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The brain is a complex, interconnected network par excellence. It is made up of intricate 

connections of neurons, responsible for transmission of signals throughout the body. Over time, 

experimental studies have illustrated a variety of behavioral features of network dynamics, 

ranging from stochastic spiking to synchronized bursting observed in the living preparations of 

neuronal cultures. 

A fundamental feature of developing neural circuits is the presence of spontaneous 

network activity. Such spontaneous activity plays putative roles ranging from synaptic 

development and maintenance to anticipatory states which assist animals in reaching rapid 

decisions with limited sensory input. Understanding the mechanisms of spontaneously generated 

activity and interaction patterns between neurons are, therefore, issues of substantial importance. 



But while changes in the dynamics of coordinated, spontaneous spiking activity have 

been investigated in different in vivo and in vitro neuronal systems, the mechanisms underlying 

the generation of these spontaneous spiking activities still remain unclear.  

Computational simulations help researchers to gain a more detailed understanding of 

activity patterns in large networks. The BrainGrid simulator is a neural simulator, based on a 

leaky integrate-and-fire computational model and developed in UW Bothell, that allows us to 

perform detailed analysis of the effects of model parameters on burst shape and timing, their 

changes, their patterns and the inter-relationship among these behaviors, gross network structure, 

and model parameters. Researchers draw inferences about dynamics of these networks from 

simulation results. These simulations’ high spatiotemporal resolution and long duration produce 

data that, in terms of both quantity and complexity, challenge our interpretative abilities. 

Therefore, this thesis focuses on uncovering underlying patterns during spontaneous 

activities using various machine learning and deep learning techniques and presents their 

comparison based on different slices from the data. To derive patterns in activity initiation, we 

also implement model interpretability analysis using SHAPley Analysis to obtain hidden patterns 

in data and understand the cause of a model’s decision.  

Concisely, this thesis applies AI techniques to clarify localized activity patterns that 

trigger network bursts in cortical neural networks. 
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Chapter 1. INTRODUCTION 

1.1 PURPOSE OF THIS WORK 

A fundamental feature of developing neural circuits is the presence of spontaneous network 

activity. These activities are thought to have an important role in the development of parts of our 

body, for example, in developing sensory organs, the retina and cochlea, in development of our 

spinal cord, etc. [13]. Additionally, in the forebrain structures such as the hippocampus and the 

neocortex, as well as in the hindbrain, the midbrain, and the cerebellum, it has been postulated that 

spontaneous activity contributes to the  development of local circuits in these brain regions [13]. 

A network burst or population burst is a type of spontaneous activity defined as a 

synchronized spiking event that involves most or all the neurons throughout the network. The goal 

of this thesis is to refine and apply a set of deep learning techniques to investigate the underlying 

patterns that may arise during network bursts initiation from a large amount of spike events. 

Through this research, our goal is to attain a certain level of clarity in the following research areas 

in computational neuroscience: 

● How does the background activity that happens before network bursts, contribute to 

initiating/ triggering the network bursts? 

● What kind of visual patterns lie during these whole network bursts? 

● Apply techniques to confirm the previous work’s performance. 

● Are we able to correctly mark the beginning of a burst? 

● How can we efficiently apply machine learning techniques to derive insights from this 

high-dimensional network spiking data? 
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The methods of data analysis proposed in this thesis are also intended to serve to help 

researchers to gain an intuitive and more analytical understanding of the principal activity patterns 

in large networks. We are interested in applying AI techniques to see if we can find localized 

patterns of activity that trigger network bursts initiation in the spike train data. 
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Chapter 2. BACKGROUND: NEUROSCIENCE BASICS 

Computational neuroscience is the field of study in which mathematical tools and theories are used 

to investigate brain function, and the goal is to explain, in computational terms, how brains 

generate behaviors. It provides tools and methods for “characterizing what nervous systems do, 

determining how they function, and understanding why they operate in certain ways” [29]. With 

advancements in research in neuroscience, new treatments for devastating brain diseases can 

emerge from a deeper understanding of brain circuits [2].  

Researchers continue to explore the mechanics behind a healthy brain that functions 

quickly and automatically – at the speed of thought. Truly understanding a circuit requires 

identifying and characterizing the components of these networks, defining their connections with 

one another, monitoring and recording their activity patterns etc. Therefore, accurate and 

informative mapping of this human connectome from the biological concepts to a more analytical 

setting has become a central goal of neuroscience.   

The following sections in this chapter provide a very brief introduction to several 

elementary notions of neuroscience and important dynamical properties of neural networks. The 

aim of this chapter is to provide the reader with the minimum amount of information necessary to 

relate the topics covered by this thesis. 

 

2.1 NERVOUS SYSTEM BIOLOGICAL BASICS 

2.1.1 The Nervous System 

Neuroscience is the scientific study of the nervous system (the brain, spinal cord, peripheral 

nervous system) and its functions. The human brain contains approximately one hundred billion 
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neurons that have one hundred trillion connections with each other. The nervous system is 

organized into two main parts, the central nervous system (CNS) and the peripheral nervous 

system (PNS) [4]. The CNS is the processing center of the body and consists of the brain and the 

spinal cord.  PNS includes a large system of nerves which are long fibers that connect the CNS to 

every other part of the body.  

The nervous system performs three main functions: collecting information from sensory 

receptors that monitor the body’s internal and external conditions, integrating this information and 

evaluating it for decision making, and stimulating motor neurons to carry these signals throughout 

the body. Based on their roles, neurons found in the human nervous system can be divided into 

three classes: sensory neurons that convert external stimuli from the surroundings and send signals 

to the CNS, motor neurons that receive signals from the CNS and covey commands to muscles, 

organs and glands, and interneurons that connect one neuron to another within the CNS [18]. 

2.1.2 Neuron 

The core component of the nervous system is the neuron or nerve cell, the “brain cells” of popular 

language. A neuron is an electrically excitable cell that processes and transmits information by 

electrochemical signaling. This electrochemical signaling refers to the mechanism of activation of 

the neurons when they receive input from neighboring neurons through an electrical impulse. 

These electrical impulses will be explained in the upcoming sections. 
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Figure 2.1. Schematic representation of the parts of a neuron [30]. 

 

All neurons have three essential parts: a cell body, an axon, and dendrites, as can be seen 

from Figure 2.1 [6]. One of the major defining features of neuronal cells is the polarized 

transmission of information through axons and dendrites [8]. The dendrites play the role of the 

`input device' that collects signals from other neurons and transmits them to the soma. The soma 

is the `central processing unit' that performs an important non-linear processing step. If the total 

input exceeds a certain threshold, then an output signal is generated. The output signal is taken 

over by the `output device', the axon, which delivers the signal to other neurons [7]. 

2.1.3 Neurons and Synapses 

Neurons are the building blocks of the brain that communicate with each other by sending 

electrical signals. In neuroscience, the sending neuron and the receiving neuron are commonly 
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known as presynaptic neuron and postsynaptic neuron, respectively. The site where the axon of a 

presynaptic neuron contacts the dendrite (or soma) of a postsynaptic cell is the synapse.  

 

Figure 2.2. How an action potential travels through a neuron [31]. 

 

The junction between two neurons is called a synapse, as shown in Figure 2.2. As far as 

we know, there are more than 100 billion neurons in the human brain and each of them can have 

more than 10,000 synaptic connections with other neurons through synapses [7]. 

2.1.4 Neuronal Spikes 

The neuronal signals that are transmitted among neurons consist of short electrical pulses and can 

be observed by placing a fine electrode close to the soma or axon of a neuron. When a neuron is 

stimulated enough, it fires an electrical impulse that moves along its axon to its neighboring 

neuron. There is only this one type of signal that they can send that transmits at a uniform strength 

and speed. These neuron impulses are called action potentials, or neuronal spikes. They have an 

amplitude of about 100 mV and typically a duration of 1-2 ms. A chain of action potentials emitted 

by a single neuron is called a spike train ー a sequence of stereotyped events which occur at regular 
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or irregular intervals. The frequency and timing of spiking activities reveal interesting properties 

of a neural network, as will be studied in the Methods chapter. 

2.2 NEURONAL NETWORK BEHAVIORS 

An in vitro culture of the neuronal network is a cell culture of neurons that is used as a model to 

study the central nervous system. The ability to produce in vitro cultures of neuronal cells has been 

fundamental to advancing our understanding of the functioning of the nervous system [8]. One 

thread of brain research today focuses on understanding neuronal activities from these cultures as 

they capture fundamental aspects of higher brain functions, like neuronal spiking, connectivity, 

activity stabilization etc. Such preparations allow investigation of network development, activity, 

plasticity, responses to stimuli, the effects of pharmacological agents, etc. [68]. Over time, 

experimental studies have given us a variety of observations on cortical neural networks. Some of 

the fundamental behaviors of network dynamics are discussed in this section. 

2.2.1 Spontaneous Network activity as Propagating Waves 

A fundamental feature of developing neural circuits is the presence of spontaneous network 

activity, taking the form of propagating waves. This spike propagation was observed as a cluster 

of excitation waves in both simulated and cultured neuronal networks [20]. This phenomenon is 

called spike wave propagation and describes how the neural activity patterns are organized 

spatiotemporally as synchronous waves which propagate from one site to neighboring sites in all 

directions. The aim of this thesis is to study about one such type of spontaneous network behavior,  

the network bursts. 
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2.2.2 Self-Organized Criticality 

The propagation of network activity is synchronous in nature that obey a power-law relationship. 

Self-organized criticality (SOC) describes that large interactive systems naturally evolve toward a 

critical state in which any perturbation is capable of triggering cascades of events (or avalanches) 

through the system, and these events can be well-described by power laws (small events happen 

more frequently than large events). It is a common phenomenon observed in certain complex 

systems with multiple interacting components, for example, neural networks, forest fires, and 

earthquakes [18]. A fundamental goal of this thesis is to study the trigger patterns behind these 

network activities. 

2.2.3 Bursting Behaviors in Neuronal networks 

The most striking behavior of network dynamics in cultured cortical networks is network bursting 

and results indicate that it could play an important role in information processing [70]. A network 

burst or population burst is defined as a synchronized spiking event that involves most or all of the 

neurons throughout the network. This behavior is characterized by long quiet periods, with almost 

no spike emission, punctuated by brief periods of intense spiking activity, where the whole 

network displays high firing rates—most neurons emit at least 2 closely-packed spikes. This 

particular pattern is then repeated, with varying regularity, over long time intervals [12].  

 

Figure 2.3. Evolution of a single burst. Images showing beginning to the end of a single burst event from 

left to right [18]. 
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Figure 2.3 shows the evolution of a single burst, how it originates at a location and spreads 

across the network including most of the neurons in the form of a propagating wave. 

Our goal is to find localized patterns that initiate these network bursts. In the next chapter we will 

study some of the research done previously on generation of these network bursts. 
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Chapter 3. BACKGROUND: NEURAL DATA ANALYSIS 

As previously described, cultured neural networks spontaneously synchronize and generate bursts 

involving the whole network. These synchronized activities are said to play an important role in 

our body from development to effective information transmission [13]. Therefore, understanding 

the patterns that trigger these activities could be of crucial importance. In this chapter we will 

review some of the research done in the past for the initiation of network bursts. Understanding 

the mechanism behind network burst activation may shed more light onto what phenomena 

underlies in the development in the brain, but there is very limited work in this domain. 

Previous work by Ham et al. [14] was done to analyze ignition sites and spread of 

spontaneous coordinated activity in cultured networks. It highlighted the presence of major burst 

leader (MBL) neurons which are defined as a small percentage of neurons (average 17%) that lead 

a majority of network bursts (84% of all network bursts). This work focused on understanding the 

characteristics of this leadership and argued that neuronal spike rates are not directly linked to 

burst leadership. It was found that the shortest path between two MBLs is a single synapse [20]. 

Since burst propagation and mutual information are both proportional to distance, the work 

suggested that burst leadership may be dependent on both spiking rate as well as distance of 

connectivity, i.e. MBLs form a highly connected 'primary circuit' responsible for initiating the 

majority of all network bursts and maintaining long term spontaneous activity. Another work by 

Lonardoni et al [69] revealed that network bursts are generated in specialized regions of the 

network called “functional neuronal communities” that appear to be a group of neurons responsible 

for most of the network bursting activity. Another study by Maeda et al. [14] also suggests that 

generation and propagation of spontaneous synchronous bursts in cultured cortical neurons is 
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governed by the degree of connectivity of the network. This work also found that the source or 

initiation point of spontaneous bursts is not at a fixed locus in the network since direction of 

propagation of spontaneous bursts varies from burst to burst, therefore suggesting that that multiple 

points in the network have the capability to initiate bursts. 

