

Extending a Neural Simulator to Combine Growth and Spike-Timing-Dependent Plasticity

Yi-Hsin Emily Hsu

A report

submitted in partial fulfillment of the

requirements of the degree of

Master of Science in Computer Science & Software Engineering

University of Washington

2020

Project Committee:

Michael Stiber, Chair

Munehiro Fukuda

Wooyoung Kim

 2

Table of Contents

1. ABSTRACT ... 3
2. INTRODUCTION .. 4
3. BACKGROUND: BIOLOGICAL NEURAL NETWORKS ... 5

3.1. NEURONS, SYNAPSES, AND NEURAL NETWORKS ... 5
3.2. SPIKES .. 6
3.3. SPIKE-TIMING-DEPENDENT PLASTICITY ... 6

3.3.1. Principle of Spike-Timing-Dependent Plasticity .. 7
3.3.2. Mathematical Models of STDP ... 7

4. BACKGROUND: BRAINGRID SIMULATOR ... 9
4.1. BRAINGRID SIMULATION ... 9

4.1.1. BrainGrid Program Structure .. 9
4.1.2. BrainGrid Simulation Process .. 10

4.2. THE CORTICAL CULTURE GROWTH MODEL .. 12
4.2.1. Simulation Settings ... 12
4.2.2. Neuron and Synapse Model .. 12
4.2.3. Neurite Outgrowth Model .. 13

4.3. STDP MODEL IN BRAINGRID .. 13
4.3.1. STDP Model Design ... 14
4.3.2. STDP Simulation Design .. 14

5. METHOD: SERIALIZATION AND DESERIALIZATION OF LARGE-SCALE NEURAL SIMULATIONS 16
5.1. SERIALIZATION AND DESERIALIZATION ... 16
5.2. THE CEREAL LIBRARY ... 16
5.3. SERIALIZATION AND DESERIALIZATION IN BRAINGRID ... 18

5.3.1. Implementation Challenges .. 18
5.3.2. Cereal Serialization and Deserialization .. 20
5.3.3. Serialization and Deserialization WorkFlow in BrainGrid ... 23

6. METHOD: STDP MODEL ... 27
6.1. STDP SYNAPSE CLASS AND SIMULATION MODELS .. 27
6.2. STDP IMPLEMENTATION ... 27

7. RESULTS .. 31
7.1. SERIALIZATION AND DESERIALIZATION VERIFICATION ... 31

7.1.1. BrainGrid Multi-threaded Version Verification ... 34
7.1.2. BrainGrid Single-threaded Version Verification .. 35

7.2. STDP MODEL VERIFICATION .. 40
7.2.1. Large-Scale STDP Simulation Demonstration ... 41

8. CONCLUSION AND DISCUSSION .. 44
8.1. FUTURE WORK .. 44

BIBLIOGRAPHY ... 45

 3

1. Abstract

Neural network development passes through phases, which include growing the network and its

connections to tuning those connections. One of the major mechanisms of that tuning process is

called spike-timing-dependent plasticity (STDP). In STDP, the strength of a synapse — the

connections between two neurons — is influenced by spike order and timing in those neurons.

Understanding the effect of STDP on neural network development is a central question in

neuroscience. In this project, we built the infrastructure to help answer this question by extending

an existing neural simulator to enable simulations that combine network growth and STDP

tuning. We first implemented a serialization and deserialization capability, so that the simulation

state information from growth could be used as input for STDP simulation. We also modified an

existing STDP synapse class following a mathematical model from literature. The project ended

with a large-scale network growth simulation followed by the STDP tuning. The tuning results

demonstrated synaptic weight distribution was shifted from unimodal to bimodal.

 4

2. Introduction

The development of neural networks is composed of two major phases: growing a network and

tuning the network. At the growing stage, neurons transmit signals and synapses (the

connections) are formed. Once the connections have been established, the tuning process begins

for connection adjustment. In this tuning phase, one of the major mechanisms is called spike-

timing-dependent plasticity (STDP). In STDP, a synapse is strengthened when presynaptic

spikes precede postsynaptic spikes. It is weakened when postsynaptic spikes precede presynaptic

spikes. The order and timing of spikes determine if synapses are strengthened or weakened,

causing an increase or a decrease in synaptic transmission.

Understanding the effect of STDP on neural network development is a central question in

neuroscience. In this project, we extend an existing neural simulator to enable simulations that

combine network growth and STDP tuning. We first implement a serialization and

deserialization feature to the simulator, so that essential simulation states from growth can be

serialized and serve as input for STDP simulation. We also modify an existing STDP synapse

class by following a mathematical model from previous literature to adjust synapses based on

spike timing. The project ends with a successful demonstration of extending a growth simulation

with a STDP simulation.

This project is part of the BrainGrid project, under the direction of Dr. Michael Stiber at the

University of Washington Bothell. The goal of this project is to enable simulations of network

growth and STDP tuning by 1) implementing a serialization and deserialization feature and 2)

modifying an existing STDP synapse class. This project hopefully can provide a computational

solution in understanding STDP in neural network development.

 5

3. Background: Biological Neural Networks

3.1. Neurons, Synapses, and Neural Networks

Biological neural networks are complex systems which coordinate behaviors in response to

stimuli. The primary functional unit in neural networks is called a neuron, or nerve cell. Its main

functionality is signal transmission. A neuron has three defined regions (Figure 1): cell body (or

soma), axon, and dendrites. The cell body includes the neuron’s nucleus, which has the genes of

the neuron. Extended from the cell body is a cylindrical structure called the axon. The axon is

responsible for sending signals to other neurons. There are also branch-like structures extended

from the cell body called dendrites [1]. Dendrites are used to receive signals from other neurons

[2]. Axon and dendrites are also called nerve fibers or neurites. A bundle of nerve fibers is

commonly known as nerve.

Figure 1: The structure of a neuron [3]. The main parts are the cell body, axon, and dendrites. The cell
body includes the neuron’s nucleus, the axon is a cylindrical structure for sending signals, and dendrites
are branch-like structures for receiving signals.

Another critical component of the neural network is the synapse. The synapse is essentially the

connection point between two neurons. It is important because it controls the communication

among neurons in the network. When a neuron sends signals to another neuron, these signals are

 6

passed from the axon of a neuron through the synapse and finally delivered to the dendrites of

another neuron. Typically, the neuron that sends signals to the synapse is referred to as a

presynaptic neuron or source neuron. The neuron that receives signals from the synapse is called

a postsynaptic neuron or destination neuron.

3.2. Spikes

The signals transmitted among neurons are called spikes or action potentials. Specifically, a

spike is an electrical activity describing a significant change of a neuron’s membrane potential,

an electrical potential difference between the inside and outside of the cell. The membrane

potential is normally about -65 mV [1] at rest. If there is an excitatory input signal, the

membrane potential will increase, causing the neuron to be more likely to spike. If there is an

inhibitory input signal, membrane potential will decrease, causing the neuron to be less likely to

spike. A spike only happens when the potential reaches a threshold. That is to say, an increase in

potential doesn’t guarantee a spike; however, if it passes the threshold, a full spike will be

generated. This mechanism is called the all-or-none law. After the spike, the membrane potential

will instantly drop to a point that is slightly lower than resting potential and gradually recover to

the resting state, which is generally known as the refractory period.

In fact, since spikes are often thought of as all-or-none, a single spike doesn’t carry any

information. Instead, the signals are believed to be encoded with the frequency and timing of

spikes. Therefore, previous studies mainly focus on the temporal or spatial spiking activities.

These activities can sometimes lead to network behavior. For instance, a burst is a network

behavior involving rapid spiking activities and even synchronized spiking among most or all

neurons in the network [4].

3.3. Spike-Timing-Dependent Plasticity

Spike-timing-dependent plasticity (STDP) refers to the adjustment of the strength of the synapse

based on the order and relative spike timing of two connected neurons. In neural networks, the

strength of synapse, termed synaptic weight, is the amount of impact a neuron has on another

when producing a spike.

 7

STDP has been widely discussed in the last two decades and serves as a central learning rule

utilized in many computation models [5]. The most influential theory about STDP is called

Hebb's postulate. The central idea of Hebb's postulate is described as: when a neuron

consistently contributes to the spiking of another neuron, the strength of synapse is increased. In

fact, in earlier plasticity studies, most focus on the causes of plasticity to the frequency of

neurons, not spike timing [6]. In 1997, Markram et al. studied spike timing on plasticity and

discovered that the order and timing of presynaptic and postsynaptic spikes indeed changed the

extent of synapses, beginning the era of STDP [7].

