Evaluation of White Matter in Preterm Infants With Fetal Growth Restriction

Departments of Radiology and Psychiatry, Children's Hospital Boston. September 24, 2009.
Road Map

• Introduction
• Material and Methods
 • DTI Atlas for Group Comparison
 • Towards a Robust Group Comparison
• Results
• Conclusion
Road Map

- Introduction
- Material and Methods
 - DTI Atlas for Group Comparison
 - Towards a Robust Group Comparison
- Results
- Conclusion
Introduction

• Fetal Growth Restriction (FGR)
 • Weight below 10th percentile of normal weight for gestational age
 • Often caused by placental function disruption
 • Often linked to prematurity
 • Occurs during accelerated brain development

• Prematurity and FGR may lead to disabilities
 • Motor skills, cognitive function
 • Lower neurodevelopmental score

• Early care in the Newborn Intensive Care Unit (NICU) crucial to FGR infants development
The NIDCAP Program

• NIDCAP = Newborn Individualized Development Care and Assessment Program

• Objectives
 • Better neurodevelopment of FGR preterm-born children
 • Support brain structure maturation

• How
 • Minimize environmental stress for the baby
 • Observation and evaluation of the infant’s behavior
 • Adaptation of care to get closer to the intra-uterine environment
Previous Study on NIDCAP

• Randomized study on 30 AGA preterm-born children
 • Two groups: 14 in standard care / 16 in NIDCAP program
 • Influence of NIDCAP on brain development

• Comparison at two time points
 • Do differences exist? Are they maintained at a later stage?
 • 2 weeks: comparison of DTI derived scalar parameters
 • 9 months: behavioral assessment (mental / motor scale)

• Better maturation at 2 weeks (PLIC on left side)
 • Consistent with brain functional differences
 • Lasting effects at 9 months behavioral assessment

Challenges

- Problems
 - Scalar measures: loss of information
 - Predefined regions of interest, manually drawn
 - Movement artifacts, distortion in the images

- Objective: study of NIDCAP influence on white matter
 - Local and automatic evaluation over the whole brain
 - Use the whole tensor and be robust to image artifacts

- Our approach
 - Construction of an age adapted common coordinate system
 - Robust comparison of populations
Road Map

- Introduction
- Material and Methods
 - DTI Atlas for Group Comparison
 - Towards a Robust Group Comparison
- Results
- Conclusion
DTI Atlas for Group Comparison

- Goal: Compare populations to detect groupwise differences

Controls Group

NIDCAP Group
DTI Atlas for Group Comparison

- Goal: Compare populations to detect groupwise differences

Controls Group

Atlas = Common coordinate system

NIDCAP Group
Average Image Construction

• Challenges
 • Very early acquisitions (42 weeks PMA)
 • Specific anatomy → External adult reference standard not adapted

• Our approach
 • Build a geometrically unbiased DTI atlas from the populations

• Atlas construction method [Guimond et al., 2000]
 • Iteration over two steps
 • Registration of all DT images on the current reference
 • Build a new reference (from images and transformations)

Road Map

• Introduction
• Material and Methods
 • DTI Atlas for Group Comparison
 • Towards a Robust Group Comparison
• Results
• Conclusion
DTI Group Comparison

- Objective: Detect groupwise differences between populations
- Cramers test [Whitcher et al., 2007]
 - Use of the full tensor: Log-Euclidean distance on tensors
 - Permutation testing: No assumption on a specific PDF for the statistic
- Output: voxel-wise probability of the existence of differences

DTI Group Comparison

- **Objective:** Detect groupwise differences between populations
- **Cramers test [Whitcher et al., 2007]**
 - Use of the full tensor: Log-Euclidean distance on tensors
 - Permutation testing: No assumption on a specific PDF for the statistic

- **Output:** voxel-wise probability of the existence of differences

DTI Group Comparison

- Objective: Detect groupwise differences between populations
- Cramers test [Whitcher et al., 2007]
 - Use of the full tensor: Log-Euclidean distance on tensors
 - Permutation testing: No assumption on a specific PDF for the statistic

- Output: voxel-wise probability of the existence of differences

Robust DTI Comparison: Continuous STAPLE

• Challenges: several sources of bias in DTI comparison
 • Acquisition problems (DTI distortion, movement artifacts)
 • Registration errors