Because of experimental limitations, it has been difficult to determine which network 

parameters have the greatest impact on observed bursting activity. One approach is to study the 

effect of the parameters using a computer model that captures many of the key features of in vitro 

networks. This thesis is based on the BrainGrid simulator, a neural simulator based on a leaky 

integrate-and-fire computational model [19], developed at the University of Washington, Bothell. 

Details about the simulator configurations will be explained in the Methods chapter. The most 

recent work done on this data also revealed some behaviors that relate to burst initiation. 

 

Figure 3.1. Work by Lee et al [18] showing burst origin locations in different stages of the BrainGrid 

simulator development. The left image indicates the first 500 bursts generated while the network is in 

immature state, the middle image shows the burst origin locations while the network is in development 

stage, and the last image shows the initiation locations of bursts in the stable state of the simulation [18]. 
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Figure 3.1 shows that burst origins varied widely in early network development and clearly 

settled down to a small number of origins that occurred repeatedly in an irregular order, or “active 

origins", and these active origins changed to a different set of locations over time.  

In summary, the work done on finding patterns leading to burst initiation are not many but 

they do reveal some interesting observations, shared among almost all the work, such as, burst 

leadership being dependent on the high spiking activity of the neurons as well as how closely are 

they connected to form functional communities, presence of multiple ignition sites and burst origin 

locations being more stable during the mature state of the simulations. Therefore, the aim of our 

thesis is to take these findings as a guideline and try to reveal some of these aspects in our 

BrainGrid Spike train data. This thesis uses data analysis and machine learning techniques to 

explore some visual interpretability techniques to understand how ensembles of neurons generate 

these network bursts.  
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Chapter 4. BACKGROUND: MACHINE LEARNING 

The artificial neural networks now prominent in machine learning were, of course, originally 

inspired by neuroscience [17]. The availability of rich data sets has led researchers from classic 

hypothesis-driven approaches to innovative data-driven approaches when they can no longer 

comprehend the complexity and high dimensionality of data by human perception alone [18]. In 

parallel with the rise of interest in brain networks, there has been an increase in the use and 

development of machine-learning techniques in many aspects of brain research, for example, brain 

imaging [20, 21]. However, use of machine learning in identifying burst trigger patterns is quite 

novel. 

Indeed, the high-dimensional nature of spike train data hinders the application of many 

multivariate methods from classical statistics, prompting an increasing number of researchers to 

rely on regularization methods common in machine learning and signal processing in addition to 

well-established mass-univariate analysis techniques [22]. This exponential growth of the amount 

of biological data available calls for addressing two major challenges, on one hand, efficient 

information storage and management and, on the other hand, the extraction of useful information 

from these data [22]. The second problem is one of the main challenges in computational 

neuroscience, which requires the development of tools and methods capable of transforming all 

these heterogeneous data into biological knowledge about the underlying mechanism.  

In modern neuroscience, neurons are recognized as information processing units that 

perform complex computations on inputs including history, reflecting biophysical properties, and 

the activities of neighboring neurons that are synaptically connected [18]. Applying Machine 

Learning tools and methods would therefore allow us to go beyond a mere description of the data 
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and provide knowledge in the form of testable models. By inferring our understanding from these 

models, we may be able to obtain predictions of the system.  

In this chapter, we therefore present some literature review of machine learning techniques 

applied on spike train data, challenges in their analysis as well as introduction of some concepts 

of deep learning necessary to understand some of the methods implemented in this thesis. 

4.1 PREVIOUS WORK USING MACHINE LEARNING FOR SPIKE TRAIN DATA 

Since the ability for neuronal networks to process information derives not only from neurons’ 

individual abilities to generate temporal sequences of spikes, but also from their collective 

dynamics at the network level [38], it is essential to study activities from a larger number of 

neurons (thousands or more). When the number of observed neurons increases, the number of 

possible interactions, or patterns, grows rapidly as well. This requires these spatiotemporal patterns 

be studied by more advanced algorithms. 

There is limited literature available in utilizing machine learning for spike train data. 

Information processing in the brain is carried out by a complex network of neurons communicating 

by sending reliable stereotypical electrical pulses known as action potentials, or  spikes. The 

information encoded in spike train data is also in a sequence of events over continuous time. 

Therefore, machine learning techniques used for signal processing are often applied to spike train 

data [33].  

When we look at the machine learning work done for finding patterns related to bursting 

and initiation, there is only one such research done. The most recent application of machine 

learning to find bursting initiation activities was performed by Lee et al. [18] on the BrainGrid 

simulation’s spike train data. Machine learning classification and regression methods in this work 
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were used to predict the burst timing and location. This work revealed that network bursts can be 

predicted from the network activity just before the burst and achieved over 99% accuracy. This 

thesis analyses some of the results and methods produced by the recent work to form a baseline 

for comparison of the new methods that will be generated to uncover trigger patterns in network 

bursts.  

From literature review it is found that most researchers who deal with brain data still use 

traditional statistical methods. While methods such as Support Vector Machines (SVM), 

Multilayer Perceptron neural networks (MLP), Bayesian methods and many more, have been 

successfully used so far mainly on brain data, they are not efficient in capturing complex spatio-

temporal relationships from spatio-temporal brain data [25]. The enormousness of brain data 

available and the complexity of the research questions that need answering through integrated 

models for brain data analysis are grand challenges for the areas of machine learning and 

information science in general as already pointed out in various publications [34, 35, 36, 37]. 

Therefore, the next section explains a few introductory concepts of deep learning, a branch of 

machine learning, although similar in the process of training a model with knowledge from subsets 

of data, differ in the way they extract features from it.  

4.2 DEEP LEARNING INTRODUCTORY CONCEPTS 

A promising framework that emerged from the interactions between neuroscience and artificial 

intelligence is the Artificial Neural Network (ANN) [37, 38, 39, 40]. At their core, ANNs model 

neural computation using simplified units that loosely mimic the integration and activation 

properties of real neurons [42]. Artificial neural networks, which simulate brain function, are an 



16 

attractive and powerful modeling approach widely used in complex feature extraction and pattern 

recognition [41]. 

Deep learning comprises simple but nonlinear processing units that each transform the 

representations or features at one level (starting with the raw input) into a representation at a 

higher, more representative level [45]. The ‘layers’ are best thought of as being analogous to brain 

regions, rather than as specific laminae in biological brains [46]. ‘Deep’ learning specifically refers 

to training hierarchical ANNs in an end-to-end manner, such that plasticity in each layer of the 

hierarchy contributes to the learning goals [47]. 
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4.2.1 Introduction to Deep Learning Architecture 

Non-Linear feature extraction: 

As we move to much more complex problems, our data becomes extremely high dimensional, and 

the relationships we want to capture become highly nonlinear. The spike train data can also be 

considered non-linear in spatio-temporal sense, with undefined patterns. 

 

Figure 4.1. This figure shows how complex datasets may have patterns that simple or linear models 

would find it hard to extract. 

 

As can be seen from Figure 4.1, the type of non-linear patterns in the data shown, can be 

hard to extract using simple linear models, but are easy to be extracted by non-linear models such 

as deep learning. These algorithms are therefore a good choice to utilize in finding patterns in high-

dimensional and complex, spike train data, specifically in this work, in finding trigger patterns 

behind network bursts. We will now study in brief how these algorithms function. 

 

Information Processing: 

Just like a neuron processes the information it receives and passes it on to the next neuron, artificial 

deep neural networks take in some number of inputs, 𝑥1, 𝑥2, . . . , 𝑥𝑛, each of which is multiplied by 

a specific weight, 𝑤1, 𝑤2, . . . , 𝑤𝑛. These weighted inputs are summed together to produce the net 
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input to the neuron, 𝑧 = 𝜃𝑤𝑖𝑥𝑖. The net input is then passed through a function 𝑓to produce the 

output 𝑦 = 𝑓(𝑧). This output can be transmitted to other neurons [43].  

 
Figure 4.2. This figure shows the similarity in the information processing mechanism of a neuron in a 

biological neural network vs a neuron in an artificial neural network. 

 

Figure 4.2 (A) shows data processing in a biological neuron vs (B) shows processing in an 

artificial neuron. In both, the inputs to the neurons are converted into output by applying some 

transformation. In this research, we will be utilizing deep learning models to identify burst 

initiation patterns in the image classification setting, the details about which will be defined in the 

Methods chapter. Therefore, for this thesis, it is important to understand how a model tries to 

extract features from images and is explained briefly in the next section.  

 

How are images processed? 

To explain the function of ANN with an example on a grayscale image, consider the model to be 

a function ℎ(𝑥, 𝜃). 
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Figure 4.3. The process of vectorizing an image to pass into an artificial neural network for feature 

extraction. 

 

A grayscale image (𝑥) passed as an input is expressed in a vector form shown in Figure 

4.3. The vector 𝜃 is the set of parameters that a model uses to process this grayscale image input 

to extract information. Any machine learning algorithm tries to perfect the values of these 

parameters as it is exposed to more and more training examples. For our spike train data, we will 

see in the next chapter, how “𝑥” in the grayscale image will correspond to spiking activity in the 

network. 

 

Concept of artificial layers in a neural network: 

As we have seen how individual neurons process information, a neural network is formed when 

multiple neurons are connected to each other.   
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Figure 4.4. This figure explains a simple architecture of neurons in an ANN, how the layers process the 

input and assign weights as a process of learning to produce the optimum output. 

 

Figure 4.4 demonstrates a simple example of an artificial neural network. The bottom layer 

of the network pulls in the input data. The top layer of neurons (output nodes) computes our final 

answer. The middle layer(s) of neurons are called the hidden layers, and we let  𝑊𝑖, 𝑗 (𝑘) be the 

weight of the connection between the  𝑖𝑡ℎ neuron in the  𝑘𝑡ℎ layer with the  𝑗𝑡ℎ neuron in the  

𝑘 + 1
𝑠𝑡

layer. These weights constitute our optimizer parameter, 𝜃, and the ability to solve 

problems with neural networks depends on finding the optimal values to plug into 𝜃 [43].  

The hidden layers are where most of the magic happens when the neural network tries to 

solve problems. There are various kinds of hidden layers designed for specific types of complex 
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calculation and feature extraction. It will be discussed in the Methods chapter, which architecture 

and hidden layers are chosen for this thesis. 

Lastly, it is important to determine three essential components in a neural network: the 

objective function, learning rules and network architecture. Objective functions quantify the 

performance of the network on a task, and learning involves finding synaptic weights that 

maximize or minimize the objective function. Learning rules provide a recipe for updating the 

synaptic weights. This can lead to the ascent of the objective, even if the explicit gradient of the 

objective function is not followed. Architectures specify the arrangement of units in the network 

as well as the type of layers used to learn representations of data with multiple levels of abstraction. 

They determine the flow of information, as well as the computations that are or are not possible 

for the network to learn. 

We will see in the Methods chapter, which architecture, hidden layers, and optimization 

parameters are chosen for this thesis. 
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Chapter 5. METHODS: DATA ACQUISITION 

Computational simulations of networks of cortical cultures help researchers to gain an analytical 

understanding of the activity in large networks. Although the transition from microscopic to 

macroscopic scales relies on purely mathematical arguments, simulations are important to add 

aspects of biological realism that are difficult to treat analytically [34].  More generally, the 

simulation environments are very useful to the community of theoretical and computational 

neuroscience where the ideas developed in the toy models could be tested on a larger scale, in a 

biologically plausible setting, and the ideas arising in different communities and labs are finally 

connected to the bigger whole. In this thesis we extracted the data for analysis from the BrainGrid 

simulator. The simulation setting, configuration and the data used is explained in this chapter. 

5.1 THE BRAINGRID SIMULATOR 

Kawasaki and Stiber developed a large-scale simulation of growth, network formation, and 

behavior in cultures of dissociated cortical cells [19]. The neuron model incorporates synaptic 

facilitation/depression and neurite outgrowth/retraction and was used to construct virtual cultures 

of 10,000 cells whose spiking behavior and evolution were investigated in closed-loop simulations. 

They developed a GPU-enabled neural simulator for  closed-loop, MEA-scale simulations to 

model the entire network development at the temporal resolution of individual neuron spiking 

activities with the option of recording the location of each spike to provide spatial resolution. This 

simulation allows us to perform detailed analysis of the effects of model parameters on burst shape 

and timing, their changes, their patterns and the inter-relationship among these behaviors, gross 

network structure, and model parameters [49]. 
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5.1.1 Leaky Integrate and fire computation model: 

These simulations use a lumped, leaky integrator neuron model that includes synaptic, bias, and 

noise currents [48]. 

