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Cognition and the neuron doctrine 

Hubel and Wiesel (1959 onward) 

Cognitive function can be attributed to localized neural activity  



Developmental changes in behavior occur 
over much longer time scales 

•  For example ~10 years to become a skilled reader. 
•  Learning to read requires brain circuits to modify their 

structure in response to years of  training (Wandell & Yeatman, 2013). 

Portilla & Simoncelli, 2000 



•  Understanding development requires measurements that are 
sensitive to changes in glia, axons, myelin and vasculature. 

Cognitive development depends on tissue changes 
that occur over correspondingly long time-scales 

Neuron Astrocyte 

Allen & Barres (2009) 

Kettenmann (2012) 

Zlokovic & Apuzo (1998) 

Ture (2000) 

newborn adult 

(LaMantia & Rakic, 1990) 

MRI can be used to quantify brain tissue properties and 
model the interplay between brain circuit development 
and cognitive development. 



Outline 

1.  From tractography to fascicles: Segmenting an 
individual’s white matter. 

2.  Measuring white matter development with 
diffusion. 
–  Inferring tissue properties from diffusion. 
–  Cross-sectional versus longitudinal measurements. 
–  Modeling the processes that underlie learning to read. 

3.  Quantitative MRI measurements of  tissue volume 
and composition. 

4.  Combining multiple measurements to dissociate 
developmental processes. 
–  Testing models of  development. 
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Automated fiber tract quantification (AFQ) 
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Reproducible, open-source, scalable computations 

Wandell Dougherty Feldman 

Reliability: Scan-rescan, r = 0.93 
Reliability: Manual-automatic, r = 0.98 

Yeatman et al. (2012), PLoS ONE.   Software available at: https://github.com/jyeatman 



How might we select the optimal 
tractography algorithm to use with AFQ? 

•  Consider two use cases: 
–  Clinical data collected on children with traumatic brain 

injury versus Human Connectome Project data. 

•  What might be the pros and cons to using a tensor 
model with deterministic tractography versus 
spherical deconvolution with probabilistic 
tractography? 



The choice of  algorithm has a substantial 
impact on the results 
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The core of  the fascicle is consistent but 
the cortical endpoints differ 

A P 

S 

I 

•  Select the appropriate algorithm based on the goals of  the study. 



Summary: From tractography to fascicles 

•  AFQ will automatically identify 28 fascicles in an 
individual’s brain and reliably quantify tissue 
properties along each fascicle. 

•  Results depend on selecting the appropriate 
diffusion model and tractography algorithm for 
your research question. 
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Inferring tissue biology from diffusion 
•  Diffusion is very sensitive to tissue changes and can 

generate hypotheses about potential biological processes. 

Low Fraction Anisotropy (FA) 
High Mean Diffusivity (MD) 

High Fraction Anisotropy (FA) 
Low Mean Diffusivity (MD) 

http://JasonYeatman.com/teachingFiles 

Wandell & Yeatman (2013);  Stikov et al., (2011);  Assaf  & Pasternak (2008);  Beaulieu (2002)  
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Inferring tissue biology from diffusion 

X 

Y 

In cases of  parallel fibers (e.g., callosum), FA increases 
monotonically with fiber volume fraction (Stikov et al., 2011). 

FVF =  0.883*FA2 – 0.082*FA + 0.074 
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Y 
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Crossing Fibers Parallel Fibers 

High FA Low FA 

Inferring tissue biology from diffusion 
All bets are off  in cases of  crossing fibers! 



What can diffusion tell us about development? 

Maturation of  the arcuate fasciculus (cross sectional) 

Lebel et al., Neuroimage, 2008, 2012. 



A few important points 
•  White matter maturation continues into young adulthood. 
•  Average rate and time of  maturation varies among tracts. 

•  Do we expect each individual to follow this time-course? 

Lebel et al., Neuroimage, 2008, 2012. 