→ Need for a robust group comparison

• Continuous STAPLE [Commowick et al., 2009]
 • Input: vector images (e.g. tensors in the Log-Euclidean space)
 • EM algorithm to compute at the same time
 – Typical tensor image underlying the dataset
 – Parameters for each image: offset to the typical image and covariance matrix

Local Computations for Continuous STAPLE

• Great interest of continuous STAPLE
 • Produce a robust estimation of typical tensor image
 • Parameters characterize bias in the individual images
 • Adequacy parameters may be used to compare images

• Problem: parameters are computed over the whole image
 • Need for local estimates for voxelwise comparison

• Proposed solution
 • Run STAPLE on a block around each voxel
 • Keep the parameters and reference value at center voxel
 • Allows voxelwise parameters computation
Towards a Robust Group Comparison

• Use of local continuous STAPLE
 • Parameters should be different between groups
 • Take into account erroneous tensors

• Advantage of the Cramers test
 • May be used for any data as long as a distance can be defined

• Integrating local continuous STAPLE
 • Parameters represent multivariate Gaussians
 • Distance between multivariate Gaussians
 – [Calvo & Oller, 1991]: Analytic solution of the geodesic

Road Map

- Introduction
- Material and Methods
 - DTI Atlas for Group Comparison
 - Towards a Robust Group Comparison
- Results
- Conclusion
FGR Database

- DTI Comparison at time point 2 (~ 42 weeks PMA)
 - Structural (T1, T2) acquisition (slice thickness 1.3mm)
 - DTI acquisition (between 6 and 35 directions, slice thickness 2.5mm)
 - Two groups
 - Standard care (11 infants)
 - NIDCAP group (9 infants)
Coordinate System Construction Results

- **DTI Atlas**
 - Created from 20 DTI
 - From the two groups together

- **Comparison**
 - Classical DTI average
 - Typical DTI Image obtained from STAPLE

→ Illustrates STAPLE ability to handle errors

Average coordinate system anatomy

Average DTI Image
Coordinate System Construction Results

- **DTI Atlas**
 - Created from 20 DTI
 - From the two groups together

- **Comparison**
 - Classical DTI average
 - Typical DTI Image obtained from STAPLE

- Illustrates STAPLE ability to handle errors

Average coordinate system anatomy

STAPLE Typical DTI Image
Group Differences in White Matter Structure

- Evaluation of WM differences
 - Differences in PLIC on both sides
 - Confirms results obtained in previous studies
 - Better detection power: differences detected on both sides

Regions different between controls and NIDCAP (95% confidence level)
Characterization of Detected Differences

- Study of DTI derived scalar parameters
 - FA and MD values
 - ANOVA on average values
 - On detected regions

- Results
 - No difference in FA values
 - Significant difference for MD
 - Decrease in NIDCAP group

MD ANOVA Analysis
Discussion

• Period of accelerated brain maturation
 • Premyelination period
 • Particularly in central nervous system

• Significant MD decrease in PLIC
 • Less water molecules → more structure
 • Increased premyelination in NIDCAP group

• MD decrease associated to better outcome [Krishnan, 2007]
 • Results suggest a positive impact of NIDCAP on brain development
 • Potential better outcome for the infants

Road Map

- Introduction
- Material and Methods
 - DTI Atlas for Group Comparison
 - Towards a Robust Group Comparison
- Results
- Conclusion
Conclusion

• New algorithm for robust group comparison
 • DTI atlas construction
 – Adapted to the study of very young children
 • Local reference standard construction (continuous STAPLE)
 – Robust to bias sources
 – Using the whole tensor information
 • Integration of STAPLE parameters in a statistical test

• Study of white matter development in preterm FGR infants
 • Significant difference in PLIC regions on both sides
 – Decrease in MD values → better maturation in NIDCAP group
 • Potential positive influence of NIDCAP
Perspectives

• Take into account the temporal component
 • Study at different time points
 – Are differences present before intervention?
 – How exactly is NIDCAP influencing the development?

• Complementary studies from other modalities
 • Comparison of structures volumes extracted from T1
 • Gyrification indexes, cortical thickness
 • Tractography studies
 – Whole brain
 – Regions with differences