 

                 𝐶𝑚 =  
𝑑𝑉𝑚

𝑑𝑡
=  

1

𝑅𝑚
 (𝑉𝑟𝑒𝑠𝑡 − 𝑉𝑚)  + 𝐼𝑠𝑦𝑛  +  𝐼𝑖𝑛𝑗  +  𝐼𝑛𝑜𝑖𝑠𝑒    (5.1)  

  

With 𝑉𝑟𝑒𝑠𝑡 being both the asymptotic and reset potential, 𝐼𝑠𝑦𝑛 the total synaptic current, 

𝐼𝑖𝑛𝑗 a constant depolarizing current, 𝐼𝑛𝑜𝑖𝑠𝑒 a noise current, and 𝐶𝑚 and 𝑉𝑚 the membrane 

capacitance and resistance, respectively. When 𝑉𝑚 exceeds 𝑇ℎ𝑟𝑒𝑠ℎ, the firing threshold, a spike 

event is generated and 𝑉𝑚 is set to 𝑉𝑟𝑒𝑠𝑡. This model also incorporates an absolute refractory period, 

𝑇𝑟𝑒𝑓𝑟𝑎𝑐𝑡. Parameters are set so that most neurons do not produce spikes in the absence of excitatory 

input; a subset of cells are selected as endogenously active and have their 𝑇ℎ𝑟𝑒𝑠ℎ reduced so that 

they will spontaneously fire [18]. 

5.1.2 Simulation Configuration: 

The cortical culture model is composed of a 100 ×  100 array of neurons, arranged in a rectangular 

grid as a 10 ×  10 pattern of inhibitory, excitatory, and endogenously active cells that are tiled 10 

times horizontally and vertically to form the whole network [49]. Existence and strength, 𝑊, of 

connections between any two neurons is governed by a neurite outgrowth model in which each 

neuron’s set of neurites is modeled as filling a circle centered on that neuron with uniform density. 

The radius of each neuron’s circle of connectivity varies according to [50, 51]: 

 

𝑑𝑅𝑖

𝑑𝑡
= 𝜌 𝐺(𝐹𝑖)      (5.2) 
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𝐺(𝐹𝑖)  =  1 −
2

1+𝑒𝑥𝑝((𝜖−𝐹𝑖)/ 𝛽)
            (5.3) 

 

 

Here, 𝑅𝑖 is the radius of neuron 𝑖’s circle of connectivity, 𝐹𝑖 is neuron 𝑖’s recent average 

firing rate (normalized within the range [0, 1]), 𝜌 is a rate constant,  is the outgrowth null point, 

and 𝛽 controls the sensitivity of outgrowth to 𝐹𝑖. Connections are established between neurons that 

have circles of connectivity that overlap, with 𝑊 for them proportional to area of overlap, 

consistent with the simplifying assumption that neurite density is uniform within such circles and 

thus number of synapses will be proportional to area of overlap. The network includes excitatory 

and inhibitory neurons. Most cells were not spontaneously active, but a small fraction have firing 

thresholds set to produce spontaneous firing at a rate of between 0.02 and 6 spikes/sec. The 

development rate constant was increased so that the network would recapitulate its full, multi-

week development over 60,000s (around 17h) of simulated time [49]. 

The data was used from the last simulation run on a 2.4GHz Intel Xeon E5-2620v3 system 

running Ubuntu Linux 16.04.3 using an NVIDIA Tesla K80 GPU with CUDA 8.0 libraries. Every 

spike produced during the simulation had its time (as an integer time step value with each time 

step being 0:1 ms,) and (x; y) neuron position recorded. There were 6 ×  108 time steps in a 

simulation and it took about 120 hours to run to completion. The resulting datasets were about 

30GB in size, stored in HDF5 data format. 

The key information collected from simulation that were used for the analysis in this thesis 

work are: 

● probedNeurons: Unique ID for each neuron (0 ∼ 9999) 

● xloc: x location for each neuron (0 ∼ 99) 
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● yloc: y location for each neuron (0 ∼ 99) 

● spikesProbed: Neuron spiking timing and location for every spike 

● starterNeuron: List of neurons that are endogenously active (0 ∼ 9999) 
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Chapter 6. METHODS: DATA ANALYSIS 

The most recent research using BrainGrid simulator’s neural spike data has established preliminary 

analysis to help us understand the dataset and aspects of bursting behavior such as burst origin 

location and timing. The main finding of this work was that the spiking activity right before bursts 

are highly predictive of burst initiation. In this thesis, we dig further in some of those analyses and 

develop new techniques to find patterns that determine burst initiation. For this purpose, a set of 

methods were developed to revisit the previous analysis developed for example, burst start times, 

location and visualize the spiking behavior around these bursts. Many of the results from this step 

later serve as input for machine learning analysis.  

6.1 ANALYSIS OF SPIKE TRAIN DATA 

Our cortical culture-simulation model is composed of a 100 × 100 array of neurons. The model 

simulates over 28 days of development and involves 600 million timesteps, where every timestep 

is 0.1 ms. Throughout this simulation, we collect spike train data about neuron spiking activity. 

Some of this data important for our analysis is information about which neuron spiked at which 

time step, we can identify each type of neuron and their location. We will now discuss in detail the 

analysis performed on spike train data to fulfil the aim of this work which is to understand the 

underlying burst initiation patterns.  

6.1.1 Pre-burst and Non-Burst Background Activity 

The central aim of our thesis is to see if there are any patterns in the background spiking activity 

other than the spikes involved in network bursts, that are predictive of burst initiation. We therefore 

need to transform the background activity in a form that can be fed into the machine learning 
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models. Previously, experiments performed by Lee et al. [18], revealed that these background 

activities are highly predictive of the burst location and time. We, therefore, take this work forward 

to refine and apply different ML models for finding visual patterns in burst initiation.  

Taking the concepts defined in the previous research, pre-bursts are defined as spike 

sequences just before bursts, and the spike sequences temporally distant from bursts are non-burst 

precursors. To find the target data sequences to prepare the pre-burst and non-burst data, the start 

and end times of bursts, or burst boundaries, defined in time steps, are necessary. 

 

Figure 6.1. Diagram represents the time slices used to define pre-burst and non-burst windows, used for 

prediction of burst initiation. 

 

As we can see from Figure 6.1, the blue marker refers to the start time of a burst. As 

mentioned earlier, bursts are a network activity that have a large spiking rate and involve most of 

the neurons while bursting. Pre-bursts marked with a green window are defined as spike sequences 
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just before bursts and therefore have a small gap. Non-bursts are marked with a red window and 

are defined as spike sequences temporally distant from bursts and therefore have a large gap. We 

generated the pre-burst and the non-burst data based on the burst marker for our deep learning 

image classification techniques discussed in subsequent sections, as well as for some validation of 

some machine learning techniques applied in the previous work. 

The size of gap and window chosen for the pre-burst and non-burst data is based on 

synaptic time constant and spike-transmission delay to incorporate synaptic 

facilitation/depression. Spike transmission delay is the time a spike takes to travel from one neuron 

to another directly connected neuron (neuron that is one synapse away). For the BrainGrid 

simulation the synaptic transmission delay is 0.8 ms or 8 timesteps [49]. It means that it takes 8 

timesteps for a spike to reach a neighboring neuron. This helped us determine the minimum gap 

before the pre-burst window start time for data extraction. Choosing a pre-burst window too close 

to the burst start time is not relevant as they do not have enough time to reach the burst initiation 

location. As any granularity less than 0.8 ms or 8 timesteps would mean that the spikes in pre-

burst cannot influence burst initiation, we chose a gap of 10 timesteps before the pre-burst window. 

We chose a gap of 3000 timesteps for the distance until the non-burst window. The gap for non-

burst was chosen based on the inter-burst intervals (IBIs). The smallest IBI found in the data was 

5445 timesteps and the mean spike rate. With these information, we assumed a gap of 3000 

timesteps gave us sequences that were far enough from the upcoming bursts, eliminating the 

chances of a precursor window containing any pre-burst activities, and at the same time distant 

from the preceding bursts to avoid including activities that may pose post-burst behaviors. 

For determining the appropriate window size, the synaptic time constant was used which 

determines the duration of memory of a synapse after it is perturbed by a spike before the synapse 



29 

decays back to resting level. The synaptic time constant of the BrainGrid simulation for 1 synapse 

is 3ms-6ms or 30 timesteps-60 timesteps. This means that after 2-3 multiples of the time constant, 

the synapse effectively forgets the spike. This helps us determine the maximum size of the window 

to extract pre-burst and non-burst data before the synapse forgets the spike to be able to influence 

the burst initiation. If the window is larger than 12-18ms or 180 timesteps the burst initiation point 

would have forgotten the spike and that the first spike cannot have any effects on triggering the 

burst memory. Therefore, for our experiments, the window size ranges from 50 timesteps to 100 

timesteps for both pre-burst and non-burst. 

Thus, the two categories, pre-burst and non-burst are our two classes for the classification 

work discussed in the paper. Our goal is to find if a set of data can be classified in either of the two 

classes, giving us some insights about burst initiation. Therefore, this makes it very important to 

make sure the burst start times are correctly identified. However, we found some discrepancies 

that will be discussed in the subsequent sections. 

6.1.2 Misidentification of Burst Start Time using Temporal Avalanche Method 

We found after analysis that there was some spurious behavior in the burst beginning times. 

Previous work considered the temporal avalanche method to identify burst start time. This method 

uses the inter-spike interval (ISI) in timesteps to identify each consecutive bursts’ start times. ISI 

is defined as the time interval between two consecutive spikes in the spike train. Let N be the total 

number of spikes in the dataset and 𝑡𝑛 be the occurrence time of the 𝑛𝑡ℎ spike and 𝑇𝑛 be the ISI 

given by: 

  

                                  𝑇𝑛 =  𝑡𝑛+1  −  𝑡𝑛, 𝑛 = 1,2, . . 𝑁 − 1                                      (6.1) 
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So, the mean ISI, �̅�, is 

 

                                             �̅�  =
∑ 𝑇𝑛

𝑁−1
𝑛=1

𝑁−1
                                                             (6.2) 

 

 

A neuronal avalanche is defined as a sequence of spikes or groups of spikes that happen 

more frequently than the overall mean inter-spike interval (ISI) and all the large avalanche events 

are then labelled as bursts.  

 

Figure 6.2. Diagram explaining grouping of spikes together into avalanches using the Temporal 

Avalanche method. 

 

As seen from Figure 6.2, the x axis represents the sequence of spikes occurring at 

consecutive timesteps. The ISI is calculated for each spike and a mean ISI is then calculated. Any 

two consecutive spikes are grouped into the same avalanche if their ISI is smaller than the mean 

ISI. In Figure 6.2, spikes 𝑠1 to 𝑠4 belong to the same avalanche being temporally close, however 

𝑠5being distant is not grouped into that avalanche. In this way, once all the avalanches are created, 

all the large avalanches containing with more that 10
4
spikes are marked as bursts. In this way the 
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previous method used the Temporal Avalanche produced the burst start time. However, on some 

investigation, we found that this method of marking burst time is a little too late. 

 Based on these burst markers it was found that pre-burst activity already included the burst 

activity. The reason for the high predictability of the machine learning classification models 

applied on this pre-burst and non-burst data was that inclusion of burst activity in the pre-burst 

data made it clearly distinct from the non-burst activity. This made the data biased for machine 

learning models to classify and therefore is not an accurate interpretation of burst initiation 

patterns.  

 

Figure 6.3. Histogram representing the spike count activity relative to the old burst start time marker. The 

color map represents the number of bursts that have several spikes at a timestep. 

 

As seen from Figure 6.3, we created histograms where the x axis denotes the time steps 

ranging from 300 timesteps before the marked burst start time and 50 timesteps after the marked 

burst start time, where the burst start time is denoted with 0. The left axis in the figure indicates 

spike count or spike activity in every timestep and the right axis denotes color which indicates the 

number of bursts which show a common behavior of a spike activity at a time step. We see that 

after the burst start marker, the number of spike activity typically ranges between 0-10 spikes and 

increases in the later timesteps, as expected for burst activity. But looking closely, we see that the 

count of spikes starts growing much before the start marker, preceding into the pre-burst activity. 



32 

This indicates that pre-bursts are not truly the activity preceding bursts as they contain the burst 

activity already. Therefore, in this thesis we used the spatio-temporal method for identifying true 

starts of bursts. 

6.1.3 Spatiotemporal Method 

It was found that Temporal avalanches contained spikes that were close in time but distant in space 

and therefore should be considered as background activity and excluded from the avalanche event. 