3.3.1. Principle of Spike-Timing-Dependent Plasticity

The basic principle of STDP states that when presynaptic spikes precede postsynaptic spikes by

~0 to 20 ms, the synapse strength is strengthened, known as long-term potentiation (LTP).

Whereas when postsynaptic spikes precede presynaptic spikes by ~0 to 20-100ms, the synapse

strength is weakened. This is known as long-term depression (LTD) [5], [8]–[11]. The synapse

being strengthened or weakened causes an increase or a decrease in synaptic transmission,

respectively [12].

3.3.2. Mathematical Models of STDP

In this project, we used the STDP mathematical model presented in [8]. The model describes the

contribution of each pre-post spike pair to synaptic modification is formalized as:

Δ"!"#$%#&'#&"% = Α(%)|+#| ,!⁄ 			'(Δ) > 0	 (3.1)
Δ".$!/$00&"% = Α)%)|+#| ,"⁄ 			'(Δ) < 0	 (3.2)

Δ) =)1!"0# −)&!/$ 	 (3.3)

Δ" is the fractional change in synaptic weight, Α is the scaling factor, $ is the time constant, +

and − represent potentiation and depression, respectively. ∆t is the postsynaptic spike time

minus the presynaptic spike time, (and) mean the (th spike in postsynaptic neuron and the)th

spike in presynaptic neuron. Figure 2 shows the plot of the mathematical model.

To combine each spike pair’s contribution in weight adjustment, the multiplicative model [8]

was used. The multiplicative model is formalized as:

 8

1 + Δ" = ∏!"(1 + ∆"!") (3.4)
where Δ"!" is the contribution of each spike pair.

Figure 2: The STDP model [8]. The x-axis is the spike interval defined as the postsynaptic spike time minus
the presynaptic spike time. The y-axis is the fractional change in excitatory postsynaptic potential (EPSP),
a measure of the membrane potential in the postsynaptic neuron. Each point represents one
experiment’s data. The drawing curves are the math model defined in (3.1), (3.2), and (3.3).

 9

4. Background: BrainGrid Simulator

4.1. BrainGrid Simulation

BrainGrid [13] is a complex C++ program for neural network simulations. It includes many

computational models to simulate various network phenomena. By far, BrainGrid has more than

50 classes and enables CPU-based, GPU-based, single-threaded or multi-threaded neural

network simulations. In BrainGrid, simulations capture individual neuron activities as well as

whole network behaviors. The data generated provides scientists with a good amount of

resources in researching the underlying mechanism of neural networks.

4.1.1. BrainGrid Program Structure

The classes in BrainGrid are organized into different subsystems. For instance, there is a Core

subsystem that has all the key classes driving the simulation. The Neuron and Synapse

subsystems involve neural and synaptic models used in computation of simulations. Subsystems

like Recorders and Utils are basically tools utilized in simulations.

Figure 3 presents several key classes in BrainGrid. Two major classes, the SimulationInfo class

and the Simulator class, are included in the Core subsystem. The SimulationInfo class stores

network data, whereas the Simulator class has operation methods. In the SimulationInfo class,

there is a class named Model, which includes four foundation classes defining the simulation

types. These four classes correspond to four components in a simulation: Neurons, Synapses,

Connections, and Layout. Neurons and Layout define the type of neurons and how neurons are

arranged in a network, whereas Synapses and Connections control the connectivity of the

network. Fundamentally, the Synapses component includes properties describing synapse

behaviors, and Connections defines the rule of how synapses are formed and deleted.

 10

Figure 3: The key classes in BrainGrid. The SimulationInfo class stores network data; the Simulator class
contains simulation operation methods. The SimulationInfo class has a Model class, which defines four
components in a simulation: Neurons, Synapses, Connections, and Layout.

4.1.2. BrainGrid Simulation Process

The BrainGrid simulation process [14] (Figure 4) is described as follows:

1. User inserts at the command line to specify an input XML parameter file and the

location of the result file (output file). The input file includes simulation settings and

selected models (Neurons, Synapses, Connections, and Layout) (step 1 in Figure 4).

The simulation settings include the number of neurons in a simulation, the length of

simulation, etc. The selected models are neuron type, synapse type, connection type

(growing connection or fixed connection), and the layout of neurons in a simulation.

2. The program starts with parsing the command line information and the input XML

file. This information is saved in the simInfo object and is used to instantiate all

network objects (Neurons, Synapses, Connections, and Layout) (step 2-6 in Figure 4).

3. After all objects are created, the simulator object begins to conduct the simulation

operations (step 7-11 in Figure 4). This includes setting up objects by assigning

values, performing simulation, saving result data, and deallocating objects to finish

simulation.

4. Lastly, the result file will contain simulation data for the user.

©iQWeUfaceª
IAllS\naSVeV

©iQWeUfaceª
IMRdel

<<abstract>>
AllS\naSVeV

SimXlaWiRnInfR

©iQWeUfaceª
IAllNeXURnV

<<abstract>>
CRnnecWiRnV

<<abstract>>
La\RXW

<<abstract>>
AllNeXURnV

MRdel

SimXlaWRU

+ VeWXS(ViP_iQfR:SiPXlaWiRQIQfR)
+ ViPXlaWe(ViP_iQfR:SiPXlaWiRQIQfR)
+ VaYeDaWa(ViP_iQfR:SiPXlaWiRQIQfR)
+ ÀQiVh(ViP_iQfR:SiPXlaWiRQIQfR)

 11

Figure 4: The BrainGrid simulation process.

As seen in Figure 4 step 8, the actual simulation operation was implemented in the simulate()

method in the Simulator class. In the simulate() method, the simulation proceeds as a sequence

of epochs. Within each epoch (Figure 5), neurons and synapses are updated every 0.1ms (one

time step) while keeping the connectivity of the network constant. Although neuron and synapse

states are updated, no synapse is formed or deleted. Only existing synapse states are updated.

The formation and deletion of synapse happens at the end of each epoch, called the growth

update. During the growth update, synapses are formed, deleted, and their weights are adjusted

based on the spiking activities within the epoch. Once the growth update finishes, the simulation

will move to the next epoch and end with the growth update until all epochs are finished.

ViPIQfR:SiiPXOaWiRQIQfR

cO:PaUaPCRQWaiQeU

2¬parseCommandLine()

ViPXOaWRU:SiPXOaWRU

7¬setup(simInfo)

�¬simulate(simInfo)

�¬saveData(simInfo)

11¬Ànish(simInfo)

14¬delete()

ViPDRc:TiXMLDRcXPeQW

4¬loadInputXMLParameterFile()

PRdeO:MRdeO6¬<<create>>

5¬readInputXML(simDoc)

3¬assign command line

12¬delete()

1 enter command line specifying
input XML parameter Àle

13¬delete()

10 save result data

 12

Figure 5: The workflow in one epoch in a simulation. Within an epoch, the neuron and synapse are
updated every 0.1ms (one time step). At the end of the epoch, the growth update is conducted.

4.2. The Cortical Culture Growth Model

The cortical culture growth model is a feature model [15] in BrainGrid which enables

simulations of the growth of a network in dissociated cortical cell cultures. This model simulates

10,000 neurons growing 28 days in vitro (DIV). To demonstrate the nature of network dynamics

and growth, this model includes dynamical neuron and synapse models and an activity-

dependent neurite outgrowth model [15] to capture network characteristics.

4.2.1. Simulation Settings

The simulation layout (the Layout model) is designed to arrange neurons in a rectangular grid. A

relatively small fraction of inhibitory and endogenous/spontaneous active neurons are distributed

in this layout with the rest filled with excitatory neurons.

The simulation is conducted for a total of 600 epochs and each epoch is a 100-second activity. In

each epoch, neurons and synapses are updated 1,000,000 times followed by a growth update. A

total of 600 growth updates cause the network gradually evolves and result in a grown and

stationary network.

4.2.2. Neuron and Synapse Model

Dynamical neuron and synapse models are adopted to simulate network dynamics. The neuron

model is an integrate-and-fire type model [16]. In this model, the neuron membrane potential is

determined by the synaptic input. If the potential is above the threshold, a spike is generated.

After the spike, the neuron will undergo a refractory period before the next spike.

Neuron
Update

epoch

Synapse
Update

Repeat
Neuron and Synapse
updates……

1 step = 0.1ms

Neuron
Update

Synapse
Update

1 step = 0.1ms

Growth Update
(Synapse formation,

deletion, existing
synapse weight
modification)

 13

Similarly, the synapse model also demonstrates dynamics. This dynamic type model [17]

involves activity-dependent facilitation and depression [15], [18]. This means neuron spiking

activities have temporary impacts on the ability of synaptic transmission.

