Conifer Encroachment in a Montane Meadow, Western Cascade Range, OR.

Ryan D. Haugo
Charles B. Halpern

College of Forest Resources
University of Washington, Seattle
Conifer Encroachment

- Widespread phenomenon
- Three widely proposed causes
 - Fire suppression
 - Climate change
 - Sheep grazing
- Interactions among causes
 - Woodward et al. 1995, Miller and Halpern 1998
Bunchgrass Meadow, Oregon

- Site description
 - Dry, montane meadow, 1300m elevation
 - Grand fir and lodgepole pine
 - Soils formed under meadows

- Current studies
 - Process and consequences of encroachment
 - Experimental restoration
Bunchgrass Meadow, Oregon
4,1 ha Intensive Sampling Plots
Objectives

- Examine temporal patterns and potential causes of conifer encroachment
 - Climate variation
 - Grazing
 - Changing fire regime / Native American use

- Describe spatial patterns of conifer encroachment
 - Spatial distributions through time
 - Role of species interactions
Timing of Establishment

- 1825 - 1904, 1915 - 1984

Combined age structure

n = 5, 486 trees
Climate

- Precipitation, PDSI, Temperature, Snow Pack
 - Climate reconstructions from Miller 1995

- Spearman Rank Correlation
 - Positive correlation with snow pack (p<0.01)
 - 92.5% of total precipitation September through May

- Substantial conifer establishment 1930-1939
Sheep Grazing

• Burke (1979)
 – Lookout Mountain / Mt. Washington Allotment
 • 1912-1938
 • 2445 sheep/year

• Historical Records, Willamette NF
 – Too many “Bunchgrasses”...

• Substantial establishment prior to 1938
Fire History

• Mixed severity landscape
 • Morrison and Swanson (1990) and Stewart (1986)

• Lack of physical evidence

• Potential influence of Native Americans
 - Unique resources
 - Native American use of fire widely debated
Native Americans

• Molalla Indians
 - Possible historic use

• Disease epidemics 1830s

• 1855 executive order ceded Molalla lands, relocated to Grand Ronde Valley

• Warm Springs Indians
 - late 1800s to 1920s
 - Potential grazing and burning
Combined age structure

Number of stems per hectare

Shift to cooler, wetter climate
Molallas moved to Grand Ronde
Molalla Disease Epidemics

Euro-American sheep grazing
Potential Warm Springs grazing and burning
Spatial Patterns of Establishment

- Spatially and temporally complex
- Species specific
Plot 3

• 1904

- Grand fir
- Lodgepole pine
- Other species
- Dead grand fir (15-30 cm dbh)
- Dead lodgepole pine (15-30 cm dbh)
Plot 3

• 1904

Grand fir
Lodgepole pine
Other species
Dead grand fir (15-30 cm dbh)
Dead lodgepole pine (15-30 cm dbh)
Plot 3

- 1954

• Grand fir
• Lodgepole pine
• Other species
• Dead grand fir (15-30 cm dbh)
• Dead lodgepole pine (15-30 cm dbh)
Plot 3

1954

- Grand fir
- Lodgepole pine
- Other species
- Dead grand fir (15-30 cm dbh)
- Dead lodgepole pine (15-30 cm dbh)
Plot 3

• 1954

Grand fir
Lodgepole pine
Other species
Dead grand fir (15-30 cm dbh)
Dead lodgepole pine (15-30 cm dbh)
Lodgepole Establishment
Lodgepole – Grand Fir Facilitation
Lodgepole - Grand Fir Facilitation
Temporal patterns and potential causes

- Two periods of conifer establishment
 - 1825-1904
 - 1915-1984
- Climate, Grazing
 - Secondary influences
- Native American burning?
 - Encroachment coincides with changes in Native American activity
Spatial patterns

• Spatially and temporally complex
 - Initial establishment of lodgepole
 - Facilitation of grand fir – tree islands

• Ongoing research
 - Spatially explicit analysis
 - Vegetation responses to encroachment
• Joint Fire Sciences Program, HJ Andrews LTER

• Fred Swanson and John Cissel

• Jim Mayo, Sam Swetland, Cheryl Friesen, Mei Lin Lantz, Monty Wilson
 – McKenzie River Ranger District

• Joe Antos, Don Mckenzie
 – Committee Members

• Nicki Lang, Jim Lutz, Kyle Smith, Janine Rice, Halpern lab group and BG field crews