Bunchgrass Ridge: Understanding the past to guide the future

Ryan Haugo and Charles Halpern

College of Forest Resources University of Washington

Outline

- Mountain Meadows, Tree Invasion and Restoration
- Intro to Bunchgrass Ridge
- Retrospective Studies
- Restoration Experiment

Mountain Meadows of the Pacific Northwest

Tree Invasion

- Widespread both PNW and western US
- Rapid 20th century changes

Loss of Biological Diversity

Tree Invasion

- Variety of possible causes
- Both human and "natural"
 - Grazing, fire suppression, climate change
 - Highly variable among locations

Tree Invasion – Three Sisters

Miller and Halpern 1998

• Interest in maintaining and restoring openings

 Biological, cultural, aesthetic reasons for restoration

- Advantages
 - Many good reference points for composition / structure

- Challenges:
 - Uncertain role of natural disturbance and other ecological processes

- Is restoration possible?
- If so, by which methods?
- Which factors limit restoration?

- Collaborative research center
- Dynamics and restoration of montane meadows

- Retrospective studies
 - Patterns and consequences of encroachment
 - Implications for restoration
- Restoration experiment
 - Is restoration possible?
 - Is fire necessary?
 - Do initial conditions affect outcome?

Bunchgrass Invasion History - 1934

Bunchgrass Invasion History - 1974

Bunchgrass Invasion History - 2004

Bunchgrass Invasion History

Bunchgrass Invasion History

- Edge expansion and from new foci
- Lodgepole facilitation of grand fir

- Influence of invading trees on meadow soils Griffiths et al. 2005
 - Bacterial to mycorrhizal soil communities
 - Accumulation of needle litter
 - Alteration of nitrogen cycling

- Ideal: vegetative recovery of meadow species
- Rapid loss of meadow species

• Rapid loss of meadow species

Haugo & Halpern 2007

• Soil seed bank

Bunchgrass Soil Seed Bank

Lang and Halpern 2007

- If species are not present in seed bank...
 - Seed dispersal
 - Not all species flower, dispersal distances are short
 - Vegetative spread
 - Slow
 - Artificial seeding
 - Genetic comparability
 - Logistics of seed collection, storage, distribution

• Competition with forest herbs

• Competition with forest herbs

Haugo and Halpern 2007

Hope for Restoration?

- Limited influence of lodgepole on meadow spp
- Small meadow "pockets" foci for recovery?

Bunchgrass Restoration

- Tree removal with and without fire
- Range of tree ages / densities

Operational Considerations

- Roadless designation
- Potential for damage to meadow soil
 Felling and skidding on snow...

Operational Considerations

Operational Considerations

- Slash disposal
 - Broadcast Burn "Burn" Treatment
 - Pile + Burn "No Burn" Treatment

Broadcast Burning

- Advantages
 - No further manipulation of slash
- Disadvantages
 - Weather conditions highly restrictive
 - Risk of fire spread
 - Need for fire lines, water access, etc.
 - Significant soil disturbance
 - Increased nutrient availability

Pile + Burn

Advantages

- Can occur during low fire danger
- Less operational support

Disadvantages Labor intensive

Pile Burning

- Highly disturbed soils
 ~ 10% of plot surface area
- Greatly increased nutrients
- Vegetation recovery?

• Meadow species

No change in richness, abundance

 Forest species
 Declines in richness, abundance

- Weedy species limited presence
- Will this last?

Rumex acetosella

Phacelia heterophylla

- Conifer

 establishment:
 Burn > No burn
- Legacy of tree soil effects?

Conifer seedlings (0 - 1 m tall)

Summary - Retrospective

- Lodgepole grand fir facilitation
- Rapid changes:
 - Soils
 - Vegetation
- Lodgepole grand fir differences
- Weedy seed bank
- Recommendations:
 - Early intervention!!

Summary - Experiment

- Effective harvest over snow
- Broadcast burning
 - Soil disturbance and increased N
- Pile burning
 - Intense local disturbance
- Tree removal benefits meadow species
 - With or without fire
- Limited weedy response in 1st year
- Long term success???

Acknowledgements

Collaborators: Fred Swanson, Nicki Lang, Joe Antos, Janine Rice, Sheena Hillstrom Funding: Joint Fire Science Program, Rocky Mtn. Elk Foundation Logistical support: PNW Research Station, Willamette N. F., McKenzie River Ranger District, H. J. Andrews Exp. Forest, Confederated Tribe of the Grand Ronde

2003-2007 Bunchgrass Ridge field crews

http://depts.washington.edu/bgridge/