Therefore, we used the Spatiotemporal avalanche method to group spikes into avalanches that were 

in proximity in both space and time. To do so, we used parameters such as a spatial constraint 𝑟, 

as the radius for a circular spatial window to define a population of interconnected neurons in 

which their spiking activities directly influence each other as well as a temporal constraint 𝜏 based 

on the number of neurons within the spatial window 𝛱𝑟2 and calculated 𝜏 as the mean ISI for this 

population: 

 

𝜏 = ⊤ × 𝑀

𝛱𝑟2      (6.3) 

 

M was the total number of neurons in the network (10,000) and 𝑇 the temporal ISI 

constraint from temporal avalanche method. We modify the mean ISI formula by introducing 

spatial constraints.  
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Figure 6.4. Diagram explaining grouping of spikes together into Avalanches using the Spatiotemporal 

Avalanche method. 

 

As seen from Figure 6.4, the neuron grid refers to the 100 ×  100 grid of neurons in our 

simulation. The radius of connectivity defines a radius to group neurons within an area. The plot 

on the right in Figure 6.4 represents the spikes at consecutive timesteps. The grouping of 

avalanches based on Spatiotemporal method now includes the radius of connectivity, which means 

when considering a spike to cluster, it is ensured that the neuron producing this spike is within the 

spatial constraint. In Figure 6.4, spikes 𝑠1 to 𝑠3 belong to the same avalanche being temporally 

close as well as the neurons producing these spikes are within the radius of connectivity, however 

the neuron producing 𝑠4outside the radius of connectivity is not grouped into that avalanche. As 

discussed previously, again all the large avalanches containing with more that 10
4
 spikes are 

marked as bursts.  
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Figure 6.5. This figure is a histogram representing the spike count activity relative to the improved burst 

start time marker. The color map represents the number of bursts that have several spikes at a timestep. 

 

This method of extracting start time was much better as we can see Figure 6.5 shows that 

there is no initial growth of spiking activity before the burst, indicating pre-burst activity does not 

directly contain any burst spiking activity. The new burst start times reduces the chances of the 

machine learning model being biased with its predictions for identifying whether the pre-burst 

activities are predictive of bursts or not. 

As discussed, one of the goals of this work is to dig into deriving some visual patterns of 

burst initiation and therefore, we found image classification as a good technique to apply. The next 

section describes the process used to generate these images. 

6.1.4 Producing Spatiotemporal Images 

We wanted to formulate a way to analyze spiking precursor activities from both spatial and 

temporal aspects in the form of images. We therefore produced spatio-temporal images of pre-

burst and non-burst precursors that can also be used in our machine learning techniques to visually 

find burst initiation patterns. We used the Spatiotemporal avalanche method discussed in the 

previous section to get the true start times of bursts. For the images we obtained the burst origin 
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(𝑥, 𝑦) locations and all the spikes (𝑥, 𝑦) locations in the pre-burst and non-burst window of every 

burst. 

 

Temporal aspect: 

The window of timesteps used to extract data for pre-burst and non-burst images as explained in 

Section 6.1.1 ranged between 50-100 timesteps for experimentation. The gap of timesteps before 

the per-burst window chosen was 10 timesteps and the gap of timesteps before the non-burst 

window chosen was 3000 timesteps. Therefore, we obtained the spikes for defined number of 

timesteps for pre-burst and non-burst data and were now fed into the image creation along with 

the (𝑥, 𝑦) location of each burst and spike. 

 

Spatial aspect: 

From the temporal aspect, each burst now has a set of spike locations both pre-burst and non-burst. 

The images were created to denote how the regions of activities differ in the pre-burst and non-

burst images, which will be found using the classification methods.  
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Figure 6.6. Spatio-temporal image description 

 

Figure 6.6 explains the process of generating these images. As we know, our BrainGrid 

Simulator is composed of a  100 ×  100 array of neurons, therefore the X and Y locations of 

spiking activities that occur range between 0-99. To understand the activities around bursts and 

for the sake of stability in the data, our images are centered relative to the burst origin, therefore 

our X and Y locations of the image can range from -100, 100, producing spatiotemporal images 

of size 200 ×  200, regardless of the burst origin as can be seen from Figure 6.6. The spikes in 

each image represent pre-burst activity or non-burst activity relative to the burst origin. The 

intensity of these images is proportional to the number of spikes produced by that neuron at a 

location. Therefore, this process creates grayscale images taking in consideration both time and 

the intensity of activity based on spatial locations. 

Bursts settled down to a few stable burst initiation locations at later stages of network 

development. To trust a prediction by a machine learning model, it is important that the data we 
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feed in is ground truth stable data. For this reason, we chose the last 25% of the bursts for data 

preparation and prediction as they are considered more stable than the rest. 

When we created these images for both the methodologies of finding burst times-temporal 

and spatiotemporal avalanche methods, we found visual patterns that pointed to the burst markers 

being late in the temporal method, shown in the next section. 

6.1.5 Spatiotemporal Image Findings  

Previous work argued that pre-burst activities were highly predictive of bursts, but we found that 

the old method of producing burst start times were delayed times. To see this visually, we produced 

our spatiotemporal images on the previous temporal avalanche method of getting burst timings.  

 

 

Figure 6.7. Image on the left shows the spatio-temporal image of 1 burst showing pre-burst activity 

produced by the old Temporal method of marking burst start time and the image on the right shows the 

spatio-temporal image of a pre-burst determined using the improved method of determining  burst start 

time 

 

As we can see in the images in Figure 6.7, the curved and circular shape of the spiking 

activity before the bursts reveal that we are already in the burst. For comparison, when we 

produced the same images for our spatiotemporal method of extracting burst times as well and as 

we can see, these images are less likely to be biased for our analysis. 
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6.1.6 Understanding Endogenous Neural Patterns 

The BrainGrid simulation has two types of neurons, the endogenously active neurons, and the non-

endogenously active neurons. The nature of endogenously active neurons is to randomly spike 

throughout the duration of the simulation in contrast with the non-endogenously active neurons 

that do not randomly spike. If we remove all the endogenously active, the network still produces 

the same bursts, but the only difference is that the number of spikes reduces and the background 

activity is minimal as most of the background activity is made up of these endogenously active 

neurons. After removing the endogenously active neurons we are left with 430128718 spikes as 

compared to 570189562 spikes. We also noticed that the number of non-burst large spiking 

activities, or, non-burst avalanches were significantly reduced as most of the background activity 

was reduced. Only ~100 non-burst avalanches were left, and they are trivially small. This behavior 

was very interesting and therefore, we fed in the spatiotemporal images produced after removing 

the endogenously active neurons for our machine learning analysis as well. We considered these 

images as denoised versions of images that could reveal clearer patterns of burst initiation. 

Therefore, we now have our data prepared to be passed in the Machine learning analysis 

with spatiotemporal images. We perform the upcoming analysis on three slices of data, images of 

the data produced by the old method or temporal method of burst timing identification, images of 

all the bursts extracted from the new method or spatiotemporal method and lastly the images 

produced after removing endogenously active neurons. 
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Chapter 7. METHODS: MACHINE LEARNING AND DEEP LEARNING 

In the previous chapter, we conducted a number of investigations of macroscopic, whole-network 

behaviors on our dataset; we found out that using spatio-temporal methods of data extraction 

would be more fair and would bring less bias when applying machine learning technique. To serve 

the goal of this thesis, which is to identify the burst initiation patterns in the high dimensionality, 

complexity, and volume of our dataset, we use machine learning to enable us to discover hidden 

patterns. 

7.1 COMPARISON OF PREDICTABILITY OF OLD VS IMPROVED METHOD USING 

MACHINE LEARNING 

To understand the differences in the precursor predictability we applied machine learning binary 

classification techniques on new burst markers produced by the improved spatiotemporal data 

produced. Binary classification is a supervised learning method of classifying a data into two 

predefined categories or labels, in our case, “no burst" and “burst". This would give us signals 

about whether the pre-burst precursors are capable of initiating network bursts. This is a similar 

analysis done in the previous work and our main goal described in this section is to verify the 

performance of this Machine Learning analysis on the old method of burst identification and the 

improved method. 

7.1.1 Data Preparation and Labelling 

As input to the ML model for prediction, the temporal and spatial were combined and passed to 

the model. Based on the window of selection, we choose 𝑊 number of spikes before the burst as 

pre-burst and 𝑊  number of spikes distant from the burst as non-burst.  
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In the temporal dimension of the data, we retrieved the firing time of every spike in the 

window, 𝜙𝑖 =  𝑡𝑖 − 𝑡0, relative to the first spike (spike 0) in that data sample and for the spatial 

dimension we  retrieved its neuron (𝑥, 𝑦) location. 

 

 

Figure 7.1. Figure represents the data passed as input for the ML model in the pre-burst and non-burst 

window. 

 

Figure 7.1 explains the data ingestion process. As we can see, each spike in the pre-burst 

and non-burst window was passed into the ML model with 3 input attributesーfiring time, x and y 

location. 

All the pre-burst precursors were labelled as 1, whereas all the non-burst spike sequences 

were labelled as 0. We also chose 30% of the data for testing the model’s performance. 

We performed these experiments on three sets of data: 

1. Data generated by the old temporal avalanche method for comparison 

2. Data generated for all bursts with new start times generated using spatiotemporal avalanche 

method 

3. Data generated for all bursts with new start times by removing spiking activity generated 

by endogenously active neurons 

7.1.2 Applied algorithms 

We applied various machine learning classifiers from linear classifiers, to non-linear, to ensemble 

techniques. The approach of classification is like previous work however we experimented with 
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some additional ML models. Among various ML classifiers, decision tree (DT) and Polynomial 

support vector machine (SVM), Random Forest Ensemble Classifier and Multi-Layer Perceptron 

were chosen to predict burst initiation. 

 

Decision Tree: 

Decision Tree (DT) uses a tree-like graph for decision making; it constructs the tree using a top-

down approach by considering information gain as a criterion and chooses the best feature to split 

each node so that it produces the “purest" subsets and stops when data cannot be split further. In 

other words, a decision tree is built by calculating feature importance. DT is easy to interpret by a 

non-statistician and is intuitive to follow; it copes with irrelevant features and can combine 

heterogeneous data types into a single model. 

 

Support Vector Machines: 

Support Vector Machines (SVM) finds the maximum margin hyper-plane that best separates two 

classes in a high-dimensional feature space by plotting each data sample as a point in n-

dimensional space (where n is the number of features in the data sample) with the value of each 

feature being the value of a particular coordinate. SVMs are very universal learners, they can 

provide generalized models in the presence of many features if the data is separable with a wide 

margin.  

 

Random Forest: 

Random forest classifiers are ensemble classifiers that form a prediction by taking a majority vote 

amongst an ensemble of decision trees. Random forests are known for their competitive accuracy 
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and resilience to high-dimensional data; because of their use of decision trees, they can capture 

some non-linear interactions of multiple variables without the need to predefine interaction terms; 

because of their ensemble nature, they are more robust against overfitting than are individual 

decision trees 

 

Multi-Layer Perceptron: 

Multi-Layer perceptrons are the most basic form of an artificial neural network, the only difference 

being in the learning process. MLPs employ a feed-forward mechanism of processing the input 

data which is only in one direction. In comparison, the deeper neural networks also have a 

mechanism called backpropagation, which loops the data back through the network after every 

pass, to re-update the weights assigned to input features. MLPs are therefore, the simplest form of 

an ANN, and are said to be one of the superior non-linear classifiers. 

7.2 SPATIO-TEMPORAL IMAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL 

NETWORKS 

After our first set of experiments using Machine Learning models and setting baseline 

performances of each data and window slices, we wanted to take a step further into drilling down 

the non-obvious patterns in the data. We therefore created Spatiotemporal images from the burst 

data as explained in the previous chapter, to be able to perform image classification, and find visual 

trigger patterns around burst initiation. 

7.2.1 Data Preparation and Labelling 

As discussed in the previous chapter, the idea behind generating Spatiotemporal images was to 

capture both spatial and temporal dimensions of the burst data in a single abstraction.  
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Pre-burst:           Non-Burst: 

 

Figure 7.2. Image on left refers to a pre-burst image produced by the spatio-temporal method of image 

creation, whereas the image on the right is the non-burst image produced from the same burst 

 

Some examples of our image are shown in Figure 7.2. These 200 x 200 images were passed 

into the deep learning models as vectors and are converted to RGB images just for visualization. 

All the pre-burst precursor images were labelled as 1, whereas all the non-burst images were 

labelled as 0. We split the data into 30:70 ratio for test: train respectively for measuring the model 

performance. 

