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The rate coding hypothesis is the oldest and still one of the most accepted and investigated scenarios in neuronal activity
analyses. However, the actual neuronal firing rate, while informally understood, can be mathematically defined in several
different ways. These definitions yield distinct results; even their average values may differ dramatically for the simplest
neuronal models. Such an inconsistency, together with the importance of “firing rate”, motivates us to revisit the classical
concept of the instantaneous firing rate. We confirm that different notions of firing rate can in fact be compatible, at least
in terms of their averages, by carefully discerning the time instant at which the neuronal activity is observed. Two general
cases are distinguished: either the inspection time is synchronised with a reference time or with the neuronal spiking.
The statistical properties of the instantaneous firing rate, including parameter estimation, are analyzed and compatibility
with the intuitively understood concept is demonstrated.
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The electric discharge activity of neurons is composed of
stereotyped events called action potentials or spikes. The
exact timing of spikes under identical external conditions
may vary from trial to trial. Since the early days of neu-
roscience it has been often assumed that neurons express
information about their input by employing mainly the av-
erage firing rate (frequency) of spikes. However, reliable
firing rate statistics can be difficult to obtain in certain ex-
periments or even in mathematical models. The reciprocal
value of the interval between consecutive spikes — known
as the instantaneous firing rate — offers the traditionally
employed alternative. Although the physical dimension of
the instantaneous rate is compatible with the firing fre-
quency, the averages of the two quantities differ. In this
paper we reconcile this tension by pointing to the crucial
role of the reference time at which we inspect the spike pat-
tern. We describe two possible scenarios: the classical one,
in which the inspection is aligned with spikes (yielding the
mentioned incompatible averages), and the asynchronous
one, in which the inspection time is fixed to an external ref-
erence time (and the mean instantaneous firing rate gener-
ally equals the mean firing frequency).

I. INTRODUCTION

Although it is universally accepted that neurons communi-
cate using series of action potentials (spike trains) via chemical
and electrical synapses, the exact structure of the neuronal code
is not yet fully resolved. The classical rate coding paradigm
states that the information sent along an axon is encoded in the
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number of spikes per observation time window1. In most sen-
sory systems, the firing rate increases, generally non-linearly,
with increasing stimulus intensity2. Characterization of these
input-output properties of neurons, as well as of neuronal mod-
els, is commonly done by so-called transfer functions in which
the firing rate is plotted against the input signal (e.g., the stim-
ulus intensity). The transfer function is usually presented as
a single curve, relating the mean (or the average of multiple
experimental measurements) response to each stimulus level3–6.
Instead of actual spike counts per time window, some re-

searchers have considered the concept of the instantaneous
firing rate in which is the reciprocal values of the interspike
intervals (ISIs) are employed. Bessou, Laporte, and Pagés 7
proposed to display the inverse of ISIs and by superposition of
records to construct a graph called the frequencygram. Knight 8
investigated the efficiency of the analogous method for a peri-
odic signal. The list of papers where the method of reciprocal
ISI was applied can be very extensive, so we add only a few
examples. Sawczuk, Powers, and Binder 9 , investigating spike
frequency adaptation in hypoglossal motoneurons of the rat,
used the reciprocal of the first ISI after stimulation as the mag-
nitude of the initial adaptation. Martinez-Conde, Macknik, and
Hubel 10 , studying microsaccadic eye movements and firing
of neurons in striate cortex of macaque monkey, also defined
the instantaneous firing rate as the inverse of the ISI. Similarly,
Lemon and Smith 11 used reciprocals of each ISI to estimate
the instantaneous firing rate at the point of time at which the
ISI under consideration terminated. The response to a stimulus
was defined in the same way in Rospars et al. 12 . Not only exper-
imental research uses reciprocal ISIs for deducing properties of
neurons under investigation; theoretical research has also been
based on this quantity13. For example, Pauluis and Baker 14
present a very detailed study of how to treat rapid changes in
frequencygrams, whereas Harris and Waddington 15 investi-
gated the inverse distributions of commonly applied models of
ISIs.
The advantage of the instantaneous rate concept lies in the

fact that ISI statistics are often more easily obtainable than
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count-based statistics. Nonetheless, the statistics of the classical
“firing rate” and of the “instantaneous rate” differ in several
key aspects. Probably the most important is that the mean
instantaneous rate typically exceeds the (count-based) firing
rate. In fact, for the simplest case of spike trains described by
a homogeneous Poisson process, the mean instantaneous rate
actually diverges16.

