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Background

 Quantifying brain development for young children is challenging 

due to the magnitude of neuroanatomical changes and the 

variation in MRI intensity response over time. 

 Deformation based morphometry (DBM) does not require the 

preliminary tissue classification step or a priori knowledge of the 

ROI to perform the morphological analysis and is, therefore, 

minimally influenced by the partial volume effect (PVE). 

 In this study, we provide a DBM-based approach for estimating 

parametric maps of nonlinear volume growth that capture the 

heterogeneous growth profile of the different brain regions in early 

childhood. 



• A representative healthy sample of subjects in the age range of 

newborn through 4 years and 6 months of age at enrollment were 

recruited into the NIH MRI Study of Normal Brain Development 

(Evans et al., 2006), which is a multi-center study.

• For the present work, we analyzed 264 MR datasets from 69 

subjects

(F: 140 scans from 36 subjects, M: 124 scans from 33 subjects, all 

were full term at birth).

• All of subjects had multiple longitudinal scans (45 children 

completing at least three scans, 22 completing four or more 

scans).  Ages of this dataset range from birth to 6 years.

• 2D T1-weighted (T1W) multi-slice spin echo sequence 

[TR=500ms, TE=12ms] was used. Data were collected parallel to 

the AC–PC line with a 1 x 1 x 3 mm3 spatial resolution.

Subjects & 

MRI Acquisition Protocols

Evans, A.C., Group, B.D.C., 2006. The NIH MRI study of normal brain development. Neuroimage 30, 184-202.
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Pediatric templates

Vladimir Fonov

Miller, M., A. et al. Statistical methods in computational anatomy. Stat Methods Med Res 6(3): 267-99 1997.

Guimond, A. et al. Automatic Computation of Average Brain Models. Medical Image Computing and Computer -Assisted Interventation — MICCAI’98: 631.



(a)Image intensity non-uniformity was corrected using the 

nonparametric non-uniform intensity normalization method (Sled et al., 

1998). 

(b)  The intensity of each scan was linearly normalized to be in the 

same range by histogram equalization. 

(c)  The brain mask was extracted from intensity-corrected MRI data 

sets (Smith, 2002). 

(d) Intensity non-uniformity artifacts were corrected again limited to the 

brain-masked region.

Image preprocessing
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Image Registration
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•A global transformation was first estimated using a 9-parameter linear 

registration to adjust only for overall differences in scale, orientation 

and position. 

• A non-linear registration was then carried out to obtain a precise 

spatial correspondence of structures between source and target. The 

similarity metric used in non-linear registration was cross-correlation 

and the smoothness penalty was the elastic deformation model (Collins 

et al., 1994; Miller et al., 1997). 

• Non-linear registration was carried out in a coarse-to-fine manner with 

successive control-point spacings of 30mm, 16mm, 12mm, 8mm, 6mm, 

4mm and 2mm. 

Image Registration
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Validation of Registration

• We quantified landmark misalignment in MRI data from nine randomly-

selected subjects. 

• In each subject, we chose 3 scans that had the biggest time intervals 

among all of the available scans. 

• A physician manually placed 8 landmark points in each individual brain 

and in the template. 

• The point coordinates of these landmarks transformed to the average 

Template space through the deformation fields obtained by nonlinear 

registration.
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Growth Model

• Volume of a region-of-interest (ROI)

Vroi(t) : a volume of a ROI at fixed time t, 

• Volume ratio between ROIs 
Vratio(t1,t2) = Vroi(t2)/Vroi(t1)

• Volume ratio between ROIs

Vgrowth(t) = Vratio(0,t) = Vroi(t)/Vroi(0)

• The Jacobian determinant

J(t1,t2) = Vroi(t2)/Vroi(t1) = Vgrowth(t2)/Vgrowth(t1)

In longitudinal dataset:
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In order to estimate global volume change, let ROI(t) be the 3D region of interest 

at time t. If the region ROI(t1) deforms to ROI(t2), the volume of ROI(t2) is given by

In brain imaging, a voxel can be considered as having the same volume size 

across whole voxels. Therefore, dividing Eq. (2) by the volume ROI(t1) is given by

where m is the number of voxels in ROI(t1). This implies that the mean value of 

DJ across the ROI can be applied to our growth model to estimate the global 

volume change of the ROI.