We performed these experiments on three sets of image data: 

1. Spatio-temporal images generated on data with old burst-start time by Temporal avalanche 

method 

2. Spatio-temporal images generated for all bursts on data with improved burst start times 

3. Spatio-temporal images generated for all bursts with burst new start times and removing 

spiking activity generated by endogenously active neurons 

7.2.2 Data Shuffling 

One important macroscopic feature of the simulation behavior was that bursts settled down to a 

few stable burst initiation locations during development and most bursts originated from those 
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regions at later stages of network development. To trust a prediction by a machine learning model, 

it is important that the data we feed in is ground truth-stable data. For this reason, we chose the 

last 25% of the bursts (last 2500 bursts out of 10,000 bursts) for data preparation and prediction. 

7.2.3 Advantages of Convolutional Neural Networks 

Classifiers like logistic regression and linear SVM can be regarded as single-layer classifiers, while 

SVM with kernels and decision tree are classifiers with two layers [60]. The brain is excellent at 

tasks like image recognition because of its multilayer structure from retina to cortex [61]. As we 

studied in Chapter 4, multilayer-based classifiers lead to higher classification accuracies compared 

with the traditional classifiers with shallow layers in the fields of image, language, and speech 

recognition [52, 62] . Therefore, apart from applying traditional machine learning techniques, we 

wanted to use models that can derive deeper insights from our spike train data. For that reason, we 

even used the multi-layer perceptron mentioned in the previous section. However, it is noted that 

regular multilayer perceptrons work fine for small images (for example, MNIST or CIFAR-10), 

however, they break down for larger images because of the huge number of parameters required. 

For example, for our scenario, a 200 × 200 image has 40,000 pixels, and if the first layer has just 

1,000 neurons (which already severely restricts the amount of information transmitted to the next 

layer), this means 40 million connections; and that is just for the first layer [55]. Therefore, one 

reason for choosing convolutional neural networks (CNN) is because they can solve this problem 

using partially connected layers. Because consecutive layers are only partially connected and 

because they heavily reuse weights, a CNN has far fewer parameters than a fully connected multi-

layer perceptron (MLP), which makes it much faster to train, reduces the risk of overfitting, and 

requires much less training data. CNNs have lots of advantages over regular ANN such as the 
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ability to detect a learnt feature anywhere in an image, much better generalization on images, etc. 

In contrast, once a regular MLP has learned to recognize a pattern in one location, it can recognize 

it only in that location. However, the most important aspect of using CNN is how the CNN 

architecture embeds this prior knowledge using their feed-forward and back propagation 

mechanism, studied in Chapter 4. In our application learning such features from the training data 

and explaining the test data could be very useful in determining burst initiation patterns. Multiple 

different types of layers in the CNN architecture are used to effectively extract important features 

from images. The upcoming sections will discuss the basic structure and layers of CNN and define 

the models and parameters used for our experimentation. 

7.2.4 General CNN Architecture 

A convolutional neural network (CNN) is a very special kind of multi-layer neural network. CNNs 

are designed to recognize visual patterns directly from images with minimal processing. CNNs, 

just like regular neural networks, are also made up of neurons with weights that can be learned 

from data. We have already studied the process of neural networks performing operations on data 

in Chapter 4, but in brief, each neuron in a neural network is useful for performing operations on 

a set of data based on the activation function used. Therefore, the entire neural network learns to 

perform useful computations for recognizing patterns in an image. The neurons are connected in a 

feed-forward network architecture. The neurons in each layer feed their output forward to the next 

layer until we get a final output, in our case the classification of burst or non-burst.  
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Figure 7.3. This figure shows the general architecture of a Convolutional neural network. It contains an 

input layer, an output layer, and various hidden layers-which are defined based on the type of problem.  

 

This general neuron connectivity and layers in a CNN can be seen from Figure 7.3. The 

Figure 7.3 shows how a CNN receives input data from the input layer as a single vector and passes 

through a series of hidden layers. Every hidden layer consists of a set of neurons, wherein every 

neuron is fully connected to all the other neurons in the previous layer. Within a single layer, each 

neuron is completely independent, and they do not share any connections. Every layer has a unique 

functionality used to perform specific image feature extraction that we will study in the subsequent 

sections. The last fully connected layer, also called the output layer, contains class scores in the 

case of an image classification problem [52]. This architecture allows the network to concentrate 

on low-level features in the first hidden layer, and then assemble them into higher-level features 

in the next hidden layer, and so on.  

The next section explains briefly without going into the mathematical details, about the 

different layers and how we used it in our experiments. In the upcoming sections we will also 
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understand how each layer of CNN processes information and is able to derive insights from 

images that is the main goal of our thesis. These concepts are crucial to understand the different 

models used for our experiments. 

7.2.5 Functionality of CNN Layers for Image Classification 

Generally, there are four main layers in a simple convolutional neural network. They are the input 

layer, convolution layer, the pooling layer, and the fully connected layer. Each of these is explained 

below to understand what aspects of Feature extraction from image do they contribute to. 

 

Input Layer: 

The input layer in CNN generally contains image data. Image data is represented by a three-

dimensional matrix. Suppose the size of the input is 𝐻𝐼 ×  𝑊𝐼 ×  𝐶, here 𝐻𝐼represents the image 

height, 𝑊𝐼the image width, and 𝐶the channels (image color planes). In our experiments, since we 

passed raw image matrices and not the RGB images shown for visualization, our channel for the 

first few experiments are 1, and the height and width are 200 × 200. In the experiments where we 

implemented Alexnet, we chose 3 channels and converted our images into RGB as required by the 

pre-trained model, with height and weight as 227 × 227 (zero padded from original size; see later 

for more about this). 
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Figure 7.4. This figure depicts how an image is taken as an input into the input layer of CNN. 

𝐻𝐼 × 𝑊𝐼 × 𝐶 are the dimensions of the input image. During data processing a filter of dimension 

𝐻𝐹 × 𝑊𝐹 × 𝐶  is used for image feature extraction. 

   

As shown in Figure 7.4, our image is shown with the bigger cube of dimensions 

𝐻𝐼 ×  𝑊𝐼 ×  𝐶, and the filters used in convolutional layers, explained in the next section are used 

to convolve over our images to extract features of dimensions 𝐻𝐹 × 𝑊𝐹 ×  𝐶. 

 

Convolutional Layer: 

The main objective of convolution in relation to CNN is to extract features from the input image. 

This layer does most of the computation in a CNN [55] The convolution layer performs the two-

dimensional convolution for three-dimensional input and a three-dimensional filter. An important 

parameter in the convolutional layer is the filter and the size of the filter is 𝐻𝐹 ×  𝑊𝐹 ×  𝐶, here 

𝐻𝐹and 𝑊𝐹represent the height and width of the filters. A filter is convolved with our image to 

extract features. A feature may be vertical edge or an arch, for example. The feature that the filter 

helps identify is not engineered manually but derived from the data through the learning algorithm. 

The region the filter covers at any time during the convolution algorithm is called the receptive 
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field. A dot product between the receptive field and the filter is performed and the result of the 

operation is a single integer of the output volume. 

 

Figure 7.5. The figure shows how a filter operates on every region of the image to extract most useful 

information 

 

Figure 7.5 shows how a filter of set dimensions is convolved over an input image and 

performs a dot product between the receptive field and image to extract the output important 

features. In our spatio-temporal image the pixel values represent the density of spiking activity at 

a neuron (𝑥, 𝑦) location. These spikes can be chosen from the timesteps before the burst or after 

the burst. 

Padding is another important parameter passed in the convolutional layer.  If the filter 

extends outside of the image, then we can either ignore these unknown values (producing an output 

with dimensions smaller than the input) or replace them with zeros. This is known as padding [55].  
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Figure 7.6. This figure shows padding in a CNN helps to avoid losing information while feature 

extraction. 

 

As shown in Figure 7.6, if padding is not set, we could be ignoring the corners of our image 

to be used for feature extraction. This parameter is extremely important for our use case, as we do 

not want to lose any information while extracting the patterns for burst initiation, so we set zero 

padding in our convolutional layer.  

 

Pooling Layer: 

As we have seen, a convolutional layer is a stack of feature maps i.e. every filter stride in an input 

image in the convolutional layer produces what is called a feature map. More filters increase the 

dimensionality of convolution. So, the pooling layer controls overfitting by progressively reducing 

the spatial size of the representation to reduce the number of parameters and computation. The 

pooling layer is often attached right after the convolutional layer [55]. Due to the large set of 

experiments that we were performing on burst images from different slices of data, it was important 

for use to make the convolutional operations as efficient as possible. In other words, the goal of 
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using pooling is to subsample the input image to reduce the computational load, memory usage, 

and number of parameters. This helps to avoid overfitting in the training stage. The most used 

pooling approach is max pooling. In addition to max pooling, pooling units can also perform other 

functions such as average pooling [55]. 

 

Figure 7.7. This figure shows the two types of pooling that help to extract important features from high-

dimensional data and therefore decrease data size of the data 

 

As we can see from Figure 7.7 , max-pooling reduces the image size by mapping the size 

of a given feature map into a single result by taking the maximum value of the elements in the 

feature map, whereas average-pooling averages the feature map instead of picking the maximum 

value. For our implementation we used max pooling, being the most widely used layer that seems 

to work for most image classification applications. 

 

Fully Connected Layer: 

Fully connected/dense layers are usually used as the last layers that also generate the output. The 

neurons in this layer have full connections to all activations in the previous layer. This is an 

important layer as it is responsible to utilize all the features extracted from the previous 

convolutional and pooling layers and use them to classify the image into a label [55]. The output 
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of convolution/pooling is flattened into a single vector of values, each representing a probability 

that a certain feature belongs to a label. In our use case, if the training image is of a burst, the 

features learned throughout the network, that are more likely to represent an image as burst than 

non-burst, should have high probabilities for the label “burst”. Basically, a fully connected layer 

looks at what high level features most strongly correlate to a particular class and has particular 

weights so that when we compute the products between the weights and the previous layer,  we 

get the correct probabilities for the different classes. 

 

Figure 7.8. This figure shows the placement of the fully connected layer after all the feature extraction 

layer to transform the numerical insights into output predictions 

 

As can be seen from Figure 7.8, the fully connected layer is the last layer before producing 

the output. In the next section we will discuss briefly how the training process happens in a 

convolutional neural network. 

7.2.6 Training process of CNN 

For the classification training process, we need a rich set of training data with the appropriate 

ground truth labels. As we saw from the previous sections, each layer is responsible for computing 

a weight for every feature they extract from the image. The way the algorithm can adjust its filter 
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values (or weights) is through a training process called backpropagation. A full description of 

backpropagation is beyond the scope of this thesis; but in a nutshell the process of backpropagation 

is divided into four steps. During the forward pass, a training image is taken and passed through 

the entire network and the weight and the filter values are randomly assigned. In the first pass, the 

network, with its current weights, isn’t able to look for those low-level features or thus isn’t able 

to make any reasonable conclusion about what the classification might be. To make the right 

prediction a loss function is used. Loss is computed as the difference between the actual label and 

the predicted label (or some other function of actual and predicted; there are pros and cons for 

different approaches to this). Therefore, our goal is to minimize the loss function. For this 

minimization, the model performs a backward pass through the network, to determine which 

weights contributed most to the loss and finding ways to adjust them so that the loss decreases. 

We use an optimization function to minimize this loss. This updating of weights and optimization 

to minimize the loss between the actual and the predicted label is how the model “learns”. 

7.2.7 Our experimental setup 

The goal of this thesis is to get a greater understanding about the burst initiation patterns. For this 

purpose, we produced spatiotemporal images that can be fed into an image classification model so 

that we can visually see the extracted features that contribute to being in a class. As learnt in the 

previous sections, CNNs are very powerful in deriving insights from images, however, to really 

see which compilation and number of layers work for our data, we needed to do multiple 

experiments.  
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Model training parameters: 

Our initial experiments include a lot of trial and errors using grid search techniques to find the best 

parameters, i.e. the loss function, the optimizer, activation functions and the learning rate for our 

CNN architectures. We found that Stochastic Gradient Descent as an optimizer worked better for 

us, when compared to the other widely used counterpart adaptive methods (ADAM optimizer). To 

justify the reason for this, it is found that the solutions found by ADAM generalize worse than 

SGD, even when these solutions have better training performance [63]. In our scenario, the nature 

of our data is sparse, and the spiking activity spread out across the neurons, therefore choosing an 

optimizer which has a better generalization capability would be a better choice for our type of 

images. Our choice for loss function was Sparse Categorical Cross- Entropy, as it is suggested that 

this loss function is useful when our classes are mutually exclusive (e.g. when each sample belongs 

exactly to one class) which matches our use case. The rest of the parameters were kept at default: 

ReLu activation function and default learning rate due to popularity. Our next set of experiments 

involved choosing how deep we choose our models to be. Therefore, we included three levels of 

CNN architecture complexity for experimentation, explained in the next section. 