The main message of this paper lies in revisiting the instanta-
neous firing rate concept and reconciling it with the count-based
quantities. We carefully distinguish the statistical properties of
observed ISIs under two sampling protocols, arguing in Sec-
tion III A that fixing the inspection (observation) period with
respect to external (laboratory or reference) time is essential.
(Traditionally, although implicitly, the start of observation is
the spike time.) We show that observing the instantaneous rate
at a fixed reference time introduces sampling bias; however,
the mean instantaneous rate then generally equals the firing
intensity, as expected naturally. In Section III B we analyze,
by means of the Cramér-Rao bound, how the bias-corrected
instantaneous rate affects inferences about the firing intensity
in several standard ISI renewal models. Finally, in Section III C
we show how the data obtained in the spike-synchronized sce-
nario may be converted to the reference-synchronized scenario
without needing to repeat the experiment.

II. DEFINITIONS OF NEURONAL FIRING RATE

Spike times 0 < S1 < S2 < : : : are often modeled as real-
izations of a stochastic point process17. See Cox and Lewis 18
for more details on the key concepts of point process terminol-
ogy briefly summarised below. Assume, for convenience, that
the time t D 0 is not related to the actual spike times, i.e., it is
fixed with respect to some reference time before the point pro-
cess realization. The interspike intervals (ISIs), Xi , are defined
as Xi D SiC1 � Si ; i D 1; 2; : : : (Fig. 1A). The associated
counting process, N.t1; t2/, for any t2 > t1, is a random vari-
able describing the number of spikes in some interval .t1; t2�.
The spike times Si and the process N.0; t/ are then related by
fSi � tg D fN.0; t/ � ig, for i D 1; 2; : : : . The mean (ex-
pected) spike count in .t1; t2� is denoted as EŒN.t1; t2/�. The
firing intensity �.t/ of the spiking process at some time t is

�.t/ D lim
"#0

EŒN.t; t C "/�
"

: (1)

The probability distribution of N.t; t C "/ generally depends
on the history (the spike times) of the process up to time t ,
hence �.t/ is frequently called conditional intensity of the point
process. The history dependence can be reduced considerably
for simple (e.g., renewal) ISI models.
Often, especially in the experimental setup, the limit in

Eq. (1) is not available, and the firing rate is defined as the
actual number of spikes in a sufficiently long time window of
duration w (set by the experimenter). The mean firing rate � is
typically of interest1,19,

�.t; w/ D
EŒN.t; t C w/�

w
(2)

Little can be said about the relationship between �.t/ and
�.t; w/ without knowing the exact probabilistic description
of the underlying point process. Still, certain rather general
statements are possible under the following assumptions.
First, assume that the ISI sequence, fX1; X2; : : : g, forms a

renewal process, i.e., a sequence of independent and identically
distributed (i.i.d) random variables (rv) with probability density
function (pdf) pX .x/ and mean ISI denoted as E.X/. The
“elementary renewal theorem” then states that

1

E.X/
D lim
w!1

�.t; w/: (3)

Note that Eq. (3) holds independently of t . In particular, it may
be that t D Si or t is chosen randomly, without any reference to
the point process realization. Moreover, Eq. (3) relates themean
firing rate to the mean ISI, and hence justifies the interpretation
of 1=E.X/ as the mean firing rate in the steady state20,21.
Second, assume that the time t is chosen without any refer-

ence to Si , i.e., randomly with respect to the point process
realization. Then t most likely falls within some ISI, say
Xk , and hence the time to first spike after t , Sk � t , gener-
ally does not follow the renewal pdf pX . The sequence of rvs
fSk � t; XkC1; XkC2; : : : g is thus not stationary; however, the
corresponding stochastic process is often denoted as a “steady
state” or “equilibrium renewal” process, since � D �.t/ and
�.w/ D �.t; w/ do not depend on t anymore. The “firing
rate/intensity” definitions above coincide and for all w > 0 it
holds

� D
1

E.X/
D �.w/: (4)

Essentially, Eqs. (3) and (4) show how the count-based and
the ISI-based definitions of ‘firing rate’ are related to each other.
Due to this fact, the list of studies on the mean ISI in neuronal
models of very different complexities is almost endless, see22–26
for a few recent examples.