4.2.3. Neurite Outgrowth Model

The neurite outgrowth model [19], which is conducted during the growth update stage, defines

how the network grows. In this model, each neuron has a region of connectivity. This is modeled

as a circle with a radius that changes dynamically based on the neuron’s spiking rate (Figure 6).

This region simulates neurite density, which are axons and dendrites extended from the neuron’s

cell body. The model describes that low firing rates stimulate neurite outgrowth, and high firing

rates cause regression [15]. Depending on the spiking rate, each neuron’s region of connectivity

may increase or decrease as the simulation continues.

When the regions of two neurons overlap, these two neurons are defined as connected. This

causes the formation of the synapse. The overlapping region then becomes the synaptic weight,

or synaptic strength. However, when two neurons do not overlap, no connection is defined

between these neurons, and thus no synapse formed. This definition describes the network

connection dynamics, illustrated in Figure 6.

Figure 6: The definition of synaptic weight (strength) in neurite outgrowth model (re-drawn from [20]).
The pink circle is the connectivity region of one neuron and the green circle is the region for another
neuron. The overlapping yellow region is the synaptic weight. Depending on the spiking rates, the region
of connectivity changes dynamically, causing synaptic weight to also change dynamically.

4.3. STDP Model in BrainGrid

The cell culture growth model successfully simulates the growth process of a network by

using integrate-and-fire neurons, dynamic synapses, and the neurite outgrowth model. Using

this model also leads to observations of some network behaviors like bursting. Nevertheless, this

Neuron
Neuron

 14

simulation only describes the facilitation and depletion dynamics of synaptic resources. It does

not include another important development factor, i.e. spike timing, in synapse modification. To

incorporate spike timing to the simulation, a spike-timing-based adjustment, or, STDP model,

should be involved.

4.3.1. STDP Model Design

The STDP model in BrainGrid is implemented as a new synapse class. According to the STDP

mathematical model [8], if there is a presynaptic spike and a postsynaptic spike and their time

interval is within acceptable range, the synaptic weight is adjusted. This model definition is

different from the neurite outgrowth model where the weight modification is conducted

periodically at the end of each epoch. The weight adjustment should be conducted immediately

when finding a valid spike pair during the epoch, not at the growth update stage. Therefore, the

STDP model is defined as a type of synapse class in BrainGrid simulator instead of a new

growth or connection class.

4.3.2. STDP Simulation Design

Figure 7 presents the design workflow of the STDP simulation in a development network. To

simulate both the neurite outgrowth and STDP aspects, we separated these two development

rules into two simulations and used serialization and deserialization, a programming technique

for object storage, for continuing these simulations. In the first simulation, the cortical cell

culture growth model was used to grow a network. At the end of the simulation where the

network has connections established, serialization was performed to save the grown network to a

file. Next, the second simulation began from deserializing the network. The STDP model was

involved at this point for weight modification. Since the design involves serialization and

deserialization, the implementation should have both serialization/deserialization and STDP

class, which are explained in the next section.

 15

Figure 7: The design workflow of STDP simulation. At first, a growth simulation is conducted. Once the
network is grown and serialized, the STDP simulation can begin from this point.

Start
growth

simulation

Serialize the
grown

network

Deserialize
the grown
network

Start STDP
simulation

End STDP
simulation

Grow a
network

Use
STDP

model

First simulation run Second simulation run

Growth simulation STDP simulation

 16

5. Method: Serialization and Deserialization of Large-Scale Neural
Simulations

5.1. Serialization and Deserialization

Serialization and deserialization is a process for preserving objects in programming. It is used

when an object needs to be stored or transmitted temporarily for later usage. In programming,

objects are stored using data structures, but hardware and network infrastructure use bytes in

processing data. When saving an object to files or sending an object over a network, there should

be a mechanism for converting an object into a byte stream, and vice versa. This mechanism is

called serialization and deserialization.

In some programming languages, serialization is provided in their standard libraries. For

example, in Java, serialization can be achieved by implementing the Serializable or

Externalizable interface [21]. For programming languages that do not have a built-in

serialization feature, other various tools and techniques can be used. For instance, in C++, a

manual approach would be using memcpy() to serialize objects. Libraries such as Boost [22] or

Cereal [23] can also be used for object storage. In fact, there are also tools that support

serialization in different languages. For example, Protocol Buffers [24] can be used in Java,

Python, C++, etc. Basically, a user writes information about serializing objects in a .proto file,

and depending on the language, a compiler will generate code which can be used in different

language programs. In summary, since there are diverse serialization methods, performance, data

size, and support are all varied.

5.2. The Cereal Library

To implement serialization and deserialization in BrainGrid, Cereal [23], an open-source C++ 11

serialization library, was utilized. There are several benefits of Cereal:

• It is built with C++ 11 standards, which is the same as the current BrainGrid simulator.

• It works on many C++ compilers, such as g++ and clang++.

• It is header only and has no external dependencies, so using this library only requires

including files in the project.

• It can archive objects in various formats, including binary, XML and JSON.

• It provides support for most object types in C++ standard library.

 17

• It is lightweight, fast, and easy to use.

Listing 1 and Listing 2 demonstrate an example of serializing and deserializing an object using

the Cereal library. In this example, an object named samepleObject is serialized and deserialized

in main.cpp (Listing 1). During serialization, an output archive is first created and the

sampleObject is passed into the archive. Since sampleObject is MyClass data type, Cereal will

look for the serialize() function in the MyClass.h file and check which data member needs to be

serialized. As shown in Listing 2, the MyClass class has three data members. They are all passed

into the archive() in MyClass::serialize() function, so Cereal will serialize these three members

accordingly. Similarly, during deserialization, an input archive is created first. Next, the

sampleObject is passed into the archive() method. Cereal will then read the data from the input

stream and copy data back to the sampleObject. It is worth noting that the Cereal serialization

function implementation in classes is within a .h file and not a .cpp file. Because serialization

function is a template method, compiler requires the implementation details, so it can compile

the function for a specific data type [25].

Listing 1: An example of Cereal serialization implementation. In the main.cpp file, a MyClass type object
named sampleObject is serialized (top) and deserialized (bottom) using the Cereal archive(). Cereal will
look for the serialization function in the MyClass class (see Listing 2) to serialize/deserialize its data.

main.cpp

#include <cereal/archives/xml.hpp> //specify serial type
#include <fstream>
#include ”MyClass.h”
int main()
{

//serialization
{

ofstream memory_out (serialization_file_name);
cereal::XMLOutputArchive archive(memory_out); //create output archive

MyClass sampleObject;

archive(sampleObject); //write data to archive
}

//deserialization
{

ifstream memory_in (serialization_file_name);
cereal::XMLInputArchive archive(memory_in); //create input archive

MyClass sampleObject;

archive(sampleObject); //read data to archive
}

}

 18

Listing 2: An example of Cereal serialization implementation. The MyClass.h file serializes three data
members by using the Cereal serialize() function.

Listing 1 and Listing 2 example is just one way of Cereal implementation. Depending on

different cases, there are a variety of implementation options in Cereal. For example, the

serialization function can be implemented not only as one serialize() function but also as split

save() and load() functions. Another example is when object type involves inheritance or

polymorphism, Cereal provides macros so these functionalities can be achieved.

Although Cereal supports serialization in many aspects, its main drawback is that it can only

serialize smart pointer data types, not primitive raw pointers. If a data member is a raw pointer,

doesn’t matter it points to an object or dynamically allocated array, Cereal can not serialize any

of them. An alternative solution should be utilized to cope with this issue, which is explained in

the later section.

5.3. Serialization and Deserialization in BrainGrid

5.3.1. Implementation Challenges

Because the purpose of serialization is providing a grown network for the STDP simulation, the

serialized data should represent the whole network. At first, we attempted to serialize all network

components. Starting from the main driver in BrainGrid, we examined each object to see whether

or not it was a network component. Cereal serialization function was added to its class if so.

Next, in this class, all data members were examined for serialization. If any data member needed

to be serialized, a serialization function was also added to the data member’s class type. We

continued to investigate all objects until all network objects were captured. Although this

MyClass.h

#include <cereal/types/vector.hpp> //cereal vector header
#include <vector>

class MyClass
{

int a, b;
vector<int> c;

template <class Archive>
void serialize(Archive & archive)
{

archive(a, b, c);
}

};

 19

approach may work, it was difficult to completely implement this approach. One reason is

because BrainGrid included more than 50 classes and had more than 80 objects created in one

simulation. Figure 8 demonstrates a simple object diagram in BrainGrid. In each object, there

were various attributes containing different pieces of information. To understand the

functionality of each attribute and determine if it contained information that should be preserved

were difficult in such a complex program. In addition, raw pointer serialization was another

problem. In BrainGrid, a lot of pointers and references were used. Serializing them were not

supported by Cereal. The alternative solution would be either modifying existing code to change

to the smart pointer or to use dereference to pass in the object itself. Changing to a smart pointer

involved a lot of code changes, and dereferencing pointers did not work in polymorphic objects.

