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A.    Formulate the problem
1. Some definitions and questions

x - a spatial coordinate in n-dimensions, t - time
g(x,t) - an M-component function of (x,t)

(1)

We assume that if g(x,0) is given in a suitable 
space, then (1) determines g(x,t) for all t > 0.
G(x) - an equilibrium (or stationary) solution, so

N(G) = 0. (2)

Is G(x) stable to small but arbitrary 
perturbations in initial data?

∂tg = N(g)



Other Questions
Q1.  Why do we study stability at all?

Why is there a “stability theory” ?
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Opinion:  Because we can’t solve the initial-
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Other Questions
Q1.  Why do we study stability at all?

Why is there a “stability theory” ?

Opinion:  Because we can’t solve the initial-
value problem for (1) in any general 
sense.

a) Comprehend the solutions of (1) by analyzing 
the stability of isolated solutions, like G(x). 

b) Stability is a qualitative question, so answering it 
should (might?) be easier than solving (1).



Other Questions
Q2.  Stability of G(x) means that any other solution 

of (1) that starts close to G(x) stays close forever 
(where “close” is defined properly).  But if it 
stays close forever, we should be able to 
linearize (1) about G(x).  
Why is nonlinear stability necessary?



Other Questions
Q2.  Stability of G(x) means that any other solution 

of (1) that starts close to G(x) stays close 
forever (where “close” is defined properly).  But 
if it stays close forever, we should be able to 
linearize (1) about G(x).  
Why is nonlinear stability necessary?

Answer: This reasoning is correct for most 
problems, and linear theory is usually 
qualitatively correct.  But there are 
counter-examples, where linear theory is 
completely misleading.



Example: linear theory fails [A7, p.2]

Variables: x1(t), x2(t), r2 = x1
2 + x2

2,  r 0
Real-valued parameters: α, β

    (3)
dx1

dt
= α ⋅ x2 + β ⋅ x1r,

dx2

dt
= −α ⋅ x1 + β ⋅ x2r.
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Example: linear theory fails [A7, p.2]

Variables: x1(t), x2(t), r2 = x1
2 + x2

2,  r 0
Real-valued parameters: α, β

(3)

(0, 0) solves (3).  Is (0, 0) stable to small perturbations?
Linearized:

=>

Linearly stable

dx1

dt
= α ⋅ x2 + β ⋅ x1r,

dx2

dt
= −α ⋅ x1 + β ⋅ x2r.

dx1

dt
= α ⋅ x2,

dx2

dt
= −α ⋅ x1.

d
dt

(x1
2 + x2

2) =
d
dt

(r2) = 0.
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Nonlinear analysis

=>

=>

=>

dx1

dt
= α ⋅ x2 + β ⋅ x1r,

dx2

dt
= −α ⋅ x1 + β ⋅ x2r.

d
dt

( x1
2 + x2

2

2
) = 0 + β(x1

2 + x2
2) ⋅ r

d
dt

(r2

2
) = β ⋅ r3

dr
dt

= β ⋅ r2



Nonlinear analysis

β > 0 β < 0

r(t) blows up in r(t) 0 as t      
finite time for any asymptotic 
initial condition stability
with r > 0.

dr
dt

= β ⋅ r2

r(t) =
1

β(t* − t)
> 0 r(t) =

1
| β | (t + t0)

> 0

→ → ∞



Nonlinear analysis

β > 0 β < 0

r(t) blows up in r(t) 0 as t      
finite time for any asymptotic 
initial condition stability

What went wrong?

dr
dt

= β ⋅ r2

r(t) =
1

β(t* − t)
> 0 r(t) =

1
| β | (t + t0)

> 0

→ → ∞
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dr
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• For small β, r(t) grows very slowly. The 
linear theory is accurate for a long but finite 
time.
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• For small β, r(t) grows very slowly. The 
linear theory is accurate for a long but finite 
time.

• Two limits
{t for stability, β     0 for linearization}

do not commute.

dr
dt

= β ⋅ r2

→ ∞ →



What went wrong?

• For small β, r(t) grows very slowly. The 
linear theory is accurate for a long but finite 
time.