A. Instantaneous firing rate

The subject of this paper is the classical concept of instan-
taneous firing rate, which, as described in the Introduction,
is defined as the inverse of the ISI. Under the renewal model,
the instantaneous firing rate F is a rv obtained from the ISI rv
X by the one-to-one transformation F D 1=X . Of particular
interest is the mean value, E.F / D E.1=X/. It holds that

E
�
1

X

�
�

1

E.X/
; (5)

with equality if and only if the distribution ofX is concentrated
at a single point, i.e., all ISIs are of equal length. Hence, for any
neuronal model, the mean instantaneous firing rate is higher
than the steady-state firing rate16. The “traditional” approach
to the instantaneous firing rate thus is to separate E.F / from
the definitions in Eqs. (1)–(3), and employ the quantity as a
measure of its own kind.
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III. RESULTS AND DISCUSSION

A. Statistics of the instantaneous firing rate depends on
the inspection time

Wedenote the time t at whichwe determine the instantaneous
firing rate as the inspection time t0. If the inspection time t0
is synchronized with spikes then we essentially observe the
spike train properties (over trials) at random time instants with
respect to the laboratory (reference) time (Fig. 1B). Such an
observation protocol is arguably inconsistent if we expect that
the firing intensity � is modulated by external events (stimulus)
that occur naturally independently of exact spike times. In
order to infer � properly, the observation time must be fixed
with respect to the external time, i.e, random with respect to
spike times (Fig. 1C). However, even under completely steady-
state conditions, with ISIs following a renewal process, and
with just a single trial (spike train) available, the inference based
on the observed instantaneous firing rate differs significantly,
as argued below. We distinguish the two situations by denoting:

(i) rv F with pdf pF .f /, denoted as the synchronous instan-
taneous firing rate (SIFR), which describes the reciprocal
ISI in the spike-synchronized setup (Fig. 1B),

(ii) rv R with pdf pR.r/, denoted as the asynchronous instan-
taneous firing rate (AIFR), describing the reciprocal ISI
in the fixed reference time situation (Fig. 1C).

We compare the pdfs of the instantaneous firing rates F and
R. Under the assumption that the neuronal firing is described by
a renewal ISI model, X � pX .x/ and E.X/ D 1=�, it follows
from F D 1=X and from the rules for the rv transformation
that the SIFR F is distributed according to the pdf

pF .f / D
pX .1=f /

f 2
: (6)

The properties of pF , its moments, and especially the conse-
quences of Eq. (5), were analyzed in detail for different statis-
tical and biophysical models of neuronal activity by Lansky,
Rodriguez, and Sacerdote 16 .
Next, we reconcile the statistical properties of the instanta-

neous rate concept with Eq. (4); namely, we justify its label
as the “rate”, by reconsidering the derivation of Eq. (6). The
interpretation of the pdf pF is that it describes the relative
frequencies of occurrence of different possible values of the
reciprocal ISI. However, it does not account for the relative
weight of F D f , i.e., the duration of the time segment each
value occupies (Fig. 1). If one aims to interpret E.F / in the
light of Eq. (4), then the “time course” of the instantaneous
firing rate, i.e., the frequencygram7, becomes important. Or,
equivalently, we realize that the probability of observing a par-
ticular ISI at a random inspection time is proportional to the
ISI duration. The rv QX describing such ISIs is length-biased
with respect to rvX18 and QX � � QxpX . Qx/ (Fig. 1C). The AIFR,
R D 1= QX , is therefore described by the pdf

pR.r/ D
�pX .1=r/

r3
: (7)

The immediate consequence of Eq. (7) is that (cf. Eq. 5)

E.R/ D
1

E.X/
D �; (8)

which follows by applying the expectation operator to Eq. (7).
Therefore, the sampling bias “corrects” the distribution of the
SIFR so that E.R/ D � holds for the AIFR, as desired. The
relationship for the variance is derived similarly,

Var.R/ D �E.F / � �2: (9)

The behavior of Var.R/ thus critically depends on the value of
E.F / D E.1=X/.