Figure 8: A basic BrainGrid object diagram. Each object in this diagram had various attributes with
different pieces of information to be examined for serialization.

Considering the complexity of the program and the limitation of Cereal, we used a different

approach to implement serialization. Instead of serializing all network components, only four

essential objects were selected: synapse weights, synapse source neurons, synapse destination

neurons, and neuron radii.

The first three objects were selected because they represented the connections of a network. If

viewing the network as a weighted graph, synapses would be edges and neurons would be

vertices. These are definitely essential network elements. In addition, neuron connectivity radii

was also selected. This is because in the BrainGrid growth model, connectivity radii were used to

determine the synaptic weight. If using the growth model and only serializing weights, during

deserialization, even weights were deserialized successfully, these deserialized weight data

would still be replaced by the radii computed weights. Thus, connectivity radii should also be

serialized if using the growth model.

simInfo:SimXlationInfo simXlator:SimXlatorrgNormrnd:Norm

simRecorder:XMLGroZthRecorder model:GPUSpikingModel

m_conns:ConnGroZthm_s\napses:DSS\napsesm_neXrons:LIFNeXrons m_la\oXt:La\oXt m_s\napseInde[Map:S\napseInde[Map

 20

5.3.2. Cereal Serialization and Deserialization

To implement serialization on these four selected objects, the Cereal save() and load() functions,

were utilized. Figure 9 demonstrates these four objects and the classes they reside in. Synaptic

weights, source neurons, and destination neurons are attributes in the AllSynapses class; neuron

radii is an attribute in the ConnGrowth class.

Figure 9: The class diagram demonstrates the classes these four objects in. Synaptic weight, source
neuron, and destination neuron are in the AllSynapses class. Neuron radii is in the ConnGrowth class.

The synaptic weight, source neuron, and destination neuron are designed as synapse properties in

the AllSynapses class. As illustrated in Figure 10, all synapse models inherit synapse properties

from this class. Basically, these synapse properties are all stored as dynamic allocated arrays.

Figure 11 illustrates synaptic weight and some other synapse properties in dynamic arrays. Each

element in these arrays represents one current state of a synapse. For a specific synapse, all of its

states are stored in the same index position in each array. In other words, these dynamic arrays

are all with the same size. The size of the array is determined by maxSynapsePerNeuron, a

variable with a number value from user input, multiplied by total number of neurons in a

simulation. For each neuron, there are a number of spots reserved for the neuron to store its

synapses. That number is the value in maxSynapsePerNeuron variable.

©LQWHUIDFHª
IAllS\QaSVeV

©LQWHUIDFHª
IMRdel

<<abstract>>
AllS\QaSVeV

+ W: BGFLOAT *
+ VRXUFHNHXURQIQGH[: LQW *
+ GHVNHXURQIQGH[: LQW *

©LQWHUIDFHª
IAllNeXURQV

<<abstract>>
CRQQecWiRQV

<<abstract>>
La\RXW

<<abstract>>
AllNeXURQV

SiPXlaWiRQIQfR

MRdel

CRQQGURZWh

+ UDGLL: VHFWRUMDWUL[*

 21

Each array stores synapses in the order of destination neurons. In other words, from index

position 0, the first group of spots is reserved for destination neuron 1, the next group of spots is

reserved for destination neuron 2, and so on. This rule applies to all arrays, so one synapse’s

states can be found in the same index position.

Figure 10: Synapse property attributes in the AllSynapses class. Synaptic weight (W), source neuron
(sourceNeuronIndex), and destination neuron (destNeuronIndex) are all property attributes in this class.
All synapse models inherit properties from this class.

Since synapses in a network are not a constant component and these synapse property arrays

only store current existing synaptic states, some elements in arrays may not be used at a given

time. An array named “in_use” is utilized to indicate whether an index position is in use and has

information from an existing synapse. For example, if an index position shows False in the

“in_use” array, this position is not currently used. This means the value stored in this position

can be ignored. This also indicates that this position in the synaptic weight array should have a

zero value. A zero value in the weight array also means its position is not in use.

<<abstract>>
AllS\napVeV

+ VoXrceNeXronInde[: inW *
+ deVWNeXronInde[: inW *
+ W: BGFLOAT *
+ VXmmaWionPoinW: BGFLOAT **
+ W\pe: V\napVeT\pe *
+ pVr: BGFLOAT *
+ in_XVe: bool *
+ V\napVe_coXnWV: BGSIZE *

©inWerfaceª
IAllS\napVeV

AllSpikingS\napVeV

AllSTDPS\napVeVAllDSS\napVeV

AllD\namicSTDPS\napVeV

 22

Figure 11: Synapse properties are stored in dynamic allocated arrays. Each property is one array (from
top to bottom, synaptic weight (W), source neuron (sourceNeuronIndex), destination neuron
(destNeuronIndex), in_use array (in_use), synaptic type (type), and postsynaptic response (psr)). The
current states of one existing synapse are located in the same index position in each array.

Since BrainGrid stores the states of synapses in different objects, it was difficult to determine

what object should be serialized at first. Although serializing all state objects could be an option,

states like postsynaptic response were tough to handle at deserialization for continuing the

simulation. As a result, we chose synaptic weight and source and destination neurons. These

were the most representable elements of the network for serialization.

Nevertheless, serializing dynamic arrays was another issue. As mentioned above, since the

Cereal library does not support dynamic array serialization, an alternative method should be

utilized. In this project, we used a helper data structure to solve this issue. Figure 12 describes

the algorithm to serialize and deserialize dynamic arrays using a helper data structure Vector. In

save() method, vectors were created first, and values in dynamic arrays were copied over. As a

result, the objects were serialized as a vector data type. On the other hand, when deserializing

int *sourceNeuronIndex

int *destNeuronIndex

synapseType *type

BGFLOAT *psr

bool *in_use ……
True False FalseTrue FalseFalseFalseTrueFalseFalse

BGFLOAT *W ……2.7e-8 2.5e-9 1.6e-80.0 0.0 0.00.0 0.0 0.0 0.0

Dest Neuron 1Dest Neuron 0

……
2971 7344 15388388

……
0 0 10

……
0 2 12

……
2e-442e-432e-44 2e-45

0 0 1 1 1 1

 23

objects in load() method, vectors were created first. The data in the serialization file was copied

over. Finally, values in vectors were copied back to dynamic arrays.

Figure 12: The serialization and deserialization algorithm when dealing with dynamic array data types.
Vector is a helper data structure.

Similarly, the neuron connectivity radii object is also stored in a dynamic array. In the

ConnGrowth class, radii is a raw pointer of VectorMatrix data type, which is a tool class storing

1D dynamic array data. Since each neuron has one radius, the size of the array is the total

number of neurons. Serialization implementation for radii also used a helper vector, similar to

the synaptic weight object, which is illustrated in Figure 12.

5.3.3. Serialization and Deserialization WorkFlow in BrainGrid

Figure 13 presents the workflow of adding serialization and deserialization features in BrainGrid.

Serialization is conducted after the simulation is completed and before objects are deallocated.

On the other hand, deserialization is conducted after objects are instantiated and before the

simulation starts.

At the beginning of the simulation, the user can choose whether to perform serialization, or

deserialization, or both at the command line. Both serialization and deserialization are optional to

users when conducting a simulation.

Save() method (Serialization function) Load() method (Deserialization function)

Declare vectors

Copy values from
dynamic arrays to

vectors

Serialize vectors

Declare vectors

Deserialize vectors
from serialization file

Copy values from
vectors back to
dynamic arrays

 24

Figure 13: The workflow of serialization and deserialization in BrainGrid.

Load Parameter

Create Objects

Deserial
objects?

Perform Simulation

Save results data

Delete objects

GPU
run?

1 Open the serial file

2 Deserialize synapse weights,
source neurons, destination

neurons

3 Create synapses from
weights

4 Copy CPU synapse
data to GPU

5 Create Synapse Index Map

7 Deserialize neuron radii

2 Copy GPU synapse
data to CPU

1 Open/Create a serial file

3 Serialize synapse weights,
source neurons, destination

neurons

4 Serialize neuron radii

Serial
objects?

Growth
model?

GPU
run?

GPU
run?

6 Copy CPU Synapse
Index Map to GPU Growth

model?