Measuring arcuate fasciculus development in 
an individual (longitudinal) 
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Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



Rates of  white matter development vary 
substantially among children 
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The$rate$of$white$ma-er$development$
correlates$with$reading$skill$

r = 0.40, p = 0.02 r = 0.51, p < 0.01 

Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



Children$with$posi8ve$growth$rates$have$
superior$reading$skills$

Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



Good$versus$poor$readers$show$$
divergent$developmental$trajectories$

FA

Age Age

Good Readers
Poor Readers

Left Arcuate Left ILF 

Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



What might be the biology underlying 
the observed diffusion changes? 



Myelina8on$and$pruning$of$axons$
during$development$

LaMantia & Rakic (1990). J. Neurosci.  LaMantia & Rakic (1994). J. Comp. Neurol. 

•  Myelina8on$increases$during$childhood.$
–  Speeds$signal$conduc8on$and$increases$bandwidth.$
–  Is$influenced$by$the$level$of$electrical$ac8vity$of$an$axon$

(Barres$&$Raff,$1993,$Nature).$

–  Increases$the$diameter$of$an$axon$N>$increase$in$FVF.$

•  Number$of$axons$decreases$aSer$birth$(pruning).$
–  3.5x$axons$in$the$callosum$at$birth$than$in$adulthood.$
–  Underused$axons$are$pruned$away.$
–  Decreases$the$space$occupied$by$axons$N>$decrease$in$FVF.$



Dual$process$account$of$the$joint$development$
of$white$ma-er$and$reading$skills$

Myelination 

Pruning 

Combined 

Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



Dual$process$account$of$the$joint$development$
of$white$ma-er$and$reading$skills$

Yeatman et al. (2012). Proc Natl. Acad. Sci. U.S.A. 



Summary: Measuring development with diffusion 

•  Diffusion is highly sensitive to tissue changes and 
can inform hypotheses about biological mechanisms. 

•  The rate and timing of  white matter maturation 
varies substantially among children. 

•  The dynamics of  an individual’s white matter 
development predicts their acquisition of  skilled 
reading. 

•  Hypothesis: Differences between good and poor 
readers reflect timing of  myelination and pruning. 
–  Caveat: Many other factors affect the diffusion process! 



Outline 

1.  From tractography to fascicles: Segmenting an 
individual’s white matter. 

2.  Measuring white matter development with 
diffusion. 
–  Inferring tissue properties from diffusion. 
–  Cross-sectional versus longitudinal measurements. 
–  Modeling the processes that underlie learning to read. 

3.   Quantitative MRI measurements of tissue volume 
and composition. 

4.  Combining multiple measurements to dissociate 
developmental processes. 
–  Testing models of  development. 



Diffusion is affected by many biological 
properties not only myelin and axon density 

http:JasonYeatman.com/teachingFiles 

Wandell & Yeatman (2013);  Stikov et al., (2011);  Assaf  & Pasternak (2008);  Beaulieu (2002)  



Diffusion is affected by many biological 
properties not only myelin and axon density 

•  It’s amazing that water diffusion correlates with behavior 
(e.g., Klingberg et al., 2000). 

•  The relationship between water diffusion and tissue biology 
is not straightforward (Beaulieu, 2002). 

Wedeen et al., (2008, 2012) 



Quantitative MRI measurements of  
tissue volume and composition 

MTV=0.1 MTV=0.3 

Mezer, Yeatman et al. (2013), Nature Medicine 

Aviv Mezer 



What does “quantitative MRI” mean? 

•  T1 (s) - The T1 relaxation rate is a physical 
property of  water protons in a magnetic field, 
has units, and does not depend on scanner 
hardware/pulse sequence. 

S = b*e-IT/T1+c 
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Mezer, Yeatman et al. (2013), Nature Medicine 

•  MR signals (T1) from water protons change when the 
protons interact with membranes. 