B. Firing intensity estimation from the instantaneous rate

Since the mean AIFR, E.R/, equals the firing intensity, �,
of the renewal process, it is natural to ask how “well” one
may estimate the true value of � from the observed AIFR. The
problem of estimation precision is generally non-trivial. It is
often more practical to evaluate the Cramér-Rao bound on the
mean square error (MSE) instead. Assuming unbiased esti-
mation, together with certain mild regularity conditions27, the
Cramér-Rao bound states that the MSE for any given � satisfies
MSE.�/ � 1=J.�/, where J.�/ is the Fisher information,

J.�/ D J.�jR/ D

Z �
@ logpR.r I�/

@�

�2
pR.r I�/ dr: (10)

We explicitly denote the dependence of the pdf of R on the in-
tensity, �, pR.r I�/ D pR.r/, and we indicate that the estimate
of � is based on observations of a particular rv, e.g., J.�jR/,
J.�jX/, etc.

Before illustrating the firing intensity estimation precision on
several classic ISI models, we introduce general remarks that
simplify or even avoid the evaluation of the integral in Eq. (10).
In general, the Fisher information is invariant with respect to
any information-preserving (one-to-one) transformation of the
rv R27. Therefore, since F D 1=X ,

J.�jX/ D J.�jF /: (11)

In the following we henceforth examine only J.�jX/ and
J.�jR/. The ISI pdf pX .xI�/ belongs to the scale (more pre-
cisely rate) family of distributions if it satisfies

pX .xI�/ D �pX .�xI 1/: (12)

By substituting Eq. (12) into Eq. (10) it is easy to verify that
the Fisher information satisfies the proportionality relation28

J.�jX/ D
˛X

�2
; (13)

where ˛X does not depend on �, and under mild continuity
conditions on pX ,

˛X D 1 �

Z
x2
@2 logpX .xI 1/

@x2
pX .xI 1/ dx: (14)
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A Spike times Si , interspike intervals (ISI) Xi , counting process N(0, t) and instantaneous rate 1/Xi

Xi = Si+1 − Si

renewal model: Xi ∼ pX (x)

1/Xi
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Si−1 Si Si+1 Si+2 Si+3
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t

counting process N(0, t)

renewal intensity: λ = 1/ E(X )

B Inspection t0 synchronized with spike times

reference time0 t ′′0

trial 3

t ′0

trial 2

t ′′′0

trial 1

Observed ISIs: X ∼ pX (x)
Mean inst. rate biased : E(1/X ) > λ

C Inspection t0 synchronized with reference time

reference time0 t0

Observed ISIs biased : X̃ ∼ λx̃pX (x̃)
Mean inst. rate: E(1/ X̃ ) = λ

FIG. 1. Neuronal spiking activity and the instantaneous firing rate. (A) Spikes arrive at times Si ; the corresponding interspike intervals (ISI)
are denoted as Xi and the instantaneous firing rate is the inverse ISI (dashed). The associated counting process N.t/ is needed for the general
definition of the firing intensity � (Eq. 1). Under steady-state conditions, ISIs are assumed to be independent and identically distributed with
probability density function (p.d.f) pX (renewal ISI model); the firing intensity � is the inverse of the mean ISI. The pdf of possible values of
the instantaneous firing rate depends critically on the inspection time t0 (start of observation). (B) The inspection always starts at a spike, i.e.,
the spike train is observed at random instants (over trials) with respect to the reference time (t 00; t

00
0 ; : : : /, which is problematic if � varies with

external influences. Furthermore, the mean instantaneous rate exceeds the value of � even for renewal ISI models. (C) The inspection is a fixed
event in the reference time (t0), hence random with respect to spike times, resulting in the probability of observed ISIs being proportional to
their duration. The ISI pdf becomes length-biased ( QX ), however, the mean instantaneous firing rate always equals �.

