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1. Statement of the problem
a) Consider a Hamiltonian system of nonlinear partial 

differential equations for g(x,t):

(1)

Let G(x) be an equilibrium (or stationary)  solution of (1):

∂ tg = J δH
δg

J δH
δg

|g=G = 0



1. Statement of the problem
a) Consider a Hamiltonian system of nonlinear partial 

differential equations for g(x,t):

(1)

Let G(x) be an equilibrium (or stationary)  solution of (1):

Q: Is G(x) stable to small perturbations in the initial 
conditions? Or is there a family of solutions of (1), 
g(x,t;α), such that can be made arbitrarily 
small at t = 0, but 

(say) at some t > 0?

∂ tg = J δH
δg

J δH
δg

|g=G = 0

G(x) − g(x,t;α > 2

G(x) − g(x,0;α)



Statement of the problem

b) The choice of norm (or norms) used to 
prove stability for a PDE is an important 
part of the problem.  There are known 
examples of solutions of PDEs that are 
stable in one norm, but not in another.  
(See [B6].)



Statement of the problem
c) Two, very different, strategies

(i)  Linearize (1) about G(x).  If done 
correctly, the linearized equations inherit 
the Hamiltonian structure of (1).  
• Show that G(x) is linearly stable.
• Boost this result into a result for 
nonlinear stability, by showing that the 
nonlinear terms can be controlled by the 
terms in the linear equations, for small 
enough perturbations.
(But it ain’t necessarily so - see Cherry [A3].)



Statement of the problem
(ii) Strategy 2
Find “enough” constants of the motion, possibly 

including the Hamiltonian, , and others. If 
you’re lucky, some combination of constants,

defines a norm on (G-g):

K(g) is a constant of the motion, so it can be made 
arbitrarily small for all t > 0 by making it small 
enough at  t = 0.   DONE!

K(g) = H + 3C1 −
17
π

C2 + 5

H(g)

G − g 2 = K(g)



Statement of the problem
(iia) variation on strategy 2 (Arnold [B1, B2] and others)

is not a norm, but it bounds a

norm in the following way:
• K(G) = 0.
• K(g) > 0 for any g ≠ G in the function space.
• There exist constants {m, c, C} and a norm ||•||, such 

that

Show from this that G(x) is stable in the sense of Lyapunov.  
(See problem 1 of set B.)

This method known to Lagrange of ODEs (see B8, p. 208).

K(g) = H + 3C1 −
17
π

C2 + 5

c G − g m ≤ K(g) ≤ C G − g m

m > 0, 0 < c ≤ C < ∞,



Statement of the problem
d) Critique of each method

(i) Establish linearized stability.  Then boost 
this to nonlinear stability.
• Advantage: linear stability is very well 
developed.  (See this conference.)  
• Disadvantage: Cherry [A2] showed that 
linear stability ≠> nonlinear stability.
• Disadvantage: Proving nonlinear stability 
can be quite hard.



Statement of the problem
d) Critique of each method

(ii) Arnold’s method
• Advantage: Conceptually simple  
• Advantage: Skip linearized dynamics altogether.  
(“Stability theory ought ot be simpler than solving 
full PDE.”) 
• Advantage:  Method is algorithmic (as we’ll see)
• Disadvantage: In it’s current form, it only works for 
some problems.  If you don’t find the “right”
conservation laws, you’re dead.



Statement of the problem
d) Critique of each method

(iii) For either method
• Both methods assume solutions exist for all 
time.  Proving existence is separate. Example 
[B9]:  

in 2-D or 3-D
Constants:  

But if H < 0, solution blows up in finite time!

i∂tψ + ∇2ψ + 2 |ψ |2 ψ = 0

M= |ψ |2 dx,∫
H = [|∇ψ |2 − |ψ |4]dx∫



Statement of the problem
d) Critique of each method

(iii) For either method
• Either method provides sufficient conditions 
for nonlinear stability, when it works.  Failure 
of method does not imply instability.



Statement of the problem
d) Critique of each method

(iii) For either method
• Either method provides sufficient conditions 
for nonlinear stability, when it works.  Failure 
of method does not imply instability.

e)  Open question: The two methods have 
almost nothing in common.  Is there a way to 
combine the two approaches, to obtain a 
method stronger than either by itself?



2. Arnold’s method 
“Energy-Casimir method” in [B5]

a) Q: What is a Casimir?
A In usual formulation of Hamiltonian mechanics:
• Eq’ns of motion: 

• Constants of motion:
• If J is canonical, there are no Casimirs.
If J is not canonical, J may have a null space.  
Then

independent of H. C is a Casimir.  