No

Yes

No

Yes

No

Yes

No

Yes

No

Yes

Yes
No

No

Yes

Start

End

Setup Deserialization Simulation Serialization Cleanup

 25

Figure 14 demonstrates all functions implemented or utilized in this workflow (Figure 13). As

seen in Figure 14, implementing this workflow involves not only Cereal serialization functions

but also other helper functions. For example, in step 2 (Figure 13) during serialization and step 4

(Figure 13) during deserialization, a copyGPUSynapseToCPU() function and a

copyCPUSynapseToGPU() function were implemented and called for GPU-based simulation. If

choosing a GPU-based simulation, some computations are conducted on the GPU and the data is

also on the GPU. Thus, to serialize and deserialize the GPU data, the data needs to be copied to

the CPU for serialization and to the GPU for deserialization. These two functions were

implemented in the GPUSpikingModel class. Since the GPUSpikingModel class contains a

pointer data member which points to the corresponding GPU location storing synapse attribute

data, implementing the function in this class can retrieve data in GPU.

Figure 14: All functions implemented or utilized in the serialization and deserialization workflow.

In step 3 (Figure 13) during deserialization, a createSynapsesFromWeights() function was

implemented in the Connections class and called to re-create synapses. This was because the

three serialized synapse objects only represent some of the synapse properties. Other synapse

properties such as synaptic types need to be re-constructed using deserialized synaptic weight

data. Listing 3 shows the createSynapsesFromWeights() function. The function iterates each

element in the deserialized synaptic weight array. If an element has a value which is not zero, it

means there is an existing synapse. Then, this synapse will be re-created by calling a

©interfaceª
IAOOS\QaSVeV

©interfaceª
IMRdeO

<<abstract>>
AOOS\QaSVeV

+ saYe()
+ load()
+ createS\napseImap()

<<abstract>>
CRQQecWiRQV

+ createS\napsesFromWeights()

SiPXOaWiRQIQfRSiPXOaWRU

+ cop\GPUS\napseToCPU()
+ cop\CPUS\napseToGPU()

CRQQGURZWh

+ saYe()
+ load()

MRdeO

GPUSSiNiQgMRdeO

+ cop\S\napseInde[MapHostToDeYice()
+ cop\GPUS\napseToCPUModel()
+ cop\CPUS\napseToGPUModel()

 26

createSynapse() function. Lastly, in step 5 and step 6 during deserialization (Figure 13), the

function to create synapse index map and copy it to the GPU was called for reconstructing the

simulation infrastructure, so the simulation can use the newly re-created synapses to continue the

operation.

Listing 3: The function to re-create synapses from weights. After the synaptic weight, source neuron, and
destination neuron are deserialized, the createSynapsesFromWeights() function is called to iterate
through the synaptic weight array to see if an element with a value is not zero. If True, it means an
existing synapse and this synapse will be re-created by calling the createSynapse() function, an existing
function to assign all synapse property attributes with a default value.

for (index = 0; index < synapse_weight_array.size(); index++) {
if (synapse_weight_array[index] is not zero) {

// get values from serialized data
float weight = synapse_weight_array[index];
int source_neuron = synapse_source_neuron_array[index];
int destination_neuron = synapse_destination_neuron_array[index];

//create the synapse by calling createSynapse() function to assign default synapse values
createSynapse(weight, source_neuron, destination_neuron)

}
}

 27

6. Method: STDP Model

6.1. STDP Synapse Class and Simulation Models

The STDP synapse class used in this project is based on an existing class implemented

previously. We followed the STDP mathematical model presented in [8] and modified this

existing class to simulate the basic STDP behavior.

As mentioned above, since the design of the STDP simulation workflow involved two

simulations and each simulation represented different phases in network development, different

models were selected in each simulation run. Figure 15 presents models used in two simulations.

In the growth simulation, the growth model (Connection) and the dynamic synapse model

(Synapse) were used. In the STDP simulation, the static model (Connection) and the STDP

synapse model (Synapse) were used. The static model was different from the growth model

where synapses and their weights in this model were defined as input. They remained the same

throughout the entire simulation. Therefore, by using the static model and the deserializing

synapses from the growth model, the synaptic weight modification will be only based on STDP

learning rule, so the impacts of STDP can be observed.

Figure 15: The models used in STDP simulation.

6.2. STDP Implementation

The existing STDP synapse class was implemented as the derived class of the

AllSpikingSynapses class (Figure 10). In this class, two member functions were used to conduct

synaptic weight adjustment: the advanceSynapse() method and the stdpLearning() method.

Static
Model

STDP
Model

Second simulation run

Growth simulation STDP simulation

Growth
Model

First simulation run

Dynamic
Synapse
Model

 28

The advanceSynapse() method was an overwritten method which had the signal transmission

logic for each synapse performed in a single time step during epoch (the synapse update step in

Figure 5). Fundamentally, each synapse class overwrote this method to have its own logic to

receive signals from a presynaptic neuron, calculate the postsynaptic response, and send the

calculated signals to a postsynaptic neuron. Differing from other synapse classes, the

advanceSynapse() method in the STDP synapse class involves not only signal transmission logic

but also the weight adjustment process.

Figure 16 presents the advanceSynapse() method algorithm in the STDP synapse class. The

method starts by checking if the synapse is an inhibitory synapse (its presynaptic neuron is an

inhibitory neuron) or a zero weight synapse. This is because according to [8], the STDP learning

only applies to excitatory neurons. If it is an inhibitory synapse or a zero weight synapse, it will

only conduct the signal transmission. There is no weight adjustment involved.

Next, another check is conducted to see whether or not the synapse has a presynaptic spike that

needs processing. This means that a presynaptic spike is generated previously, and now the

signal is delivered to the synapse to be transmitted to the postsynaptic neuron. If this is the case,

then the method will retrieve the latest preceding spike time from the postsynaptic neuron (the

last time the postsynaptic neuron generated a spike), and calculate the time interval between the

current time (the spike from the presynaptic neuron) and the latest preceding spike (a spike from

the postsynaptic neuron). If the time interval is within the STDP learning window, this interval is

then used to adjust weight by entering the stdpLearning() method. After one adjustment finishes,

the algorithm moves to the preceding spike from postsynaptic neuron before the latest one,

calculating another time interval (using current time as the presynaptic spike and preceding spike

time as the postsynaptic spike). If this interval is still within an acceptable range (in the learning

window), the stdpLeanrning() method is called again to perform another weight adjustment

routine. The algorithm will continue to retrieve preceding spikes to see if the intervals are

acceptable for entering the learning method until the interval is out of the learning window.

Similarly, the algorithm also checks whether or not the synapse has a postsynaptic spike that

needs processing. This means that a postsynaptic spike is generated previously and now the

 29

signal is backpropagated (delivered in reverse) to the synapse to be transmitted to the presynaptic

neuron. If this is the case, the method will do the same thing: retrieving the preceding spike times

from the presynaptic neuron, calculating the time intervals, and entering stdpLearning()

accordingly.

Figure 16: The algorithm in AllSTDPSynapses::advanceSynapse() method.

Figure 17 illustrates an example of the process of retrieving preceding spike times and

calculating time intervals to enter stdpLearning(). In this example, the synapse has a presynaptic

spike that needs processing. The algorithm starts by retrieving the latest preceding spike from the

postsynaptic neuron and calculates the time interval (spike pair #1 in Figure 17). Since the

interval is within the learning window, this interval enters the stdpLearning() method. The

algorithm continues to find preceding spikes from the postsynaptic neuron to see if a time

interval is within the range (spike pair #2 and #3 in Figure 17). The iteration stops at an interval

which is out of the range (spike pair #4 in Figure 17).

The synaptic weights are adjusted in the stdpLearning() method (Listing 4). When a spike pair

enters the stdpLearning() method, the algorithm starts by using the time interval to calculate the

fractional change in weight. This fraction was added to 1.0 to become the scaling ratio. If the

scaling ratio is less than zero, the ratio is reset to zero so the weight is adjusted to zero and

Inhibitory
synapse or

zero
weight

synapse?

AllSpikingSynapses::advanceSynapse()

Update post synaptic response

Update summation point

Start

If there is a
presynaptic

spike?

If time
interval is

valid?

Get one previous spike timing from the postsynaptic neuron,
calculate post-lead-pre spike pair time interval

Enter
stdpLearning()

Move to next
previous spike

Yes

No

Yes

No

If there is a
postsynaptic

spike?

If time
interval is

valid?