• Two limits
{t for stability, β     0 for linearization}

do not commute.
• What happens to volume in phase space?

dr
dt

= β ⋅ r2

→ ∞ →



2. General concept:
volume in phase space

a) Let (x1, x2,..xN) be coordinates in  N-dim. phase space
Consider a hypothetical fluid there.
A fluid particle at (x1,…xN) has a velocity

  
G 
v = (v1,...,vN ) = ( dx1

dt
,..., dxN

dt
)



2. General concept:
volume in phase space

a) Let (x1, x2,..xN) be coordinates in  N-dim. phase space
Consider a hypothetical fluid there.
A fluid particle at (x1,…xN) has a velocity

b) Divergence of velocity field

• If everywhere, volume is expanding

• If everywhere, volume is contracting
• If everywhere, volume is conserved 

• Other possibilities exist

  
G 
v = (v1,...,vN ) = ( dx1

dt
,..., dxN

dt
)

  
∇ ⋅

G 
v = ∂v1

∂x1

+ ....+ ∂vN

∂xN

  ∇ ⋅
G
v > 0

  ∇ ⋅
G
v < 0

  ∇ ⋅
G
v = 0



Volume in phase space
c) Back to example problem

v1 =
dx1

dt
= α ⋅ x2 + β ⋅ x1 x1

2 + x2
2 ,

v2 =
dx2

dt
= −α ⋅ x1 + β ⋅ x2 x1

2 + x2
2 .



Volume in phase space
c) Back to example problem

Show

β > 0 expanding
β < 0 contracting
β = 0 conservative

v1 =
dx1

dt
= α ⋅ x2 + β ⋅ x1 x1

2 + x2
2 ,

v2 =
dx2

dt
= −α ⋅ x1 + β ⋅ x2 x1

2 + x2
2 .

  ∇ ⋅
G
v = 3β ⋅ r

⇒
⇒



Volume in phase space
d) In these lectures, develop one theory for 

volume-preserving flows (Hamiltonian), and 
another theory for volume-contracting flows 
(dissipative).



Volume in phase space
d) In these lectures, develop one theory for 

volume-preserving flows (Hamiltonian), and 
another theory for volume-contracting flows 
(dissipative).

Q3:  Can linear theory be misleading in other 
ways?

Answer: Yes
• See HW problem 3 for a Hamiltonian system in 

which linear theory gives a completely wrong 
answer about stabilty

• KAM theory



3. Hamiltonian systems
(See Ch. 1 of [A8] for a nice introduction to Hamiltonian 

mechanics

a)  Finite dimensional, canonical systems
Phase space has 2N dimensions, N < 
Coordinates: (p1, p2,..,pN; q1, q2,…,qN)
A dynamical system moves a point on this 

phase space according to specific rules:

∞

  
dp j

dt
= Pj (

G 
p ,

G 
q ;t),

dq j

dt
= Q j (

G 
p ,

G 
q ;t), j = 1,...,N



Hamiltonian systems
b) This system of 2N ODEs is Hamiltonian if there is 

a 2-continuously differentiable function of    ,    ,
, such that all the ODEs can be written in 

the form

(4)

c) Some consequences of (4)
• If with no explicit time-

dependence, then H is a constant of the motion.  
(Oddly, this is the usual situation.)

Proof:  Compute       , using (4) and the chain rule.

  H(
G
p ,

G
q ;t)

dq j

dt
=

∂H
∂p j

,
dp j

dt
= −

∂H
∂q j

, j =1,...,N

dH
dt

  H = H(
G
p (t),

G
q (t))

  
G
p   

G
q 



Hamiltonian systems

c) Consequences of (4), continued
• Any flow of the form (4) conserves volume in 

phase space.  
Proof: Define velocity components in the usual way, 

and calculate , making use of (4) and the 
differentiability of H.  Show

  ∇ ⋅
G
v 

  
∇ ⋅

G 
v = ∂

∂p j

(
dp j

dtj=1

N

∑ ) +
∂

∂p j

(
dp j

dt
) = 0.



Hamiltonian systems
c) Consequences of (4), continued
• For fixed j, (pj,qj) are coordinates on a 2-D plane 

within the 2N-D phase space.  On that plane,
∂

∂p j

(
dp j

dt
) +

∂
∂q j

(
dq j

dt
) = 0, j =1,...,N .



Hamiltonian systems
c) Consequences of (4), continued
• For fixed j, (pj,qj) are coordinates on a 2-D plane within the 

2N-D phase space.  On that plane,

These are some of Poincare’s integral invariants 
(see 38,44,45 of [A1]).