∂tF = [F,H] =<
δF
δg

,J δH
δg

>

[F,H] = 0

J δC
δg

= 0



2. Arnold’s method 
“Energy-Casimir method” in [B5]

a) Q: What is a Casimir?
Example: Korteweg-deVries equation:

Let

Then

C is a Casimir - a quantity automatically 
conserved, independent of H.  (See HW #2)

J = ∂x

C = g(x,t)dx∫

δC
δg

=1 ⇒ J δC
δg

= 0



Arnold’s method
b) model problem [B1,B2]
2-D flow of an ideal fluid between parallel walls

• eq’ns

periodic  b.c. in x

→ x,u
y,v
↑

y = 0

y =1

∂tu + u∂xu + v∂yu + ∂x p = 0,
∂tv + u∂xv + v∂yv + ∂y p = 0,

∂xu + ∂yv = 0,
v = 0 y = 0,y =1



Arnold’s method
b) model problem [B1,B2]
2-D flow of an ideal fluid between parallel walls

• eq’ns
•stationary sol’n

periodic  b.c. in x Is this flow stable?

→ x,u
y,v
↑

y = 0

y =1

∂tu + u∂xu + v∂yu + ∂x p = 0,
∂tv + u∂xv + v∂yv + ∂y p = 0,

∂xu + ∂yv = 0,
v = 0 y = 0,y =1

u = U(y),
v = 0,
p = 0.



Arnold’s method
c) Rewrite the problem
• Introduce stream function, ψ(x,y,t)

on y = 0, (dy = 0, v = 0), ψ = const
on y = 1, ψ = const

u = ∂yψ, v = −∂xψ .

⇒ ψ =ψo + (u ⋅ dy
(0,0)

(x,y )∫ − v ⋅ dx)



Arnold’s method
c) Rewrite the problem
• Introduce stream function, ψ(x,y,t)

on y = 0, (dy = 0, v = 0), ψ = const
on y = 1, ψ = const

• Eliminate pressure - define vorticity

u = ∂yψ, v = −∂xψ .

⇒ ψ =ψo + (u ⋅ dy
(0,0)

(x,y )∫ − v ⋅ dx)

  ω = −∇ ×
G
u = −∂xv + ∂yu = ∇2ψ



Arnold’s method
c) Rewrite the problem
• Introduce vorticity

• (1) eq’ns of motion
  ω = −∇ ×

G
u = −∂xv + ∂yu = ∇2ψ

∂tω + u∂xω + v∂yω = 0



Arnold’s method
c) Rewrite the problem
• Introduce vorticity

• (1) eq’ns of motion

(2) following a fluid particle

⇒ Each fluid particle labelled by its vorticity

  ω = −∇ ×
G
u = −∂xv + ∂yu = ∇2ψ

∂tω + u∂xω + v∂yω = 0

⇒
Dω
Dt

= 0



Arnold’s method
c) Rewrite the problem
• Introduce vorticity

• (1) eq’ns of motion

(2) following a fluid particle

⇒ Each fluid particle labelled by its vorticity

(3)  

  ω = −∇ ×
G
u = −∂xv + ∂yu = ∇2ψ

∂tω + u∂xω + v∂yω = 0

⇒
Dω
Dt

= 0

∂tω + [∂yψ ⋅ ∂xω −∂yψ ⋅ ∂xω] = 0
Jac(ψ,ω)



Arnold’s method
c) Rewrite the problem

For the stationary flow,

∂tω + [∂yψ ⋅ ∂xω −∂yψ ⋅ ∂xω] = 0
Jac(ψ,ω)

G(x) :
u = U(y),

v = 0,
p = 0,

ψ = U(η)dη
0

y∫
ω = ′ U (y)



Arnold’s method
c) Rewrite the problem

For the stationary flow,

are parallel

∂tω + [∂yψ ⋅ ∂xω −∂yψ ⋅ ∂xω] = 0
Jac(ψ,ω)

∂tω = 0 ⇒ Jac(ψ ,ω ) = 0

G(x) :
u = U(y),

v = 0,
p = 0,

ψ = U(η)dη
0

y∫
ω = ′ U (y)

⇒∇ψ ,∇ω 



Arnold’s method
c) Rewrite the problem

For the stationary flow,

are parallel

Arnold assumes that 

Rayleigh [B7] had shown that  U”(y)=0  =>  instability

∂tω + [∂yψ ⋅ ∂xω −∂yψ ⋅ ∂xω] = 0
Jac(ψ,ω)

∂tω = 0 ⇒ Jac(ψ ,ω ) = 0

G(x) :
u = U(y),

v = 0,
p = 0,

ψ = U(η)dη
0

y∫
ω = ′ U (y)

⇒∇ψ ,∇ω 

dω 
dy

= ′ ′ U (y) ≠ 0



3. The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 1: Start with a Hamiltonian problem



3. The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 1: Start with a Hamiltonian problem
Arnold skips step 1.
(See [B5] - Hamiltonian structure is 

complicated, not needed.)