If pX .xI�/ is a scale family in �, then pF .f I�/ in Eq. (6) is
a scale family in 1=� (since F D 1=X), and due to Eq. (7) it
also holds for pR.r I�/,

pR.r I�/ D
pR.r=�I 1/

�
: (15)

Generally, for any rv which is a scale family in some parameter
� such that � D '.�/ D 1=�, it follows from Eq. (13) and
from the re-parameterization of the Fisher information27,

J.�/ /
'0.�/2

'.�/2
/

1

�2
: (16)

For more general considerations see Kostal 29 . Therefore,

J.�jR/ D
˛R

�2
; (17)

where the constant ˛R is given analogously to Eq. (14) with
pR.r I 1/ appearing on the right-hand side. In general ˛X ¤ ˛R
unless certain “symmetry” between the p.d.f’spX andpR exists
(see examples (iv, v) below).

(i) The Poisson process is one of the most frequently used
models of neuronal firing17,19. The pdf of ISIs is

pX .xI�/ D �e
��x ; (18)
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FIG. 2. Fisher information about firing intensity � for the Poisson
model (Eq. 18, dash-dotted, dotted) and Poisson with refractory pe-
riod (Eq. 21, � D 0:1 s, solid, dashed). The two situations for each
case correspond to the information obtained either directly from the
ISIs, J.�jX/ (Fig. 1B), or from the asynchronous instantaneous fir-
ing rate (AIFR), J.�jR/ (Fig. 1C). For both models, it holds that
J.�jR/ > J.�jX/. The refractory period improves the decoding
precision, i.e., J.�j�/ increases, as � tends to 1=� and spiking activity
becomes perfectly regular.

and the Fisher information is well known27

J.�jX/ D
1

�2
: (19)

By employing Eq. (7) and directly integrating Eq. (10) we find
that the Fisher information about � obtained from the AIFR is
twice as large as that from SIFR (Fig. 2),

J.�jR/ D
2

�2
: (20)

(ii) Poisson-like neuron with absolute refractory period. The
absolute refractory phase is a state of a neuron, coming imme-
diately after spike generation, during which it is impossible for
another spike to be emitted30. The exponential pdf in Eq. (18)
can be modified to account for the refractory period � > 0 as

pX .xI�/ D

�
a.�/e�a.�/.x��/; if x > �;
0; elsewhere; (21)

a.�/ D
�

1 � ��
; � < 1=�;

to keep E.X/ D 1=�. Unlike in the examples (i) and (iii-vi)
(below), the pX in Eq. (21) is not a scale family in �; hence
Eqs. (13) and (17) do not apply. The Fisher information is

J.�jX/ D
1

.�� � 1/2�2
; (22)

J.�jR/ D .2 � �2�2/J.�jX/; (23)

and J.�jR/ > J.�jX/. The function J.�j�/ is non-monotonic
in � (Fig. 2), approaching infinity both as �! 0 (small value
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J(λ|R) (gamma)
J(λ|R) = J(λ|X ) (inv. G.)
J(λ|R) = J(λ|X ) (logn.)

FIG. 3. Dependence on the ISI coefficient of variation (CV ) of Fisher
information about the firing intensity � D 1 for several renewal ISI
models. Information obtained from ISIs, J.�jX/ may differ from the
information obtained from the asynchronous instantaneous firing rate
(AIFR), J.�jR/ (Fig. 1C), e.g., for the gamma model of ISIs (Eq. 24).
For the inverse Gaussian (dashed) and lognormal (dash-dotted) ISI
models, the Fisher information about � is the same, whether the ISIs
or the AIFR is observed. Note that, for CV D 1, the gamma model
corresponds to the Poissonian firing.

of � generally implies small MSE as well since � > 0) and as
�! 1=� (the firing is described by a perfect pacemaker).

(iii) The Gamma distribution is one of the most frequent
statistical descriptors of ISIs employed in experimental data
analysis31,32. The pdf pX , parameterized by the intensity � and
coefficient of variation of ISIs, CV D �

p
Var.X/, is

pX .xI�/ D

�
�

C 2V

�1=C2
V

� .1=C 2V / x
1=C2

V
�1 exp

�
�
�x

C 2V

�
;

(24)

where � .z/ D
R1
0
tz�1 exp.�t / dt is the gamma function33.