Unfortunately, these integral invariants tell us nothing about 
a particular solution of the equations.  Volume in phase 
space tells us about the evolution of a collection of 
solutions.

∂
∂p j

(
dp j

dt
) +

∂
∂q j

(
dq j

dt
) = 0, j =1,...,N .



Hamiltonian systems
c) Consequences of (4), continued
• Volume conservation in phase space means that 

if some solutions approach a given solution as 
t , other solutions must move away from it.  

Asymptotic stability never occurs in a 
Hamiltonian system.

→ ∞



Hamiltonian systems
c) A big consequence of (4)
• Let G(τ) denote a specific solution of a Hamiltonian 

system, (4). Let g(t) denote any other solution of (4).  
Denote the distance between g(t) and G(t) at a specific 
time by 

Def’ns: We say that G(t) is stable (in the sense of Lyapunov) 
if for every  ε > 0, there is a δ > 0  such that if 

at t = 0,

then necessarily 

for all t > 0.

A solution that is not stable is unstable.

G − g *

G − g a < δ

G − g b < ε



Hamiltonian systems
d) Infinite-dimensional Hamiltonian systems
• x - represents physical space (in 1,2,3,…,10 dim)

t - time

evolve according to

for j = 1,2,..,N (5)

P, Q may contain spatial derivatives and/or 
integrals.  In addition, there are usually boundary 
conditions, needed for well-posedness.

  

G
p = p1(x,t), p2(x, t),..., pN (x,t)
G 
q = q1(x, t),q2(x,t),...,qN (x, t)

  

∂t p j = Pj (
G
p ,

G
q ;x,t)

∂tq j = Qj (
G 
p ,

G 
q ;x,t) x ∈ D, t > 0.



Hamiltonian systems
d) Infinite-dimensional Hamiltonian systems

• Let be a real-valued 
functional, mapping the phase space to the reals.  
h might contain spatial derivatives or integrals, 
and we require that be 2-differentiable

in p,q.  We define so that

(6)

(See HW problems 4, 5 for examples.)

  H(
G
p ,

G
q ) = [h(

G
p ,

G
q ;x, t]dx∫

  h(
G
p ,

G
q ;x, t)

δH
δp

, δH
δq

  

H(
G
p + δ

G
p ,q + δ

G
q ) = H(

G
p ,

G
q ) +

[(δH
δp

)∫ ⋅ δp + [(δH
δq

) ⋅ δ
G 
q ]dx + O(|δ

G 
p |2,|δ

G 
q |2)



Hamiltonian systems
d) Infinite-dimensional Hamiltonian systems

• We say that the evolution equations in (5) are 
Hamiltonian if they can be written in the form

(7)
∂tq j =

δH
δp j

,

∂t p j = −
δH
δq j

,
j =1,...,N



Hamiltonian systems
•

(7)

• More jargon:  The system (7) is called canonical, and 
(pj,qj) are called conjugate variables.  Here is another way 
to write (7).  Define

Then (7) can be written as

(8)

∂tq j =
δH
δp j

,

∂t p j = −
δH
δq j

,
j =1,...,N

∂tg = J δH
δg

  

g = (
G 
p 
G 
q 

), δH
δg

= (

δH
δp
δH
δq

), J = (
0 I
−I 0

).



Hamiltonian systems
e) Noncanonical Hamiltonian systems
• Let g(x,t) represent the variables in the evolution 

equations in question. We say that the evolution 
equations are Hamiltonian if they can be written in the 
form

, (8)

in terms of a Poisson tensor, J. The canonical 
formulation is a special case of this.

∂tg = J δH
δg



Hamiltonian systems
e) Noncanonical Hamiltonian systems
• The correct way to define Hamiltonian mechanics is in 

terms of a Poisson bracket, [•,•].  The Poisson bracket is
related to the Poisson tensor and the inner product, <•,•> 
through

(9)

• A prominent example of a noncanonical Hamiltonian 
system is the Korteweg-deVries equation

(10)
with 

Gardner [A4] first proved the validity of this formulation, and used it.

[M,N] =<
δM
δg

,J δN
δg

>

∂tu + 6u∂xu + ∂x
3u = 0

J = ∂x, H = [ 1
2∫ (∂xu)2 − u3]dx
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