•  T1 image intensity depends on the amount and 
composition of  tissue in each voxel as well as scanner 
biases. 



a = 30

a = 20

a = 10

a = 4

From images to quantitative tissue maps 

Image intensity = f g,α ,T1,MTV( )

T1 weighted 

Mezer, Yeatman et al. (2013), Nature Medicine 
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Removing bias and computing MTV 

mingi {∑ (MTVi −MTV )
2}gi *(1−MTV )

Mezer, Yeatman et al. (2013), Nature Medicine 

Each coil sees the same underlying MTV 
value but has its own gain function 

Solve for the each coil’s gain function 
to uncover the true MTV value 

i=1
i=2

i=3
i=4

i=5



Quantitative MRI measures are 
independent of  scanner hardware 
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Yeatman, Wandell & Mezer, (2014). Nature Communications 



Single$pa8ent$disease$detec8on$

Mezer, Yeatman et al. (2013), Nature Medicine 
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In vivo histology with quantitative T1 

•  The vertical occipital fasciculus (VOF) 
connects the dorsal and ventral visual 
streams and terminates in the VWFA. 
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Yeatman, Rauschecker & Wandell, (2013). Brain & Language. 
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In vivo histology with quantitative T1 

Yeatman, Weiner, Pestilli, Rokem, Mezer & Wandell (2014). PNAS 



Summary: Quantitative MRI 

•  MRI can be used to quantify many important 
properties of  the tissue. 
–  Volume of  tissue macromolecules (MTV). 
–  T1 relaxation rate is sensitive to myelin (Stuber et al., 2014). 

–  Surface interaction rate (SIR) is sensitive to changes in 
molecular composition. 

•  Quantitative MRI measurements are independent 
of  the specific scanner hardware and pulse 
sequence. 
–  Opens up new diagnostic applications. 
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individual’s white matter. 

2.  Measuring white matter development with 
diffusion. 
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–  Cross-sectional versus longitudinal measurements. 
–  Modeling the processes that underlie learning to read. 

3.  Quantitative MRI measurements of  tissue volume 
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4.   Combining multiple measurements to dissociate 
developmental processes. 
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In vivo histology: 
Combining measures to model brain tissue 

•  What can we learn about development with qMRI: 
–  Do different types of  tissue have distinct maturational 

time-courses (e.g., myelin vs. astrocytes)? 
–  Which properties of  the white matter are related to 

behavior? 

–  Can we model how properties of  the white matter affect 
cortical computation (i.e., why do white matter 
measures predict behavior)? 



In vivo histology: 
Combining measures to model brain tissue 
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Fascicle development measured with 
diffusion vs. R1 

•  FA varies substantially along the length of  a tract. This is 
due to geometric properties not changes in myelin. 

•  In terms of  R1 but not FA, growth rates are consistent 
along the tract length. 

T-
St

at
is

tic
(g

ro
up

 d
iff

er
en

ce
)  

-8.0

8.0

0

R1 Diffusivity FA

T-
St

at
is

tic
(g

ro
up

 d
iff

er
en

ce
)  

-8.0

8.0

0

R1 Diffusivity FA

Yeatman, Wandell & Mezer, (2014). Nature Communications 



Measuring the creation of  new tissue 
in the developing brain 
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Can we detect multiple developmental processes in 
the white matter? 

Yeatman, Wandell & Mezer, (2014). Nature Communications 



Does each qMRI parameter measure the same thing? 

Can we detect multiple developmental processes in 
the white matter? 

•  R1 and MTV are sensitive to the same developmental processes. 
•  Diffusion is sensitive to independent processes. 
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Looking forward: Modeling brain development 
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1.  Testing the prediction of  
parabolic model: Lifespan 
changes should be symmetric. 

2.  Do we expect this to be true 
for every individual? 

Yeatman, Wandell & Mezer, (2014). Nature Communications 



Summary 

•  The time-courses of  R1 and diffusion changes 
demonstrate that multiple biological processes 
drive changes in the white-matter over the lifespan. 
–  qMRI can dissociate different tissue changes. 

•  A symmetric model predicts R1 changes over the 
lifespan. 
–  Models provide insight into mechanisms and generate 

testable perditions. 

•  How might we develop a model that integrates 
measures of  tissue properties, cortical computation 
and behavior? 



Thank$You!$

Brian Wandell Aviv Mezer 

Heidi Feldman Ariel Rokem Michal Ben-Shachar 
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