Get one previous spike timing from the presynaptic neuron,
calculate pre-lead-post spike pair time interval

Enter
stdpLearning()

Move to next
previous spike

Yes

No

End

Yes

Yes

No

No

End

 30

remains at zero for the rest of the simulation. On the other hand, if the scaling ratio is larger than

zero, the weight is adjusted by multiplying the scaling ratio. The algorithm ends with a final

check to see if the weight is bigger than the maximum allowable weight. If that is the case, the

weight will be reset to the maximum allowable weight.

Figure 17: The example of the process of retrieving preceding spike times and calculating time intervals.
Each number in a red explosion shape is the time step when a spike is generated.

Listing 4: The pseudocode of the stdpLearning() method.

Post-synaptic neuron spike history

160 595 641 800 975

Pre-
synaptic
Neuron

Post-
synaptic
Neuron

Synapse

989

Pre-synaptic neuron
current time step

989-975=14

989-800=189

989-641=348

989-975=394

Max STDP window = 350

Spike pair 1

Spike pair 2

Spike pair 3
Spike pair 4

if (presynaptic spike precedes postsynaptic spike(pre-leads-post spike pair)) {
//Potentiation
fractional_change = Apos * exp(-abs(time_interval)/taupos); //fractional_change is fractional

change in weight

} else if (postsynaptic spike precedes presynaptic spike(post-leads-pre spike pair)) {
//Depression
fractional_change = Aneg * exp(-abs(time_interval)/tauneg);

}

scaling_ratio = 1.0 + fractional_change; //add 1.0 to become weight scaling_ratio

//If scaling_ratio is negative, means weight is adjusted to zero and will never be changed.
//This means the synapse is deleted. No connection (synapse) anymore.
if(scaling_ratio < 0) {

scaling_ratio = 0;
}

//Adjust weight
synaptic_weight = synaptic_weight * scaling_ratio;

//If synaptic_weight is bigger than max_weight, set it to max_weight
if(fabs(synaptic_weight) > max_weight) {

synaptic_weight = max_weight;
}

 31

7. Results

7.1. Serialization and Deserialization Verification

To verify serialization and deserialization features, eight experiments were performed (Table 1)

on the BrainGrid multi-threaded version program to test different simulation scenarios. Scenarios

varied in terms of simulations length, machine type, total neurons, and serialization file type.

Table 1: Serialization and Deserialization Verification Experiments

Experiment

Number of

Epoch

(Serialization

Run)

Number of

Epoch

(Deserialization

Run)

Number of

Epoch

(Whole Run)

Machine

Type

Number of

Neurons

Serialization

File

1 10 10 20 CPU 100 XML

2 10 10 20 GPU 100 XML

3 10 100 110 CPU 100 XML

4 10 100 110 GPU 100 XML

5 10 100 110 CPU 100 Binary

6 10 100 110 GPU 100 Binary

7 100 100 200 GPU 10,000 XML

8 300 300 600 GPU 10,000 XML

Each experiment involved three simulations:

1. A growth simulation ended with serialization (serialization run)

2. A growth simulation began with deserialization from #1 (deserialization run)

3. A growth simulation which ran as long as the combination of #1 and #2, without

serialization and deserialization (whole run)

All three simulations were conducted using the same input parameter file and the same machine.

In each experiment, multiple files were generated for verification tests (Figure 18). Three

verification tests were performed:

1. Objects are serialized correctly – comparing the serialization file with object state output

after serialization. The output printed out object states to a text file. A Python script was

written to retrieve data from a serialization file and the state output file to conduct a

comparison. These two data items should be the same to pass the test.

 32

2. Objects are deserialized correctly – comparing object state output before and after

deserialization. Another state output file was generated after the deserialization run with

the information of object states from before and after deserialization. A Python script was

also used to retrieve data. To pass the test, the object states before deserialization should

be different compared to after deserialization. In addition, the object states after

deserialization should be the same as the serialization file.

3. The deserialization run generates similar results as a whole run – comparing whole run

results with deserialization results. Since only four data members were serialized (rather

than the entire state of the simulation), results of the deserialization run were not exactly

the same as the whole run. However, it should be similar enough to prove that the

deserialization works properly. Results were evaluated by visualizing two simulation

results with their neuron radii and spiking rates within each epoch. The average and

median radii and spiking rates in each epoch were also compared. Lastly, in each epoch,

we selected a neuron that behaved the most differently in radius and spiking rate between

the whole run and the deserialization run. We then plotted the differences to see if the

maximum difference in radii and rates between the two runs changed during the entire

simulation. The expected results should show similar maximum differences in each epoch

for both radii and spiking rates. Figure 19 demonstrates an example of all plots generated

in one experiment for this verification test.

 33

Figure 18: In each experiment, multiple files were generated for verification. Verification involves three
parts: 1) Comparing serialization file and object states after serialization to ensure that serialization
works properly. 2) Comparing object states from before and after deserialization to ensure
deserialization that works properly. 3) Comparing deserialization run results and whole run results to
ensure that deserialization generates similar simulation results as non-serialization results (whole run).

Figure 19: All plots generated in one experiment for verification test #3. Two simulation results were
compared by visualizing neuron radii and spiking rates in each epoch.

Simulation Run 1
(Serialization Run)

Simulation Run 3
(Whole Run)

Simulation Run 2
(Deserialization Run)

Serialization Deserialization

Serialization
File

Print
Object
States

Print
Object
States

Print
Object
States

Object
State

Output File

Result
File

Result
File

Object
State

Output File

Result
File

2 4 6 8 10
Epoch

0

0.5

R
ad

ii

Whole Run Radii

2 4 6 8 10
Epoch

0

0.5

R
ad

ii

Deserial Run Radii

2 4 6 8 10
Epoch

0

0.5

R
ad

ii

Average Raii

Whole Run
Deserial Run

2 4 6 8 10
Epoch

0

0.5

R
ad

ii

Median Radii

Whole Run
Deserial Run

2 4 6 8 10
Epoch

0

0.5

M
ax

 R
ad

ii
D

iff
er

en
ce

Max Radii Difference

2 4 6 8 10
Epoch

0
1
2
3

R
at

es
 (H

z) Whole Run Rates

2 4 6 8 10
Epoch

0
1
2
3

R
at

es
 (H

z) Deserial Run Rates

2 4 6 8 10
Epoch

0
1
2
3

R
at

es
 (H

z) Average Rates

Whole Run
Deserial Run

2 4 6 8 10
Epoch

0
1
2
3

R
at

es
 (H

z) Median Rates

Whole Run
Deserial Run

2 4 6 8 10
Epoch

0
1
2
3

M
ax

 R
at

es
 D

iff
er

en
ce

 (H
z)

Max Rates Difference

 34

7.1.1. BrainGrid Multi-threaded Version Verification

Table 2 shows the verification testing results. As seen in Table 2, all experiments were passed on

the first two verification tests: correct serialization and deserialization. This indicated the data

was successfully serialized and deserialized. However, in experiment 8, when comparing

simulation results between the deserialization run and the whole run, the maximum differences

of radii and spiking rates increased significantly around 120 epochs (Figure 20 C, D). In

experiment 7 (Figure 20 A, B), when the simulation was 100 epochs long, the maximum

differences of radii and rates remained similar for the entire simulation. However, in experiment

8, when the simulation became 300 epochs long, a significant increase was observed. This means

that at least one neuron’s spiking rate and at least one neuron’s radius exhibited abnormal

behavior at around 120 epochs. To further investigate this abnormality and see how many

neurons present this behavior, we retrieved the data from the very last epoch and found out that

among 10,000 neurons, there were 12 neurons that showed significant differences in radii. The

same 12 neurons demonstrated significant differences in spiking rates as well. This finding

indicated that the abnormal behavior came from the spiking rates because in the growth model,

spiking rates were used to determine radii. Even though we knew the issue was from spiking

rates, the reason for this behavior was still unknown. Thus, we performed experiment 8 one more

time on the single-threaded version code to find out if this behavior was also observed and if so,

what the possible cause of this issue might be. The results of testing on the single-threated code

is demonstrated in the next section.

Table 2: Multi-threaded version verification testing results

Experiment Verification Test #1
Correct Serialization

Verification Test #2
Correct Deserialization

Verification Test #3
Similar Results

1 Pass Pass Pass
2 Pass Pass Pass
3 Pass Pass Pass
4 Pass Pass Pass
5 Pass Pass Pass
6 Pass Pass Pass
7 Pass Pass Pass
8 Pass Pass Fail

 35

A

B

C

D

Figure 20: Maximum differences of radii and spiking rates in experiment 7 and experiment 8 on multi-
threaded version of code. In experiment 7, maximum radii (A) and spiking rates (B) differences remained
similar throughout the entire 100-epoch simulation; however, in experiment 8, maximum radii (C) and
spiking rates (D) differences showed significant increases at around 120 epochs.

