
GPU-Based Implementation of a 
Computational Model of Cerebral 

Cortex Folding

Jingxin Nie1, Kaiming1,2, Gang Li1, Lei 
Guo1, Tianming Liu2

1 School of Automation, Northwestern 
Polytechnical University, Xi’an, China, 
2 Department of Computer Science and 
Bioimaging Research Center, 
The University of Georgia, Athens, GA, 
USA.



Introduction

 Understanding the underlying folding mechanisms 

has intrigued many people for many years 

 To understand the mechanisms underlying cortical 

folding, computational modeling and simulation is 

believed to be a very promising approach. 

 A GPU-based implementation of a computational 3D 

geometric model of cerebral cortex folding is more 

efficient than traditional simulation model.



Materials and Pre-processing

 Fetus brain structures (skull, 
cortex plate, white matter 
zone, ventricle zone, basal 
ganglia and thalami) are 
manually reconstructed from 
T2 MRI data of fetus brain 
from 22 to 36 gestation 
weeks.



Computational model



Deformable model of the cortex

 The elasto-plasticity model is adopted in our 

methods. 

 The elastic force of each triangle element 

and the plasticity of cortex are defined along 

each edge of the triangle. 

 The rigidity of cortex is introduced as 

bending energy.



Cortex Growth Model

 The classic logistic-growth function is 

adopted to describe the growth of cortical 

tissues.



Geometric constraints

 A volumetric constraint model is maintained during 

the simulated folding of the cortex.

 Voxels from the skull, basal ganglia/thalami or 

ventricular zone are extracted from the scanned 3D 

MRI image and grouped into a new image as a mask.

 The cortex model can not be deformed into the mask 

volume.



Model solvers

By combining all equations on the cortical surface

together, we have the discrete form of developing 

cerebral cortex as:

Where x is vertex’s position, M is a diagonal 

mass matrix on vertices, and F is the net force 

vector that combines all forces on cortical surface 

vertices.

),(1
xxMx  F



Model Solver Iterations

By the Newmark scheme, the dynamic folding progress can be solved 
by a time-loop, during which each step is described as:

 (1) Grow each element by the classic logistic-growth function at the 
beginning of each loop.

 (2) Find the stable solution for the growth in step (1) by the following 
steps iteratively.

(a) Apply an adaptation of the reference configuration for each 
element by plastic property.

(b) Calculate elastic forces for each element including bending 
forces.

(c) For each vertex, add all forces from the elements around it.

(d) For each vertex, update its new position and velocity.

(e) Adjust the new position and velocity, if it does not satisfy the 
geometric constraints. 



GPU-based Implementation

 Kernel Arrangement

There are two types of kernels for element and vertex operation 
respectively, in which write operations are only performed on element 
configuration or vertex configuration respectively. 

 Memory Structure

All the model variables including element, vertex configurations and the 
3D volume for geometric constraints were stored in linear global memory. 
Because of the unstructured triangulated surface, the access patterns of model 
variables are random. 

 Host-device Interaction

In our implementation, all the necessary datasets are stored in the device. 
Also, during the time-loop, no dataset will be transferred from host to device, 
and the new positions of vertices are transferred back to host for real-time 
evaluation and visualization. 



 Our model is tested on a machine with a single Intel Core2Duo 

1.66 GHz CPU, 2 GB of RAM, and a single graphics card 

NVIDIA GeForce 9600 GT GPU (64 processor core) with a 

clock speed of 650 MHz and 256 MB of RAM. Both GPU-based 

and CPU-based implementations are tested for comparison. 

Results



Performance comparison between GPU-
based vs CPU-based simulations.

0

10

20

30

40

50

60

70

(2644,5284) (5286,10568) (7928,15852) (10570,21136)

(Vertex Number, Triangle Number)

T
im

e(
s)

GPU

CPU



Simulation result