 

Low Complexity Model: 

For many problems, it is found that we can just begin with a single hidden layer to get reasonable 

results [55]. This architecture ensures that the low-level features are extracted by convolutional 

and max pooling layers and converted to high level predictions using the fully connected layer.  
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Figure 7.9. Architecture of the low-complexity CNN model used for our experiments 

 

The architecture of the low complexity model is shown in Figure 7.9. In this CNN 

architecture, the image input layer takes in our spatiotemporal images of the same 200 × 200 × 1 

, 1 denoting the channel for grayscale. The proposed low-complexity system uses one 

convolutional (CONV) layer followed by one max-pooling layer (POOL) and Rectified Linear 

Unit (RELU) as the activation function. For the first convolutional layer, filters of size 3×3 are 

used. This convolutional layer generates a feature map. The feature map of the first convolutional 

layer is used in combination with the pooling layer of filter size 2x2 and stride of 2×2. This 

generates the trainable feature maps, i.e., feature extraction phenomena are performed in these 

layers. These feature maps are subjected to fully connected layers (FC) and then ReLu activation 

is performed to determine the classification probabilities used by the final output classification 

layer for two classes- burst and non-burst.  
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Medium Complexity Model: 

The medium complexity model was created to test the impact of deeper models, with multiple 

convolutional layers so that they are able to pick up more low level patterns from the images that 

could help us understand the burst initiation patterns. 

 

 

 

Figure 7.10. Architecture of the medium-complexity CNN model used for our experiments 

 

In CNN architecture shown in Figure 7.10, the image input layer takes in our 

spatiotemporal images of the same 200 × 200 × 1, 1 denoting the channel for grayscale. Since 

from our initial experiments we found the training parameters, we kept the optimizers and loss the 

same, only increased the layers to capture more feature extraction. The proposed medium-

complexity system uses three convolutional (CONV) layers followed by three pooling layers 

(POOL) and Rectified Linear Unit (RELU). For the first convolutional layer, 32 kernels/filters of 

size 3×3 are used. For the second convolutional layer, 28 kernels of size 3×3 are used. For the third 

layer, 30 kernels of size 3×3 are used. Each convolutional layer generates a feature map. The 

feature maps of the first, second and third convolutional layer are used in combination with pooling 

layers of 2×2 and stride of 2×2. This  generates the trainable feature maps, i.e., feature extraction 
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phenomena are performed in these layers. These feature maps are subjected to fully connected 

layers (FC) and then ReLu activation is performed to determine the classification probabilities 

used by the final output classification layer for two classes, burst and non-burst.  

 

High Complexity Model- AlexNet: 

It is to be noted that a relatively simple architecture might not always be ideal. Even though, for 

many problems, we can start with just one or two hidden layers but for a more complex problem, 

we can gradually ramp up the number of hidden layers, until we start overfitting the training set 

[55]. We wanted to try a more complex and better tuned architecture for our experiments. There 

are lots of pre-trained models that seem to outperform the rest of the machine learning models. 

Instead of building a CNN architecture and training it from scratch, it is also possible to take an 

existing pre-trained network and fine tune it to adapt it to a new and different dataset through a 

technique called transfer learning [55].  

The primary role of transfer learning is to recycle knowledge attained in a previous training 

process from a pre-trained model, to boost the learning procedure in a new complex domain. It  

provides an appropriate key for speeding up the learning procedure in image classification [56]. 

Therefore, we proposed to use AlexNet, a state-of-the-art deep learning pre-trained model. This 

model was the first breakthrough in the architecture of CNN in 2012. [55]. It was developed by 

Alex Krizhevsky, Geoffrey Hinton and Ilya Sutskever who won ImageNet Classification 

Challenge (ILSVRC) in 2012. They trained their network on 1.2 million high-resolution images 

into 1000 different classes with 60 million parameters and 650,000 neurons.[57, 58]. We wanted 

to use this architecture as our high-complexity model to see the effectiveness of highly tuned, deep 

architecture.  
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Figure 7.11. Architecture of the high-complexity CNN model, pre-trained model AlexNet used for our 

experiments 

 

The AlexNet architecture used in our experiments is shown in Figure 7.11. AlexNet expects 

a 227 × 227 × 3 pixel image, whereas our spatio-temporal  images are 200 × 200 × 1 pixels. To 

feed our images into AlexNet, we resized and padded our image with 0 to fit the dimensions that 

AlexNet expects, that is, 227 × 227 × 3. In the proposed high-complexity system, the image input 

layer is defined as a pre-processing layer where the input frames are up-sampled. The network 

uses five convolutional (CONV) layers followed by three pooling layers (POOL) and Rectified 

Linear Unit (RELU). The first and second convolutional layer uses filters of size 11 × 11. The 

third, fourth, and fifth layers, use filters of size 3 × 3. The feature maps of the first, second and 

fifth convolutional layer are used in combination with pooling layers of 3 × 3 and stride of 2 × 2.. 

The framework comprises eight layered architecture with 4096 nodes. This  generates the trainable 

feature maps, i.e., feature extraction phenomena are performed in these layers. These feature maps 

are subjected to fully connected layers (FC) and then Softmax activation is performed. The original 

AlexNet architecture used 1000 categories, but to tune it for our domain, we tweaked the last dense 
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layer to determine the classification probabilities used by the final output classification layer for 

two classes─burst and non-burst.  

7.3 EXTRACTING VISUAL BURST INITIATION PATTERNS FROM MODEL 

INTERPRETABILITY ALGORITHMS 

Model Interpretability is the degree to which a human can understand the cause of a decision. The 

goal of using a model interpretability technique on our image classification so that we can visually 

reveal the underlying patterns present in the spatiotemporal images, based on which a model 

determines whether an image is a burst image or non-burst image. Our goal to this approach was 

to understand which patterns present in the spiking activity of neuronal cultures initiate bursts. 

Which means, instead of using a machine learning model for a typical production environment for 

a software system, model interpretability is the output of interest for us as it has a significant 

contribution in understanding the visual patterns in a burst image. There are various contenders in 

libraries that help make machine learning/deep learning models interpretable. A few examples are 

DeepLift, SHAP, LIME, InterpretML etc.  

In this thesis we use a method called DeepSHAP model interpretability. When training on 

a particular label, some of the features learnt by a model during training are the features of an 

image that relate the most to a particular label, in our case, which features make an image a burst-

image, vs. a non-burst image. The Shapely values (colors in explainer images produced by 

DeepSHAP) “decompose” the final prediction of an image into an interpretable image showing 

the contribution of each feature extracted by the model [59, 64]. It is to be noted that not every 

image sent for prediction to the model has all the features that are ideal to be in a particular class, 

therefore shapely visualizes the “left out” features as well as present features belonging to each 
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class to arrive at a decision for a predicted label. So SHAP chooses a set of background training 

images to explain what the model additively learnt from all the training samples provided for an 

image to be in a category.  

In this work, due to the nature of our sparse image, more than identifying which regions in 

one image enable that image to be a burst image or a non-burst image, what is found to be a better 

conclusion is, which collective behavior or set of features in all the burst images could be 

predictive of burst initiation. We used SHAP for a more global interpretation by calculating the 

Shapely values for a large amount of training data  and aggregating them. Therefore, the 

explanation by SHAP involving background training data to show the highlighted features for both 

the classes revealed some interesting properties of an image being a burst vs not a burst that we 

will see in the Results chapter. 

One limitation of using SHAP is the tradeoff between being able to identify the highest 

contributing regions from a high number of training samples vs computation time [65]. Therefore, 

without the code breaking we could choose a maximum of 800 training images to explain an output 

while 2000 training images were passed into the model. We still found some interesting insights 

that we will discuss further in the Results chapter. 
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Figure 7.12. Example of MNIST to show how red and blue SHAP values are able to derive collective 

feature contributors for each category in a classification example 

 

Figure 7.12 explains model interpretability insights generated by SHAP in the context of 

MNIST dataset. Here the leftmost images represent test images sent to SHAPLift. We provide 

SHAP with a set of background images that the model was trained on, to explain which regions of 

our test image have the regions that are more likely to represent a particular class based on all the 

background training images for that class. By integrating over many background samples 

DeepExplainer functions in SHAP estimates approximate SHAP values/colors such that they sum 

up to the difference between the expected model output on the passed background samples and the 

current model output 𝑓(𝑥) − 𝐸[𝑓(𝑥)][66]. The red areas increase the probability of that class, 

whereas blue areas decrease the probability. Therefore, if most of our test has the areas coinciding 

with the areas that are the most contributing to that particular class from a set of background 

images, we can explain why a particular test image is labelled as that class. Most importantly, we 

get information about which regions in the set of images for a particular class are the most 
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contributive for classifying the image into either of the categories, which is an important insight 

in our use case. 

7.4 METRICS USED TO MEASURE PERFORMANCE  

The evaluation of the trained networks for each dataset was carried out using the test set. Together 

with the global accuracy (i.e. the overall percentage of correct classified images), we included 

three additional objective evaluation metrics to better understand how well the classifier is 

performing. We explain each of these metrics in this section. 

7.4.1 Confusion Matrix 

A confusion matrix is used as performance measurement in classification problems of two or more 

classes. It provides insights into the model by showing numbers such as True Positives, True 

Negatives, False Positives and False Negatives.  

● True Positives (TP): True positives are the cases when the actual class of the data point 

was 1(True) and the predicted is also 1(True). 

● True Negatives (TN): True negatives are the cases when the actual class of the data point 

was 0(False) and the predicted is also 0(False). 

● False Positives (FP): False positives are the cases when the actual class of the data point 

was 0 (False) and the predicted is 1(True). False is because the model has predicted 

incorrectly and positive because the class predicted was a positive one. 

● False Negatives (FN): False negatives are the cases when the actual class of the data point 

was 1(True) and the predicted is 0(False). False is because the model has predicted 

incorrectly and negative because the class predicted was a negative one. 
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7.4.2 Accuracy 

Accuracy in classification problems is the number of correct predictions made by the model over 

all kinds of predictions made.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 (7.1) 

 

Accuracy is a good measure when the target variable classes in the data are nearly balanced, 

as in our application. 

7.4.3 Precision 

Precision is a measure that tells us what proportion of images that we predicted as being Burst 

images are burst images. It is the fraction of positive predictions made by the classifier that are 

correct. The question that this metric answer is of all images that are labelled as bursts, how many 

bursts? High precision relates to the low false positive rate.  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (7.2) 

 

7.4.4 Recall 

Recall, also known as sensitivity, quantifies how well the model avoids false negatives, i.e. it 

answers the question, of all the images that truly are truly bursts, how many did we label?   

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
   (7.3) 
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7.4.5 F1 Score 

F1 is an important score as it contains both the Precision and Recall scores. It is the weighted 

average of precision and recall. 

𝐹1 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
     (7.4) 
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7.5 DETAILED EXPERIMENTAL WORKFLOW ARCHITECTURE 

 

Figure 7.13. This diagram summarizes the entire workflow of data processing, analysis and experiments 

done in this thesis.  
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Chapter 8. RESULTS 

This chapter discusses all the results from the experiments conducted. The main goal of our thesis 

is to see the level of interpretability we can achieve by using the Spatio-temporal images created 

on the slices of data. The data was re-created compared to the previous work using the improved 

spatiotemporal method of producing burst start time. The three data slices that we have used in 

these experiments to compare the predictability are all spatio-temporal bursts, spatio-temporal 

bursts after removing the endogenously active neurons and temporal bursts. Temporal bursts 

dataset apart for comparison, was also used to test if the predictability is dependent on our model 

architecture or data. The results were as expected for the Temporal dataset with high performance 

using the wrong burst markers, as we will see, which also confirm that the model architectures 

used for our experiments was not the reason behind performance but the dataset. 

An important aspect of our work is to reveal visually which collective attributes from a set 

of training images did the model learn to be predictive of bursts and of non-bursts. The model 

interpretability algorithm used was SHAP-Lift to find visual trigger patterns. The following 

sections now explain these results. 

8.1 BURST INITIATION MACHINE LEARNING CLASSIFICATION RESULTS FOR 

COMPARISON 

We performed machine learning experiments to find the predictability of bursts vs non bursts from 

the data generated from the old vs improved method of burst marker generation. We ran these 

experiments to find how predictive the new spatio-temporal method is as compared to the old 

method. In the initial runs using raw data using machine learning we found that we can only reach 

up to 50-52% accuracy when compared to the old method of burst start time marker, suggesting 
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that our improved data no longer has the obvious behavior in them to be able to easily classify 

them as burst/non-burst. This behavior is expected and confirms that the old method of marking 

the burst beginning is already inside the burst therefore highly predictive. These results are shown 

below. 