7.1.2. BrainGrid Single-threaded Version Verification

To further investigate the potential cause of abnormal spiking rates, one more experiment was

performed on the single-thread version code. Figure 21 showed the results using the single-

threaded version code. As seen in Figure 21, abnormal spiking rates were still observed, but the

maximum differences were less than the multi-threaded version. The other difference was the

timings. In the single-threaded version, an abnormality appeared at around 150 epochs, which

was different from the multi-threaded version. In addition, only two neurons out of 10,000

neurons exhibited this abnormal spiking behavior. These two neurons’ radii and rates in each

epoch is shown in Figure 22. This figure showed that although two neurons behaved abnormally

0 20 40 60 80 100
Epoch

0

0.5

1

1.5

2
M

ax
 R

ad
ii

D
iff

er
en

ce

0 20 40 60 80 100
Epoch

0

1

2

3

4

5

6

M
ax

 R
at

es
 D

iff
er

en
ce

 (H
z)

0 50 100 150 200 250 300
Epoch

0

0.5

1

1.5

2

M
ax

 R
ad

ii
D

iff
er

en
ce

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

M
ax

 R
at

es
 D

iff
er

en
ce

 (H
z)

 36

at different times, their behaviors were very similar—both neurons stopped spiking in the middle

of the simulation, which caused their radii to begin to increase.

A

B

Figure 21: Maximum differences of radii (A) and rates (B) in single-threaded version. The max differences
were smaller than in the multi-threaded version. The abnormal spiking behavior happened at around 150
epochs, which is also different from the multi-threaded version.

0 50 100 150 200 250 300
Epoch

0

0.5

1

1.5

2

M
ax

 R
ad

ii
D

iff
er

en
ce

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

M
ax

 R
at

es
 D

iff
er

en
ce

 (H
z)

 37

A

B

C

D

Figure 22: The max radii and rates in each epoch of two neurons exhibited abnormal spiking behavior.
The top (A) and (B) are the first neuron’s radii and rates, while the bottom (C) and (D) are the second
neuron’s radii and rates. Both neurons had similar behavior in that they stopped spiking in the middle of
the simulation and their radii began to increase.

To identify the cause of this behavior, we further investigated the simulation process by

outputting various internal states for each neuron, including the membrane potential and spiking

activities in every single time step. We found that the cause of non-spiking was due to

calculating an edge case during the growth update. In the growth model, when calculating the

overlapping region of two neurons, one very small computed region was generated a non-a-

number (NAN) result. This caused the neuron to appear as not spiking during simulation and led

to the changes in radii for the rest of simulation. After modifying the code to take this edge case

into account, the simulation results showed consistent max differences in each epoch (Figure 23

E, J). This confirmed the error was not from the deserialization implementation. Figure 23

showed the final results after fixing the edge case.

0 50 100 150 200 250 300
Epoch

0

1

2

3

4
R

ad
ii

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

R
at

es
 (H

z)

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

R
ad

ii

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

R
at

es
 (H

z)

Whole Run
Deserial Run

 38

A

B

C

D

E

0 50 100 150 200 250 300

Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4

R
ad

ii

Average Radii

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

0.5

1

1.5

2

2.5

3

3.5

4
R

ad
ii

Median Radii

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

M
ax

 R
ad

ii
D

iff
er

en
ce

Max Radii Difference

 39

F

G

H

I

J

Figure 23: The final results after fixing the edge case error. (A)-(E) are radii from the whole run, the deserialization run, the two runs’ average and
median radii, and max differences. (F)-(J) are the same but with data in spiking rates.

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

R
at

es
 (H

z)

Average Rates

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6
R

at
es

 (H
z)

Median Rates

Whole Run
Deserial Run

0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

6

M
ax

 R
at

es
 D

iff
er

en
ce

 (H
z)

Max Rates Difference

 40

7.2. STDP Model Verification

The verification test for the STDP model included a CPU-based experiment and a GPU-based

experiment. Both experiments used the single-threaded version code. Each experiment followed

the STDP simulation workflow described in Figure 7: a growth simulation followed by a STDP

simulation. In each experiment, both simulations ran 20 epochs with 900 neurons and the same

neuron and layout models were used.

To verify the STDP behavior, we monitored every single synaptic weight adjustment event in

both STDP simulations by outputting each spike pair interval and its calculated fractional change

in weight from the stdpLearning() method. The calculated fractional changes of weights were

plotted against the time intervals and verified with the STDP model in Figure 2. Figure 24 shows

the STDP model verification results.

A

B

Figure 24: STDP verification test results. The calculated fractional changes of weights were plotted
against the spike pair time intervals. (A) is the result of the CPU-based experiment. (B) is the result of the
GPU-based experiment.

To understand the overall weight changes after STDP modification, we also serialized the

weights after both STDP simulations. We found that both simulations had the same four

synapses (out of ~2000 synapses) with changes in weights. These four synapses were two sets of

symmetric connections, meaning two synapses had the same two neurons as the source and

destination neurons. It was just the direction that was opposite. The other two synapses were the

same as the other two neurons. The weight changes of these four synapses were shown in Table

3 and Table 4. Both simulations demonstrated that in each symmetric connection set, one

-0.11 -0.09 -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05
Pre/Post Synaptic Spike Interval (S)

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fr
ac

tio
na

l C
ha

ng
e

of
 S

yn
ap

tic
 W

ei
gh

t

-0.11 -0.09 -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05
Pre/Post Synaptic Spike Interval (S)

-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Fr
ac

tio
na

l C
ha

ng
e

of
 S

yn
ap

tic
 W

ei
gh

t

 41

synapse was strengthened to a larger value, whereas the other was weakened to a very small

value.

Table 3: The four STDP adjusted synapses in CPU-based experiment

Synapse

number

Source

Neuron

Destination

Neuron

Synaptic Weight Before

STDP tuning

Synaptic Weight After

STDP tuning

1 1 2 7.35178 ´ 10!"# 1.40130 ´ 10!$%

2 2 1 7.35178 ´ 10!"# 8.45108 ´ 10!#&

3 3 4 7.46843 ´ 10!"# 6.61449 ´ 10!#&

4 4 3 7.46843 ´ 10!"# 1.40130 ´ 10!$%

Table 4: The four STDP adjusted synapses in GPU-based experiment

Synapse

number

Source

Neuron

Destination

Neuron

Synaptic Weight Before

STDP tuning

Synaptic Weight After

STDP tuning

1 1 2 7.36995 ´ 10!"# 1.40130 ´ 10!$%

2 2 1 7.36995 ´ 10!"# 1.40510 ´ 10!#'

3 3 4 7.37815 ´ 10!"# 5.02650 ´ 10!#(

4 4 3 7.37815 ´ 10!"# 1.40130 ´ 10!$%

7.2.1. Large-Scale STDP Simulation Demonstration

Finally, to verify and demonstrate STDP in a large-scale simulation, we ran a cortical culture

growth simulation followed by 3 steps of STDP tunings. Each step began with deserializing the

network from the previous simulation and ended with serializing the network. We monitored the

distribution of weights in each step to verify the change in weights. Figure 25 shows the

workflow of the large-scale STDP simulation with a growth simulation followed by 3 steps of

STDP tuning simulations. The first step ran 20 seconds of tuning, the second step ran another

100 seconds, and the final step ran 200 seconds.

 42

Figure 25: The workflow of large-scale STDP simulation.

Figure 26 showed the synaptic weight histogram in each tuning stage. When comparing the non-

STDP tuning and 20 seconds of tuning, about 10% of synapses were strengthened and shifted to

a larger value, including 5% that went directly to the maximum allowable weights (the rightmost

bar in Figure 26 B). Similarly, another 10% of synapses were weakened and shifted to a value

toward zero. When comparing three steps of the tuning process (Figure 26 B, C, D), although

they appeared the similar from visualizing the distribution, a small amount of synapses were

actually strengthened to the maximum weight value (rightmost bar increased from ~5%, ~7%,

and to ~8% in three steps). On the other hand, not much synapses were weakened. These results

indicated that at the beginning of tuning, about 20% of synapses were modified rapidly to either

increase or decrease their weight values. However, after 20 seconds of tuning, the majority of

synapses seemed to be stabilized with only a small number of synapses being strengthened to

max.

In addition, the other observation in Figure 26 is the weight distribution shifted from unimodal to

bimodal. One hypothesis of the distribution change is a symmetry breaking between those

symmetric connections. According to literature, STDP may break this symmetry [26] [27] by

causing the weight from a neuron to another become stronger, and the reverse direction

weakened. This may be the reason to explain the bimodal distribution.

