 \bar{u} & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\lambda^{2}+2 \bar{u}_{x x} & 0 & 0 & \left(1-s^{2}\right)-2 \bar{u} & 0 & 1 \\
0 & \lambda^{2}+2 \bar{u}_{x x} & 0 & -2 \lambda s+4 \bar{u}_{x} & 0 & 0
\end{array}\right) .
$$

Compound-Matrix Blow-Up

Note:

- Matrix-vector multiplication scales as $\binom{n}{k}^{2}$.
- Note:

$$
\binom{8}{4}=70,\binom{14}{7}=3432,\binom{20}{10}=184,756 .
$$

- Sparse matrix-vector multiplication scales as

$$
(k(n-k)+1)\binom{n}{k} .
$$

POLAR-COORDINATE METHOD

BYU
 MATHEMATICS
 Evans Function Reformulation I

Let $W_{+}=\left(W_{1}^{+} \ldots W_{k}^{+}\right)$and $W_{-}=\left(W_{k+1}^{-} \ldots W_{n}^{-}\right)$ then for a $k \times k$ matrix α_{+}and a $(n-k) \times(n-k)$ matrix α_{-}, we have $W_{-}=\Omega_{-} \alpha_{-}$and $W_{+}=\Omega_{+} \alpha_{+}$ where $\Omega_{+}^{H} \Omega_{+}=I_{k}$ and $\Omega_{-}^{H} \Omega_{-}=I_{n-k}$.

Evans Function Reformulation II

Then
and

$$
\mathrm{W}_{1}^{+} \wedge \cdots \wedge W_{k}^{+}=\underbrace{\left(\operatorname{det} \alpha_{+}\right)}_{\gamma_{+}}\left(\Omega_{1}^{+} \wedge \cdots \wedge \Omega_{k}^{+}\right)
$$

$$
W_{k+1}^{-} \wedge \cdots \wedge W_{n}^{-}=\underbrace{\left(\operatorname{det} \alpha_{-}\right)}_{\gamma_{-}}\left(\Omega_{k+1}^{-} \wedge \cdots \wedge \Omega_{n}^{-}\right) \text {. }
$$

Hence, we define the Evans function to be $D(\lambda)=\left.\operatorname{det}\left(W_{+}, W_{-}\right)\right|_{x=0}=\left.\gamma_{+} \gamma_{-} \operatorname{det}\left(\Omega_{+}, \Omega_{-}\right)\right|_{x=0}$.

Continuous Orthogonalization

Choose $k \times k$ matrix-valued function $\alpha(x)$ such that

$$
W(x)=\Omega(x) \alpha(x), \quad W, \Omega \in \mathbb{C}^{n \times k}, \Omega^{H} \Omega=I_{k} .
$$

Then $W^{\prime}=A(x, \lambda) W$ becomes

$$
\Omega^{\prime}(x)=A(x, \lambda) \Omega(x)+\Omega(x) \underbrace{\alpha^{\prime}(x) \alpha(x)^{-1}}_{g(x)} .
$$

Drury Method I

Let

$$
g=-\Omega^{H} A \Omega
$$

then

$$
\begin{aligned}
\Omega^{\prime} & =A \Omega-\Omega \Omega^{H} A \Omega \\
& =\left(I-\Omega \Omega^{H}\right) A \Omega .
\end{aligned}
$$

Drury Method II

- Invariant on Stiefel Manifold

$$
\mathcal{V}_{k}(\mathbb{C})=\left\{\Omega \in \mathbb{C}^{n \times k} \mid \Omega^{H} \Omega=I_{k}\right\}
$$

or
$\mathcal{E}^{-1}(0)$ where $\mathcal{E}(\Omega):=\Omega^{H} \Omega-I_{k}$.

- Numerically unstable

$$
\mathcal{E}^{\prime}=g^{H} \mathcal{E}+\mathcal{E} g .
$$

Davey Method I

Let
then

$$
g=-\underbrace{\left(\Omega^{H} \Omega\right)^{-1} \Omega^{H}}_{\Omega^{\dagger}} A \Omega
$$

$$
\begin{aligned}
\Omega^{\prime} & =A \Omega-\Omega \Omega^{\dagger} A \Omega \\
& =\left(I-\Omega \Omega^{\dagger}\right) A \Omega .
\end{aligned}
$$

Davey Method II

- Numerically stable $\mathcal{E}^{\prime}=0$.
- But still not attracting on the Stiefel manifold.
- One variation is to add a damping term

$$
\Omega^{\prime}=\left(I-\Omega \Omega^{\dagger}\right) A \Omega+\gamma \Omega\left(I-\Omega^{H} \Omega\right),
$$

then $\quad \mathcal{E}^{\prime}=-2 \gamma(I+\mathcal{E}) \mathcal{E}$.

Polar Coordinate Method I

Note

$$
A \Omega \alpha=\Omega^{\prime}+\Omega \alpha^{\prime}
$$

We can left multiply by Ω^{\dagger} to get

$$
\alpha^{\prime}=\Omega^{\dagger} A \Omega \alpha
$$

since

$$
\Omega^{\dagger} \Omega^{\prime}=\Omega^{\dagger}\left(I-\Omega \Omega^{\dagger}\right) A \Omega=0
$$

Polar Coordinate Method II

By Abel's theorem, we get

$$
\gamma^{\prime}=\operatorname{tr}\left(\Omega^{\dagger} A \Omega\right) \gamma, \quad \gamma=\operatorname{det} \alpha
$$

All combined, we have

$$
\left\{\begin{array}{l}
\Omega^{\prime}=\left(I-\Omega \Omega^{\dagger}\right) A \Omega \\
\gamma^{\prime}=\operatorname{tr}\left(\Omega^{\dagger} A \Omega\right) \gamma
\end{array}\right.
$$

Shooting on both ends yields

$$
D(\lambda)=\left.\gamma_{+} \gamma_{-} \operatorname{det}\left(\Omega_{+}, \Omega_{-}\right)\right|_{x=0}
$$

Operational Count

- With damping the polar-coordinate method grows as

$$
k n^{2}+4 k^{2} n .
$$

- With sparse solver, the compound-matrix method grows as

$$
(k(n-k)+1)\binom{n}{k} .
$$

- Break even between $\mathrm{n}=7$ and $\mathrm{n}=8$.

OTHER NUMERICAL ISSUES

Other Issues

- Kato’s Method
- Integrated Coordinates
- Geometric Integrators
- Contours...how big is big enough?

EXAMPLES

We compute the Evans function along real axis from $\lambda=0$ to $\lambda=0.2$

The image of the closed contour $\Gamma(t)=0.16+0.05 e^{2 \pi i t}$.

Isentropic Navier Stokes

(show Matlab figures)

Future Directions

- Push the limits of the method.
- Test different continuous orthogonalization methods (e.g., geometric integrators).
- Semi-spectral methods instead of shooting?
- Further development of STABLAB.