8.1.1 Expected ML Results for the old method of marking burst beginning 

Firing time and (x,y) locations were passed for machine learning prediction of burst and non-burst 

for the burst data produced using the temporal avalanche method.  

Table 8.1.  Machine learning results with the old method of marking burst times. 

ML Results Accuracy Precision Recall F1-Score 

Temporal all bursts W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Decision Tree 0.96 0.94 0.96 0.94 0.96 0.94 0.96 0.94 

Random Forest 0.94 0.93 0.94 0.94 0.94 0.93 0.94 0.93 

Polynomial SVM 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99 

MLP 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 

 

 

As seen in Table 8.1 the classification model run on the old temporal avalanches burst data 

have a very high performance due to the biased data. Another interesting find is that SVM and 

MLP machine learning methods have the best performance as compared to decision tree and 
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random forest, suggesting that non-linear classifiers are good candidates for classification of spike 

train data. 

8.1.2 ML results for data generated from the improved burst markers 

 

For the sake of comparison, the same approach followed for machine learning prediction of burst 

vs non-burst by previous work was used on the new burst dataset produced using the 

spatiotemporal avalanche method. Therefore, firing time and (x,y) locations were passed for 

machine learning prediction of burst and non-burst for the two datasets, all bursts, and all bursts 

without endogenously active neurons. Table 8.2 highlights the classification results on all bursts 

dataset and Table 8.3 highlights the classification results on all bursts without endogenously active 

neurons. 
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Results of Spatio-temporal All Bursts: 

Table 8.2.  Machine learning results of spatio-temporal all bursts 

ML Results Accuracy Precision Recall F1-Score 

Spatio-temp-

all-bursts W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Decision Tree 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 

Random 

Forest 0.51 0.52 0.52 0.52 0.51 0.52 0.48 0.49 

Polynomial 

SVM 0.51 0.52 0.51 0.52 0.51 0.52 0.50 0.52 

MLP 0.50 0.52 0.51 0.61 0.51 0.51 0.48 0.38 

 

 

The highest accuracy and f1-score both range between 50-55% suggesting that the images no 

longer have obvious behavior in them to be able to easily classify them as bursts vs. non bursts. 

This is a good finding as now we can ensure that the improved method of defining the burst start 

times are in fact true. As we can see from Table 8.2, when using a larger window size of 100 

timesteps, results of random forest and SVM increase by a few percentages for both F1-score and 

accuracy. Further, this also calls for applying more advanced deep learning techniques as will be 

discussed in the next section, to finding out the subtle patterns in our data converted as spatio-

temporal images. 

 

Results of Spatio-temporal All Bursts generated after removing endogenously active neurons: 
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Table 8.3.  Machine learning results of spatio-temporal all bursts after removing spikes from 

endogenously active neurons 

ML Results Accuracy Precision Recall F1-Score 

Spatio-temp-

bursts-no-endo-

neurons W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Decision Tree 0.65 0.67 0.65 0.67 0.65 0.67 0.65 0.67 

Random Forest 0.66 0.66 0.73 0.73 0.65 0.66 0.63 0.63 

Polynomial SVM 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 

MLP 0.54 0.52 0.54 0.54 0.54 0.52 0.53 0.44 

 

 

We see that both sets of datasets produced from the spatio-temporal method, with and without 

endogenously active neurons, are in general less predictive than the old method, indicating that 

there are definitely no obvious patterns from the bursts in the pre-burst data. It is interesting to 

note the jump in performance as compared to results in Table 8.2. Both the Decision Tree and 

Random Forest ensemble classifiers can achieve up to 20% increase in accuracy and F1-scores 

when the endogenously active neurons are removed. This could indicate that the removal of 

endogenously active neurons removed a lot of noise from the data, and we found that most of the 

activity happening in the background, between the bursts are reduced. This could be a reason for 

the high performance of the ML models. Since we wanted to dig further into deriving some visual 

patterns of predictability therefore, we applied image classification techniques the results for which 

are shown in the next section. 
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8.2 BURST INITIATION DEEP LEARNING SPATIO-TEMPORAL IMAGE 

CLASSIFICATION RESULTS 

We converted the spike-train data into spatio-temporal images to perform image classification in 

order to see if we can get any improvement in the predictability of burst initiation patterns from 

using convolutional neural networks, additionally we wanted to use image classification as an 

input to model interpretability analysis that can reveal some visual patterns in the images.  

We found that performing image classification on the old method of producing burst 

markers received exceptionally high performances reaching 100% because of the visual 

differences in the image. The performance of image classification on the spatio-temporal all bursts 

increased 10% in accuracy as compared to the machine learning results and an improvement of 

30% accuracy as compared to traditional machine learning algorithms on the bursts data without 

the background activity generated by endogenously active neurons. 
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Results of Image Classification on Old method of burst start times: 

 

Table 8.4.  Image Classification results on old Temporally generated burst data 

Image Class. results Accuracy Precision Recall F1-Score 

Temporal all bursts W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Low Complexity CNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Medium Complexity 

CNN 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

AlexNet 0.57 0.71 0.60 0.82 0.57 0.71 0.53 0.68 

 

 

As expected, all the results seen from Table 8.4 are 100% for the low and the medium complexity 

CNN models, however it is interesting to note that the high-complexity pre-trained model, AlexNet 

could achieve only upto 70% F1 score. This reveals that a model tuned for our images performs 

better than a model that is tuned for all the images in the world. Even though some studies reveal 

that AlexNet has a good performance for Sparse data, it is not suited for our images. We continue 

to use this model for comparison for the other slices of data, but we do the interpretability analysis 

only for the low and the medium complex models. 
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Results of Image Classification on Spatio-temporal All Bursts: 

Table 8.5. Image classification results on Spatio-temporal all bursts without removing any neurons 

Image Class. results Accuracy Precision Recall F1-Score 

Spatio-temp-all-bursts W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Low Complexity CNN 0.54 0.62 0.54 0.64 0.54 0.62 0.54 0.60 

Medium Complexity 

CNN 0.52 0.49 0.52 0.49 0.52 0.49 0.52 0.49 

AlexNet 0.37 0.50 0.37 0.25 0.37 0.50 0.37 0.33 

 

 

As seen in Table 8.5, comparing the image classification results with the previous ML approach 

(firing time and location), we see 7% improvement in the F1-score and a 10% increase in accuracy 

for window 100 results by using the low complexity CNN model for image classification. Getting 

scores in the range of 50-60% from all the three CNN models do reveal that this data may have a 

lot of noisy data and may not be able to accurately differentiate the two images. The best 

performance the CNN models could get on the dataset spatio-temporal all bursts was 62% accuracy 

score and 62% F1-score. By running the same models on the Temporal datasets, we confirmed 

that these performances are highly dependent on the kind of dataset we pass into the model and 

not the model architecture itself. However, with a score of 60% F1-score, we still have slightly 

better insights as compared to results of “chance” to trust the model’s output for burst initiation 

patterns therefore we will continue to see model interpretability analysis on these models. It is also 

interesting to note that the performance of W-100 is better than W-50. This result is also consistent 
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with the other experiments. Also as pointed out in the previous section, AlexNet is unable to 

perform with suboptimal results due to its highly complex architecture. Some discussion on this is 

presented in the Conclusion chapter.  

 

Results of Image Classification on Spatio-temporal All Bursts generated after removing 

endogenously active neurons: 

Table 8.6. Image classification results on Spatio-temporal bursts data after removing endogenously active 

neurons 

Image Class. results Accuracy Precision Recall F1-Score 

Spatio-temp-bursts-no-endo-

neurons W-50 W-100 W-50 W-100 W-50 W-100 W-50 W-100 

Low Complexity CNN 0.85 0.96 0.88 0.96 0.85 0.96 0.85 0.96 

Medium Complexity CNN 0.82 0.93 0.82 0.93 0.82 0.93 0.82 0.93 

AlexNet 0.61 0.58 0.64 0.60 0.61 0.58 0.58 0.57 

 

 

Image classification after removing endogenously active neurons shown in Table 8.6 turned out to 

get really good performance as compared to the data with all neurons. Comparing the results of 

image classification with previous ML results (firing time and location), we got an accuracy of 

about 70% from the machine learning techniques shown in Table 9.3, however image classification 

results have crossed the F1-scores and accuracy scores with a 20% increase. We have over 95% 

F1-score from the low complexity and the medium complexity CNN model indicating, after 
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removal of the endogenously active neurons, the model was able to clearly find out burst initiation 

patterns to some extent. Also note that both the low and medium complexity models have a better 

prediction for W-100 compared to W-50. As discussed before, AlexNet was unable to perform 

well on this dataset as well. Taking the results from the image classification forward, as the next 

step we performed the model interpretability analysis revealed in the next section. 

8.3 VISUAL BURST TRIGGER PATTERNS 

We ran a total of 12 experiments for visual pattern extraction using SHAPlift including the three 

datasets, the two types of window sizes-50, 100 (number of timesteps before burst/non burst) and 

the three CNN models. In this section we choose the results which clearly show some aspects of 

the collective features of a burst image and a non-burst image. In general, the red areas show high 

probable regions for a class, whereas the blue regions show low probable regions for a class. We 

present our findings in two sections, one exclusively talking about burst initiation patterns found 

from burst images and the other section to compare the differences in the collective burst and non-

burst patterns the models learnt from the training process. 

8.3.1 Burst Initiation Patterns in Bursts from Burst-labelled images 

Results of Visual Model Interpretability  on Spatio-temporal All Bursts Dataset: 

From SHAPlift we get insights both about the global and local interpretability of our image data. 

We will first reveal findings from SHAP on global interpretability, i.e. understanding which 

collective patterns in the data make an image a burst image or a non-burst image. 
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Figure 8.1. Rows (A), (B) and (C) describe the actual test image in the first column  vs the interpreted 

output by SHAP in the middle and the right column, i.e., the first column of images represent the test 

images that were originally labelled as burst-images and predicted by the label also as burst-images. The 

middle and the right columns represent which collective patterns from each of the classes the test image 

matches to more, explaining its prediction. All the explanations are from the medium-complexity model 

on the dataset- spatio-temporal all bursts with a window of 50 timesteps. 

 

As seen from Figure 8.1, the SHAP colors shown in the middle and the right column, represent 

which collective features made the model predict it as non-burst vs burst, i.e., the image with a 

more dense red area, represents our test image to be in that particular class , whereas blue areas 

decrease the probability. Also note the marker in the center of each image marks the burst origin 

however they are slightly off-center for visual clarity. When comparing the test image itself with 

its interpretable output image, note that SHAP images show both expected and actual contributing 
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features to give a more global interpretation as well. From the images produced for spatio-temporal 

all bursts, we see that , the CNN model learns to expect a group of regions to be around the center 

for the image, i.e., around the burst origin related to burst initiation patterns. This finding is 

interesting as none of the images inputted to the model had an aggregated behavior right at the 

origin, as our pre-burst image did not have any burst activity included. Additionally, we also see 

that the red regions, referring to expected regions for burst initiation are not just centered around 

the burst origin but also spread out throughout the network creating some form of clusters of 

spiking activities. This can be noted from red regions in the center and across the network in the 

right column representing burst image expectations in Figure 8.1.  In all the three different test 

burst images A, B and C, the collective contributions learnt from the non-burst images, it is seen 

that the model does not expect any region in the middle for it to label an image as non-burst. This 

can be noted from the blue region in non-burst images indicating, the missing of blue regions make 

that region non-burst. 

Due to the sparse nature of our images, it is hard to see how the spiking regions in our test 

images lead to a prediction, on zooming in, we see how each of the activity regions of our test 

images are colored red or blue, the more reds in either of the classes indicates the region for the 

predicted label. 
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Figure 8.2. Explaining the patterns found from SHAPlift to label this test image as a burst 

 

Figure 8.2 shows local interpretability patterns and explains why the test image B was 

predicted as a burst. The redder regions found in a class; the test image has a higher probability to 

be predicted as that class. Our test image has 4 spikes to be colored, From the image above we see 

that the class on-burst has 2 out of 4 spikes colored red whereas the class-burst has 3 out of 4 spikes 

colored red, which is slightly more than the non-burst class. For this reason, this image was labelled 

as a burst. Due to the sparse nature of our images, the major takeaway here is not the individual 

prediction explanations but the collective behavior of the burst class vs the non-burst class found 

by the CNN and the SHAPLift models. We see that in the spatio-temporal all burst datasets, the 

models expect a group of regions to be around the center for an image to be a burst image.  We 

see from Figure 8.1 that this is common for multiple runs of the CNN model on this dataset.  
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Results of Visual Model Interpretability on Spatio-temporal All Bursts created after removing 

endogenously active neurons: 

We first look at the global interpretable results generated from SHAP on the dataset without 

endogenously active neurons in Figure 8.3 and then discuss the local interpretable patterns in 

Figure 8.4. 