For this model we have

J.�jX/ D
1

C 2V �
2
; (25)

J.�jR/ D
1C C�2V
�2

: (26)

Note that for CV D 1 the ISI pdf in Eq. (24) equals the expo-
nential pdf in Eq. (18), and that for all values of CV it holds
J.�jR/ > J.�jX/ (Fig. 3).

(iv) The inverse Gaussian distribution34 is often used to de-
scribe neural activity and fitted to experimentally observed
ISIs35,36. This pdfpX describes the spiking activity of a stochas-
tic variant of the perfect integrator, the non-leaky integrate and
fire stochastic neuronal model. The pdf of the inverse Gaussian
distribution can be expressed as

pX .xI�/ D

s
1

2��C 2V x
3
exp

�
�

�

2C 2V

.x � 1=�/2

x

�
: (27)
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The Fisher information is

J.�jX/ D
2C C 2V
2C 2V �

2
: (28)

By inspecting Eq. (27), we find that pX satisfies a curious
“symmetric” relation (cf. Eq. 7),

pR.r I�/ D pX .r I 1=�/; (29)

e.g., the “profiles” (or “shapes”) of pX and pR are exactly the
same for � D 1. Therefore, due to the Fisher information
re-parameterization29, it holds that J.�jR/ D J.�jX/ (Fig. 3).

(v) The lognormal distribution of interspike intervals, with
some exceptions37, is rarely presented as a result of a neuronal
model. However, it represents quite a common descriptor in
experimental data analysis36. The pdf is

pX .xI�/ D
1

x
p
2�ˇ

exp

(
�
1

8

Œˇ C 2 log.x�/�2

ˇ

)
; (30)

ˇ D log.1C C 2V /; (31)

which also satisfies Eq. (29); hence the Fisher information can
be written as38

J.�jX/ D J.�jR/ D
1

�2ˇ
: (32)

(vi) The inverted gamma distribution39 does not appear to have
ever been used as a renewal ISI model. We use it just to illustrate
that, at least in theory, it may be that J.�jR/ < J.�jX/. A
particular instance of the inverted gamma pdf is the AIFR pdf
pR resulting from the exponential ISI distribution in Eq. (18),
which makes the following analysis straightforward. Let

pX .xI�/ D x
�3��2e�1=.�x/; (33)

then pR.r I�/ D e�r=�=�, and therefore

J.�jR/ D
1

�2
; (34)

J.�jX/ D
2

�2
; (35)

symmetrically to Eqs. (19) and (20).

The dependence on CV of values of Fisher information for
the ISI models above are shown in Fig. 3. Whether J.�jR/ is
going to be equal to, smaller, or greater than J.�jX/, for some
pdf pX , cannot be apparently deduced from any conveniently
simple statistical characteristics of pX (such as its moments),
and rather depends on the complete analytic form of pX .

C. Instantaneous firing rate distribution from observations

In the preceding sections, we investigated the impact of the
choice of inspection time (Fig. 1B, C) on the properties of the
instantaneous rate pdf and its consequences for process intensity

estimation. In practice, however, the analytic form of the ISI
pdf is often unknown and inference is based on observations
only. In the following we demonstrate a simple approach, under
the renewal assumption, that relates the observations at fixed
inspection times (Fig. 1C) to the observations synchronized
with spiking (Fig. 1B).

Let ff1; f2; : : : ; fng be n observations of the SIFR F
(Fig. 1B). If the renewal assumption is justified, the data may
be conveniently collected from consecutive ISIs within a single
trial. Typically, the pdf is estimated either by kernel-based
methods or histograms40,41. Since the pdf pR is obtained by
adjusting the relative weight of each observation fi in propor-
tion to the ISI duration, as argued in Section III A, the standard
kernel density estimation may be modified as

bpR.r/ D nX
iD1

w.fi /K.r � fi /; (36)

where K is a suitable kernel function and

w.fi / D
1

fi

� nX
kD1

1

fk

��1
; (37)

is the corresponding “weight” of each observation fi . If
w.fi / D 1=n then Eq. (36) becomes the kernel estimator of
pF .
Similarly, one may modify the histogram estimate of pF

to estimate pR instead. The value (height) of the histogram
of bpF in each bin equals nB=n, where nB is the number of
observations fi within the bin. To obtain the corresponding
histogram ofbpR it is sufficient to multiply the height in each
bin by the factor n=nB