Cortical culture growth
simulation

STDP
simulation

1

STDP
simulation 2 STDP simulation 3

60,000 seconds
(600 epochs) 20 seconds 200 seconds100 seconds

 43

A

B

C

D

Figure 26: The histogram of synaptic weight distribution in each stage of STDP tuning. (A) is the non-
tuning weight distribution. (B) is 20-second tuning. (C) is another 100 seconds tuning. (D) is final 200
seconds tuning. The bin width is set to 0.5 ´ 10!(.

-0.5 0 0.5 1 1.5 2 2.5 3
Synaptic Weight 10-7

10-5

10-4

10-3

10-2

10-1

100
Pe

rc
en

ta
ge

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Synaptic Weight 10-7

10-3

10-2

10-1

100

Pe
rc

en
ta

ge

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Synaptic Weight 10-7

10-3

10-2

10-1

100

Pe
rc

en
ta

ge

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
Synaptic Weight 10-7

10-3

10-2

10-1

100

Pe
rc

en
ta

ge

 44

8. Conclusion and Discussion

In this project, we presented the process of enabling neural network simulations of growth and

STDP. Specifically, the design and implementation of the serialization capability is not only

useful for STDP simulations but also brings more possibilities to the simulator. For example,

serialization can be used in combining other network models to simulate more scenarios. This

skeleton design of serialization also provides a foundation for other future applications. In

addition, we implemented the basic form of STDP and verified its behaviors. The results showed

that the STDP model changed the distribution of synaptic weights by shifting from a unimodal

distribution to a bimodal distribution.

What I learned the most from the project is about learning to implement a feature to an existing

program. Since it was my first time building a feature on top of a program, understanding the

program’s structure and architecture became the priority. Although it was very challenging at the

beginning to know such a complex program, it really helped me in reviewing other developers’

code and understanding their logic throughout the process. Besides, I also learned many new

techniques and tools, such as Cereal library, GPU CUDA library, Matlab, etc.

8.1. Future Work

First, given the design of the serialization workflow, we would like to see if serialization can be

extended by storing more objects. One possibility could be to use other serialization techniques

or modify the existing code to minimize the usage of a raw pointer. For the STDP model, we

would like to verify the hypothesis of symmetry breaking and continue to improve the STDP

model. This includes adding not only excitatory synapses but also inhibitory synapses, setting up

the upper growth limit in synaptic strength, or testing on other maximum synaptic weight values.

We also would like to see other types of STDP models implemented.

 45

Bibliography

 [1] E. R. Kandel, J. H. (James H. Schwartz, J. Dimes, E. R. Kandel, J. H. (James H.

Schwartz, and J. Dimes, Principles of neural science, 2nd ed. New York: New York : Elsevier,

1985.

[2] L. Squire, D. Berg, F. E. Bloom, S. du Lac, A. Ghosh, and N. C. Spitzer, Fundamental
Neuroscience. Academic Press, 2012.

[3] “What are the parts of the nervous system?,” https://www.nichd.nih.gov/.
https://www.nichd.nih.gov/health/topics/neuro/conditioninfo/parts (accessed Apr. 27, 2020).

[4] J. van Pelt, P. S. Wolters, M. A. Corner, W. L. C. Rutten, and G. J. A. Ramakers, “Long-

term characterization of firing dynamics of spontaneous bursts in cultured neural networks,”

IEEE Transactions on Biomedical Engineering, vol. 51, no. 11, pp. 2051–2062, Nov. 2004, doi:

10.1109/TBME.2004.827936.

[5] D. E. Feldman, “The Spike-Timing Dependence of Plasticity,” Neuron, vol. 75, no. 4, pp.

556–571, Aug. 2012, doi: 10.1016/j.neuron.2012.08.001.

[6] H. Markram, W. Gerstner, and P. J. Sjöström, “A History of Spike-Timing-Dependent

Plasticity,” Front Synaptic Neurosci, vol. 3, Aug. 2011, doi: 10.3389/fnsyn.2011.00004.

[7] H. Markram, J. Lübke, M. Frotscher, and B. Sakmann, “Regulation of synaptic efficacy

by coincidence of postsynaptic APs and EPSPs,” Science, vol. 275, no. 5297, pp. 213–215, Jan.

1997, doi: 10.1126/science.275.5297.213.

[8] R. C. Froemke and Y. Dan, “Spike-timing-dependent synaptic modification induced by

natural spike trains,” Nature, vol. 416, no. 6879, pp. 433–438, Mar. 2002, doi: 10.1038/416433a.

[9] D. E. Feldman, “Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal

cells in rat barrel cortex,” Neuron, vol. 27, no. 1, pp. 45–56, Jul. 2000, doi: 10.1016/s0896-

6273(00)00008-8.

[10] L. I. Zhang, H. W. Tao, C. E. Holt, W. A. Harris, and M. Poo, “A critical window for

cooperation and competition among developing retinotectal synapses,” Nature, vol. 395, no.

6697, pp. 37–44, Sep. 1998, doi: 10.1038/25665.

[11] G. Bi and M. Poo, “Synaptic Modifications in Cultured Hippocampal Neurons:

Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type,” J. Neurosci., vol.

18, no. 24, pp. 10464–10472, Dec. 1998, doi: 10.1523/JNEUROSCI.18-24-10464.1998.

[12] Y. Babacan and F. Kaçar, “Memristor emulator with spike-timing-dependent-plasticity,”

AEU - International Journal of Electronics and Communications, vol. 73, pp. 16–22, Mar. 2017,

doi: 10.1016/j.aeue.2016.12.025.

[13] M. Stiber, F. Kawasaki, D. B. Davis, H. U. Asuncion, J. Y.-H. Lee, and D. Boyer,

“BrainGrid+Workbench: High-performance/high-quality neural simulation,” in 2017
International Joint Conference on Neural Networks (IJCNN), May 2017, pp. 2469–2476, doi:

10.1109/IJCNN.2017.7966156.

[14] “BrainGrid.” https://uwb-biocomputing.github.io/BrainGrid/ (accessed May 08, 2020).

[15] F. Kawasaki and M. Stiber, “A simple model of cortical culture growth: burst property

dependence on network composition and activity,” Biol Cybern, vol. 108, no. 4, pp. 423–443,

Aug. 2014, doi: 10.1007/s00422-014-0611-9.

[16] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. Homogeneous

synaptic input,” Biol Cybern, vol. 95, no. 1, pp. 1–19, Jul. 2006, doi: 10.1007/s00422-006-0068-

6.

[17] H. Markram, Y. Wang, and M. Tsodyks, “Differential signaling via the same axon of

 46

neocortical pyramidal neurons,” PNAS, vol. 95, no. 9, pp. 5323–5328, Apr. 1998, doi:

10.1073/pnas.95.9.5323.

[18] S. L. Jackman and W. G. Regehr, “The Mechanisms and Functions of Synaptic

Facilitation,” Neuron, vol. 94, no. 3, pp. 447–464, May 2017, doi: 10.1016/j.neuron.2017.02.047.

[19] A. Van Ooyen, J. Van Pelt, and M. A. Corner, “Implications of activity dependent neurite

outgrowth for neuronal morphology and network development,” Journal of Theoretical Biology,

vol. 172, no. 1, pp. 63–82, Jan. 1995, doi: 10.1006/jtbi.1995.0005.

[20] F. Kawasaki, “Accelerating large-scale simulations of cortical neuronal network

development,” Thesis, 2012.

[21] “Java Object Serialization.”

https://docs.oracle.com/javase/8/docs/technotes/guides/serialization/index.html (accessed May

18, 2020).

[22] “Boost C++ Libraries.” https://www.boost.org/ (accessed May 18, 2020).

[23] “cereal Docs - Main.” https://uscilab.github.io/cereal/index.html (accessed May 08,

2020).

[24] “Protocol Buffers,” Google Developers. https://developers.google.com/protocol-buffers

(accessed May 18, 2020).

[25] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference. Addison-Wesley

Professional, 1999.

[26] M. Gilson, A. N. Burkitt, D. B. Grayden, D. A. Thomas, and J. L. van Hemmen,

“Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal

networks. II. Input selectivity--symmetry breaking,” Biol Cybern, vol. 101, no. 2, pp. 103–114,

Aug. 2009, doi: 10.1007/s00422-009-0320-y.

[27] C.-W. Shin and S. Kim, “Synaptic symmetry breaking by spike timing dependent

synaptic plasticity,” BMC Neuroscience, vol. 9, no. 1, p. P100, Jul. 2008, doi: 10.1186/1471-

2202-9-S1-P100.