 

Figure 8.3. Rows (A) and (B) describe the actual test image in the first column  vs the interpreted output 

by SHAP in the middle and the right column, i.e., the first column of images represent the test images that 

were originally labelled as burst-images and predicted by the label also as burst-images. The middle and 

the right columns represent which collective patterns from each of the classes the test image matches to 

more, explaining its prediction. All the explanations are from the medium-complexity model on the 

dataset- spatio-temporal all bursts without endogenously active neurons with a window of 100 time steps. 

 

Firstly, from Figure 8.3 we notice that the images produced after removing endogenously 

active neurons were less noisy as compared to the all bursts dataset. The results of CNN predictions 

of image classification in burst and non-burst for the bursts produced after the endogenously active 

neurons are removed were significantly better than the dataset with all the bursts. It is interesting 
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to note that the interpretable images on the rightmost column representing the explanations for 

images being bursts, highlights that all the images that are predicted as a burst have a “red dot” 

right in the middle, even though our new spatio-temporal avalanche method produces burst start 

times that mark the true beginning and the pre-burst sequences do not have as much activity as the 

bursts. This result is consistent with the visual patterns seen in Figure 8.1 for the dataset without 

removing any neuron, even after denoising the images. Not only do we see the presence of burst 

initiation activities at the burst origin, but we also see that the clusters of spiking activity are spread 

out across the network. Thus, giving us confidence that the burst initiation patterns around the 

burst origin as well as the presence of neuronal clusters with or without endogenously active 

neurons are crucial features for an image being a burst image. The Figure 8.4 explains why the 

individual test images in Figure 8.3 were classified as bursts instead of non-burst. 

 

Figure 8.4. Explaining the patterns found from SHAPlift to label this test image as a burst for images 

without endogenously active neurons 

 

Zooming into row (A) in Figure 8.4, we see that each of the spikes in the test data are 

colored with SHAP color, where presence of more red colors is predicted of the image being in 

that class. When we look at the interpretable image produced by SHAP for the burst class, we see 

that the number of red colored spikes from our test image is 7 out 10, whereas the number of “red 

dots” for the class non-burst is only 3 out of 10. This suggests why the test image was labelled as 
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a burst instead of non-burst. Re-emphasizing our discussion in the previous paragraph, we see from 

Figure 8.3 that the presence of this “red spike” at the center/ at burst origin is highly predictive of 

any image being a burst. 

 

Results of  Visual Model Interpretability  on Temporal Bursts aka old method of Burst beginning: 

The results from the old method of producing burst start times was as expected, we had 100% 

accuracy and F1-scores from the CNN models. 
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Figure 8.5. Rows (A) and (B)  represent the test images that were originally labelled as burst-images and 

predicted by the label also as burst-images. The middle and the right columns represent which collective 

patterns from each of the classes the test image matches to more, explaining its prediction. Row (A) 

shows the predictions from low-complexity CNN with spiking activity in the window of 50 timesteps and 

row (B) shows the predictions from medium complexity CNN with spiking activity in the window of 50 

timesteps and row (C) shows the results from medium-complexity model with a window of 100, all for 

the dataset- bursts extracted using the old-method of burst time markers. 

 

 

As can be seen from Figure 8.5, the aggregation of a majority of spiking activity present in 

our test set and training data itself leads the model to be biased towards only considering this 

aggregation as a pattern to classify the images as being burst or non-bursts. Therefore, the model 

only expects this activity in the center, if the images have this aggregation activity present, it is 

predicted as burst otherwise not. An interesting point to note from these images here is that, there 
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is hardly any background activity in the interpretable images by the images produced on temporal 

method, that the model found important contributors to the classes. We see that the behavior 

around the burst is very faint, almost non-existent, indicating that the model is only looking for the 

activity in the center, due to the nature of our biased data. Comparing this with the result after 

removing the endogenously active neurons, even though the model expected activity at the center 

to be a burst image in Figures 8.3 and 8.4, it still had a faint presence of activity clusters around 

the center as contributors to be a burst image, whereas, here we have none. Therefore, confirming 

from images in Figure 8.5, the model is biased in its prediction due to the presence of burst activity. 

Looking at local individual analysis we see from Figure 8.6, that with the late burst start 

time markers, the initial burst activity is already present in our images.  

 

Figure 8.6. Explaining the patterns found from SHAPlift to label this test image as a burst 

 

As we can see from Figure 8.6, the model has picked up this pool of spikes that are part of 

the bursts, as being predictive of being burst images as expected.  
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8.3.2 Understanding Burst initiation patterns from the difference in the features from Burst 

and non-burst images 

Now that we have seen some results about which collective patterns in our data are predictive of 

an image being a burst, this section summarizes our visual results on which collective features 

from our data make an image a burst image or a non-burst image. 

 

Figure 8.7. Side by side comparison of features corresponding to burst initiation from burst-images and 

non-burst images 

 

Comparing the burst initiation behaviors learnt by CNN models and SHAPLift, from 

Figure 8.7, we find that regions of the spatio-temporal images that contribute to being a burst are 

more concentrated near the burst origin, in spite of having well-defined burst start times that make 

our pre-burst images non-connected with the burst activity. This finding is consistent in both the 
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datasets, with and without the endogenously active neurons’ spikes. When the endogenously active 

neurons’ s spikes are removed, our data becomes less noisy as the background activity between 

the bursts almost diminish, showing the underlying burst initiation patterns more clearly around 

the center. There is also a presence of a “red dot” right at the center of the results of the images 

produced after removing endogenously active neuronal spikes is consistent with all the tests done. 

Apart from expecting the activity at the center, we also see the presence of activity clusters spread 

across the network and this result is consistent with both the datasets with and without removing 

the endogenously active neurons. Lastly, this result confirms that, due to the nature of spurious 

data generated from the old method of marking burst times, the deep learning models are highly 

biased towards looking for the aggregation of activity only at the burst origin. This wraps up all 

the results from the experiments performed in this thesis. 
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Chapter 9. CONCLUSION AND FUTURE WORK 

This thesis investigated spatiotemporal patterns originating during burst initiation in full spiking 

activity from a closed loop leaky-integrate-and-fire simulation of neuron-activity-driven network 

development. The goal of this work is to perform data analysis of this spatiotemporal data and 

apply machine learning techniques to investigate how patterns in the background activity 

contribute to predicting the burst initiation. We performed these experiments as a supervised 

classification model where we labelled the background activity closer to burst initiation points as 

pre-burst and activity farther away from the bursts as non-burst. These two categories then became 

our input to the classification model where understanding which category leads to a higher 

prediction of the burst category would give us some insights about burst initiation patterns.  

We found that previous machine learning classification work achieved a high accuracy due 

to wrong burst time markers. We found that the pre-burst activity passed as the ground truth input 

to the classification model included the start of burst activity. We therefore applied a new method 

of finding the burst start times based on a spatio-temporal method that groups avalanche together 

that are both temporally and spatially close. Upon re-running the experiments of classification in 

pre-burst and non-burst with the new spatiotemporal avalanche method, we found the degree of 

predictability reduced as expected due to the unbiased data, explained in detail in the Results 

chapter.  

To further improve the predictability as well as derive visual patterns from the background 

activity, we converted our spike train data into spatio-temporal images and performed image 

classification. We used Convolutional Neural Networks of various complexities to test the 

effectiveness of various deep learning algorithms and network layers in extracting important 
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information from images. We also used a deep pre-trained AlexNet using transfer learning known 

for its effectiveness on most of the image classification tasks today. After performing experiments 

with image classification as well as non-image ML classification, we found that spatiotemporal 

image classification has 20% better performance than the previous method (firing time, location). 

For image classification, as explained in the Results chapter, we found that the model with the 

least complexity achieved the best results for our datasets. It is known that one reason to add more 

network layers to make a deeper model is so that the layers convolve over more of the input data. 

When a network does a convolution on an input, it extracts a relevant feature such as edges, shapes, 

colors, etc. Therefore, deeper models allow the network to perform more convolutions and let it 

extract more complex features with every convolution. However, the sparse nature of our spatio-

temporal images restricted the effectiveness of deeper layers. It is possible that the first few layers 

were successful in capturing all the relevant information from the model, going deeper did help in 

capturing any more features rather, adding more layers beyond a certain threshold lead to finding 

irregularities in the data or information irrelevant to the classification task at hand. It is also 

possible that the low accuracy of the deeper models could be because the models overfit on the 

training data, leading to bad performance on testing data. We confirmed this when we found the 

accuracy of deeper models on training data is 20% higher than the performance on the testing data, 

whereas the performance was almost similar in terms of our low complexity CNN model.  

Studies reveal that that positional information is used by convolutional neural networks to 

a strong degree as one of the important feature maps extracted from images and plays an important 

role in classifying [71]. The deeper layers, apart from learning the shape and size of patterns, also 

learn about location independence. Another reason why deeper and more complex CNNs might 

not have performed well in our scenario is that our images were already centered, therefore there 
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was no need for position independence to be learned. It is found that zero padding, explained in 

detail in the Methods chapter, acts as an anchor from which spatial information is derived, also 

useful for spatial abstraction and position independence CNNs [71]. Even though we have used 

zero padding for our experiments, as mentioned due the sparse nature of our images as well as 

centering, there is no aspect of position information required for our images. Therefore because of 

these reasons, we speculate that a simple CNN model with fewer layers can extract all major 

features and information from our images to differentiate between pre-burst and non-burst sparse 

images. 

Additionally, to be able to visually reveal the underlying patterns present in spatio-temporal 

images based on which the CNN image classification model decides into either of the two classes, 

we implemented SHAP model interpretability analysis. This revealed findings about burst 

initiation patterns, as shown in the Results section. It is to be noted that instead of using a machine 

learning model for a typical production environment for a software system, we use model 

interpretability as it has a significant contribution in understanding the visual patterns in a burst 

image. From the visual patterns in model interpretability outputs, we found that burst initiation 

patterns denoted by high density of activity are found around the burst origins even after we 

confirmed with the spatiotemporal avalanche method that pre-burst activity is void of any bursting 

activity. We also found what might be functional communities of neurons as initiation patterns, 

spread across the network and not just centered around the origin, like the findings by Maeda et 

al. [15]. These putative functional communities were identified in the dataset that included all 

neurons’ spikes and thought this could be because those spikes acted like background noise. 

However, on removal of endogenously active neurons’ spikes we still found these clusters of 

activity across the network (although the signature of this was faint). When comparing the 
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expected patterns to classify a burst image from a non-burst image using SHAP, we found that for 

non-bursts, absence of concentration of activity around the center of images makes it unsuitable 

for burst initiation. It was also found that burst initiation patterns were more evident, and we had 

a higher predictability with larger window sizes, for example, window size of 100 has 10% better 

performance that window size of 50 for the experiments.  

This thesis work is among the first few applications of machine learning to investigate burst 

initiation patterns in spike train data of cortical neural networks. The results and visualizations 

allow us to conclude that there is presence of localized spatiotemporal patterns for characterizing 

burst trigger or initiation at the burst origin as well as spread across the network in functional 

communities or clusters of spiking activity. 

There are a few directions for future research work in terms of deeper dives into burst 

initiation patterns. Firstly, work by Lonardoni et al. [69] revealed that network bursts could be 

sorted into a few classes (i.e., < 10) based on their spatiotemporal patterns, with each class sharing 

properties with all the bursts in that class, such as a similar average propagation trajectory and 

origin. In our data, different phases of the simulation have bursts originating from different 

confined locations, as shown in Figure 3.1. We can consider these as burst classes and extend our 

approach of finding visual patterns in each of these classes separately as one of the directions of 

future work.  

Secondly, since we found that the performance of the models’ predictability was 

significantly better with denoised versions of images, i.e. after removing endogenously active 

neurons’ spikes, one could investigate further on the burst initiation patterns after removing these 

spikes. Additionally, we also found that only 100 non-burst avalanches remain after removing the 

endogenously active neurons’ spikes; therefore, this raises questions about whether there is much 
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participation in background activity / avalanches from anything other than endogenously active 

neurons. Further analysis can therefore be performed to analyze the behavior of non-burst 

avalanches, whether they exist or are truly a cause from the uncorrelated, random firing of the 

endogenously active cells. 

Lastly, this work was done to find burst initiation patterns without considering position  

dependence in the images; another possibility for future work could be to consider position  

dependence in order to predict burst origin itself on the spatiotemporally created burst start times. 

Apart from using images, one could also use time-series based analysis to help with burst start 

time prediction and find seasonality and trends in the activity relative to timesteps. 
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