Growth Model



Model Equation # of params RSS AIC

exponential 2 0.07514 -879.886

linear 1 4.021 -169.478

quadratic 2 1.151 -391.389

cubic 3 0.2669 -651
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We measured RSS and the Akaike information criterion (AIC) (Akaike, 1974) 

from total brain volume to compare growth models

Growth Model

Growth model selection



The model coefficient ‘a’ is the amplitude of the growth curve (i.e., 

Vgrowth) converges to the value of a+1. The model coefficient ‘b’ is 

a time constant, which indicates how fast the growth curve 

converges.

Growth Model



Global growth estimates

Region

coefficient t-value

r2

volume/volume-at-birth

(%)

volume/maximum-volume 

(%)

a b a b 1year 2year 3year birth 1year 2year 3year

total brain 1.65 1.39 88.2 51.0 0.983 224 255 263 37.7 84.5 96.1 99.0

left cerebellum 3.03 1.45 75.9 43.6 0.983 332 386 399 24.8 82.4 95.9 99.0

right cerebellum 3.01 1.49 72.4 41.4 0.982 333 386 398 24.9 83.0 96.1 99.1

left frontal lobe 1.52 1.26 62.8 37.0 0.966 209 240 249 39.6 82.9 95.2 98.6

right frontal lobe 1.48 1.25 60.1 35.4 0.963 205 236 244 40.3 82.8 95.1 98.6

left occipital lobe 1.85 1.72 71.9 40.4 0.977 252 279 284 35.1 88.4 97.9 99.6

right occipital lobe 1.85 1.58 74.1 42.1 0.978 247 277 283 35.1 86.6 97.3 99.4

left parietal lobe 1.73 1.43 92.6 53.3 0.985 231 263 270 36.7 84.8 96.4 99.1

right parietal lobe 1.56 1.42 66.6 38.4 0.970 219 247 254 39.0 85.2 96.4 99.1

left temporal lobe 1.91 1.37 79.7 46.3 0.982 243 279 288 34.3 83.3 95.8 98.9

right temporal lobe 1.67 1.39 78.2 45.2 0.979 225 257 264 37.5 84.5 96.1 99.0

Growth estimates from a regional lobe parcellation

Hazlett, H.C., Poe, M., Gerig, G., Smith, R.G., Provenzale, J., Ross, A., Gilmore, J., Piven, J., 2005. Magnetic resonance im aging and head circumference 

study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 62, 1366 -1376.
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•The cerebellum grows more than any other part of the brain and most parts of the 

cerebellum reach a volume that is around 4 times that of their equivalent in the 

newborn (left-cerebellum: a=3.03 and right-cerebellum: a=3.01).  

•Left/right occipital lobes (a=1.85), left parietal lobe (a=1.73) and left temporal lobe 

(a=1.91) grow more than the other regions on cerebral hemispheres. 

•The model coefficient ‘b’ was higher in occipital lobe than in frontal lobe (i.e. left-

occipital-lobe: b=1.72, right-occipital-lobe: b=1.58, left-frontal-lobe: b=1.26, and right-

frontal-lobe: b=1.25), which indicates that the growth in the posterior brain approaches 

its maximal volume earlier than that in the anterior brain. 

•The corpus callosum also showed a growth pattern in which the posterior portion (i.e., 

splenium) approaches its maximum volume sooner, and did not grow in volume as 

much as the anterior portion (i.e., genu).

•We also found that the growth in the sensory-motor area (pre- and post-central 

cortices) ends earlier than the more anterior parts of the frontal and temporal lobes . 

•The left temporal lobe structures were shown to grow more than the right temporal 

lobe structures (left-temporal-lobe: a=1.91 and right-temporal-lobe: a=1.67). Moreover, 

the left parietal lobe structures were shown to grow more than the right parietal lobe 

structures (left-parietal-lobe: a=1.73 and right-parietal-lobe: a=1.56). 

•Midbrain structures appear to have high coefficient ‘b’ values while their coefficient ‘a’ 

values are rather low, suggesting that maturity is reached at or soon after birth with 

little growth later in childhood.

•

Biological findings



We have generated 3D voxelwise maps of the growth 

pattern in the entire brain of early childhood.

We made a nonlinear growth model which applied to the 

Jacobian determinant.

In order to minimize registration error, we used a 

registration design that combined longitudinal and cross-

sectional registration.

Conclusion
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(a) regressions of total brain volume

(b) regressions of volume rate
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This graph shows the regression results of total brain volume and 

the mean Jocobian determinant on total brain