P
i2B w.fi /, where B is the subset of

indices of observations within the bin and w.fi / is given by
Eq. (37). Fig. 4A illustrates both kernel and histogram meth-
ods on a sample of n D 100 values of the SIFR observations
obtained from the gamma ISI model (Eq. 24) with � D 1Hz
and CV D 0:7 under the spike-synchronized setup (Fig. 1B).
By employing Eq. (36) and the described histogram modifi-
cation, the same sample, ffig100iD1, also provides the estimate
of the pdf pR (Fig. 4B) under the fixed inspection time setup
(Fig. 1C). The kernel function K is Gaussian with standard
deviation equal to 0:2.

It is also possible, at least in certain cases, to find the differ-
entiable one-to-one transformation function ' that maps the rv
F to the rv R. That is, if the observations ff1; f2; : : : ; fng are
i.i.d. according to the pdf pF then f'.f1/; '.f2/; : : : ; '.fn/g
are i.i.d. according to pR. Assume that the increasing function
f D �.r/ is the inverse of '. It follows from Eqs. (6), (7),
and from the transformation rule, that � satisfies the implicit
differential equation

�pF .r/

r
D � 0.r/ pF

�
�.r/

�
: (38)

The practical usability of this transformation-based approach
is apparently limited since the knowledge of pF is assumed.
For the purpose of illustration we find � for the exponential
distribution of ISIs (Poisson neuron) from Eq. (18). Due to the
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FIG. 4. Estimation of the instantaneous firing rate pdf from observa-
tions. A sample of 100 ISIs was generated by the gamma pdf (Eq. 24)
with � D 1Hz, CV D 0:7. (A) Histogram and kernel (Gaussian,
std. dev. set to 0.2) estimates of the (classical) synchronous instanta-
neous firing rate (SIFR) pdf pF of the generated ISI reciprocal values
(Fig. 1B) compared against the true pdf (dashed). (B) The same data
sample was used to estimate the asynchronous instantaneous firing
rate (AIFR) pdf pR (Eq. 36) that would be observed if the inspection
time was unrelated to the actual spike times and fixed to the reference
(laboratory) time (Fig. 1C). Hence it is possible to change between the
two scenarios, described by pF resp. pR, without needing to repeat
the experiment.

simple form of pX , it is more tractable to solve Eq. (38) in an
analogous form, adapted to the exponential ISI p.d.f,

�2xe��x D ��0.x/ e���.x/; (39)

with the natural initial condition �.0/ D 0. Then it must be
that

�.r/ D
1

�.1=r/
; (40)

as follows from the inverse relationship between the ISI and
the instantaneous firing rate. The solution to Eq. (39) is found
to be

�.x/ D x �
log.1C �x/

�
: (41)

Substituting �.r/ from Eq. (40) into Eq. (38) for pF .f / D
�e��=f =f 2 (due to Eq. 6) reveals that it is indeed the correct
solution. The inverse, r D ��1.f / D '.f /, although uniquely
determined by Eqs. (40) and (41), cannot be expressed in terms
of elementary functions. (It is also possible to obtain a closed-
form expression for � in the case of gamma and lognormal pdfs
of ISIs; however, additional substitutions are necessary and the
results are rather cumbersome.)

IV. CONCLUSIONS

We demonstrated that, depending on how a spike train is
observed, the statistical properties of the instantaneous firing
rate critically differ. We showed that, by synchronizing the
inspection time with the external (reference) time, the statistics
of the instantaneous firing rate changes. The mean of the asyn-
chronous firing rate equals the inverse of the mean ISI, unlike in
the classical (synchronous) case. Taken together, our findings
can be summarised by the following main points. First, we re-
interpreted the instantaneous firing rate so that it is consistent
with firing intensity of the point process, as “expected” (desired)
naturally. Second, due to the key differences in the statistics be-
tween the synchronous and asynchronous instantaneous rates,
parameter estimation precision also differs between the two
cases. In particular, the Fisher information about the firing
rate in the Poisson model is greater when observing the asyn-
chronous instantaneous rate than when observing ISIs directly.
Third, we showed that it is possible to “convert” observed data
between the asynchronous and synchronous scenarios, without
needing to repeat experimental measurements
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