Evaluation of Different Strategies for Distortion Correction in Fetal Diffusion-Weighted Imaging

E. Oubel1, F. Rousseau1, V. Noblet1, M. Koob2, J.-P. Armspach2, J.-L. Dietemann2

1LSIIT (UMR 7005 CNRS-UdS), Strasbourg, France
2LINC (FRE 3289 CNRS-UdS), Strasbourg, France.
Distortion correction

- Correction of distortions is a key element in the processing pipeline of D-MRI images.

- This is challenging for the fetus because of:
 1. Fetal motion
 2. Low signal-to-noise ratio (SNR)
 3. Low resolution (compared to the fetal brain size)
 4. Surrounding structures (uterus, placenta, fetal limbs, etc).
What does it look like?

- T_2^{epi}
- D_{W_1}
- FA-Orientation
- FA
Method

GROUPWISE REGISTRATION

RESAMPLING
Results (1)

original

corrected
Results (2)

Table 1: Descriptors of FA distribution for the evaluated methods on the fetus. $H(FA)$ = Entropy, D_{KL} = Kullback-Leibler divergence, FA_{cfs} = mean FA in the CSF. For each column, the best value is shown in bold. Dashed entries for Fetus #3 mean omitted values because of complete misregistration.

<table>
<thead>
<tr>
<th>Method</th>
<th>Fetus #1</th>
<th>Fetus #2</th>
<th>Fetus #3</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$H(FA)$</td>
<td>D_{KL}</td>
<td>FA_{cfs}</td>
<td>$H(FA)$</td>
</tr>
<tr>
<td>Affine</td>
<td>2.07</td>
<td>0.37</td>
<td>0.09</td>
<td>1.97</td>
</tr>
<tr>
<td>NRR</td>
<td>2.05</td>
<td>0.58</td>
<td>0.09</td>
<td>1.82</td>
</tr>
<tr>
<td>Original</td>
<td>2.04</td>
<td>0.48</td>
<td>0.14</td>
<td>2.17</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>2.11</td>
<td>0.22</td>
<td>0.12</td>
<td>2.09</td>
</tr>
<tr>
<td>Our approach</td>
<td>1.96</td>
<td>0.59</td>
<td>0.08</td>
<td>1.80</td>
</tr>
</tbody>
</table>
Work in Progress
Evaluation (1)

- \(\text{mean}_{\text{csf}}(FA) \)
 - It should be zero ideally (isotropic diffusion properties of CSF)
 - Distortion introduces different diffusion values
 - Segmentation required, performed on \(T_2^{\text{se}} \)

- Change in FA introduced by distortion
- Brain and CSF in \(T_2^{\text{epi}} \)
Evaluation (2)

- $H(FA)$
 - Better registration results present more spiky FA distributions [1]
 - There is an increase in sharpness of FA images after distortion correction [2]

Evaluation (3)

- $D_{KL}(p(FA) \parallel p_{\text{ref}}(FA))$
 - Maximize the distance between $p(FA)$, and $p_{\text{ref}}(FA)$ for misaligned sequences