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 2: Find “enough” constants of  the 
motion.  Combine them with Lagrange 
multipliers.

• kinetic energy:
• horizontal momentum:

• on y = 0, y = 1:

H = [u2 + v 2

2
]dxdy∫

∂tu + ∂x (u2 + p) + ∂y (uv) = 0 ⇒ [u]dxdy∫

∂tu + ∂x (u2 + p) = 0 ⇒
[u]y= 0 dx∫
[u]y=1dx∫



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 2: Find “enough” constants of  the 
motion.  Combine them with Lagrange 
multipliers.

• ω is carried by each fluid particle, and 
particles are conserved, so

• More generally, any smooth function of 
w is conserved. 

[ω]dxdy∫

⇒ Φ(ω)dxdy∫



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 2: Combine them with Lagrange 
multipliers.

Step 3:  If possible, choose Lagrange 
multipliers so that δK = 0 on the stationary 
solution.

(If not possible, stop.  You lose.)

K = [u2 + v 2

2
+ µu + Φ(ω)]dxdy∫

+λ0 [u]y= 0 dx + λ1 [u]y=1dx∫∫



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 3:  If possible, choose Lagrange 
multipliers so that δK = 0 on the stationary 
solution.

Q:  What variables can be varied?
A:  ω, or ψ, or (u,v) but such that 

• Do it!

∇ ⋅ u = 0



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 3:  If possible, choose Lagrange multipliers so 
that δK = 0 on the stationary solution.

Result:

We need

δK = [U(y) + µ −∂y∫ (Φ'(ω ))][δu]dxdy

∂y ( ′ Φ (ω )) = U(y) + µ



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 3:  If possible, choose Lagrange multipliers so 
that δK = 0 on the stationary solution.

Result:

We need

Define 

Then

δK = [U(y) + µ −∂y∫ (Φ'(ω ))][δu]dxdy

∂y ( ′ Φ (ω )) = U(y) + µ

Ψ(y) = U(η)dη
y∫

⇒ Ψ(y) = ′ Φ (ω )dΨ
dy

= U(y) + µ = ∂y ( ′ Φ (ω ))



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 4: No flexibility is left. Take the second 
variation,      , and hope that       is positive 
(or negative) definite.  (If not, you lose.)

Find:

δ 2K δ 2K

δ 2K =
1
2

[(δu)2 + (δv)2 + ′ ′ Φ (ω )(∂yδu −∂x∫ δv)2]dxdy



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 4: No flexibility is left. Take the second 
variation,      , and hope that       is positive 
(or negative) definite.  (If not, you lose.)

Find:

If , then > 0 unless 

“Formal stability” in [B5].

δ 2K δ 2K

δ 2K =
1
2

[(δu)2 + (δv)2 + ′ ′ Φ (ω )(∂yδu −∂x∫ δv)2]dxdy

′ ′ Φ (ω ) ≥ 0 δ 2K δu ≡ 0,δv ≡ 0.



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 4: Second variation.      
Result: If , then is positive definite!    

Hooray.
′ ′ Φ (ω ) ≥ 0 δ 2K



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Step 4: Second variation.      
Result: If , then is positive definite!    

Hooray.
Facts: 
• is the Hamiltonian of the linearized flow.
• is also a quadratic form on (δu, δv).  
• In this problem, there are no degeneracies, so 

being positive definite guarantees 
linear stability!!

• => {U”(y) ≠0 => linear stability}. 

′ ′ Φ (ω ) ≥ 0 δ 2K

δ 2K
δ 2K

δ 2K

′ ′ Φ (ω ) ≥ 0



The algorithm 
Holm, Marsden, Ratiu, Weinstein [B5]

Steps 5 & 6: Convexity & nonlinear stability

•Let (δu, δv) be small but finite.  (U(y)+δu,δv) 
satisfies equations of motion (so

•K(U+δu, δv) is a constant of the motion.
•∆K= K(U+δu, δv)- K(U, 0) =

=

  ∇ ⋅ (δ
G
u ) = 0).

1
2

[(δu)2 + (δv)2 + ′ ′ Φ (ω )(δ ˜ ω )2]dxdy∫



The algorithm 
Steps 5 & 6: Convexity & nonlinear stability

∆K=

Last step.  Further restrict 

So that 

Then ∆K bounds a (Sobolev-type) norm, and 
proves nonlinear stability.

Done.

1
2

[(δu)2 + (δv)2 + ′ ′ Φ (ω )(δ ˜ ω )2]dxdy∫

′ ′ Φ (ω ) =
U(y) + µ

′ ′ U (y)

0 <c ≤ ′ ′ Φ (ω ) ≤C <∞
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