
  

  

Abstract— As with other modern sciences (and their 
computational counterparts), neuroscience experiments can 
now produce data that, in terms of both quantity and 
complexity, challenge our interpretative abilities. It is relatively 
common to be faced with datasets containing many millions of 
neural spikes collected from tens of thousands of neurons. 
Traditional data analysis methods can, in a relatively 
straightforward manner, identify large-scale features in such 
data (such as on the scale of entire networks). What these 
approaches often cannot do is to connect such macroscopic 
activity to the relevant small-scale behaviors of individuals 
cells, especially in the face of ongoing background activity that 
is not relevant. This communication presents an application of 
machine learning techniques to bridge the gap between 
microscopic and macroscopic behaviors and identify the 
small-scale activity that leads to large-scale behavior, reducing 
data complexity to a level that can be amenable to further 
analysis. 

I. INTRODUCTION 

One of the central goals of neuroscience research is 
understanding how functional networks form and how the 
activity of such networks correlates with function. One 
method for investigating questions in this vein is to culture 
networks on multi-electrode arrays to allow for stimulation 
and recording during development [1, 2]. Such experiments, 
and their simulations, have shed light on a number of 
behavioral features, including whole network bursting [3, 4], 
activity wave propagation [5, 6, 7], and neuronal avalanches 
[8]. 

This communication addresses one aspect of such 
behavior: the origination of whole network bursting, manifest 
as traveling waves that begin among small foci which include 
one or a few neighboring neurons. In traditional spike train 
data analysis, point process statistical methods, such as 
autocorrelation and cross-correlation, are commonly used to 
characterize patterns formed by several spike trains [9, 10]. 
These methods work well when applied to small numbers of 
neurons and restricted time frames. However, our interest lies 
in analyzing spike data from relatively large neural 
populations (at least 104 cells) over long periods of 
development (days to weeks), approximating the size and 
time scale in living preparations. Therefore, we have 
investigated machine learning methods to study 
spatiotemporal bursting in such networks. In particular, we 
are interested in applying such techniques to see if 
stereotypical brief, localized patterns of activity that trigger 
network bursts can be identified from among many millions 
of spikes from many thousands of separate spike trains. 
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II. METHOD 

Our goal was to perform relatively straightforward 
analysis of macroscopic, whole-network behavior to provide 
input to machine learning (ML) algorithms, and then use 
these algorithms to see if small patterns of the detailed 
neuron spiking activity were predictive of the macroscopic 
behavior. If then it would suggest that the microscopic 
patterns were behaviorally significant. As detailed in the 
following subsections, we first performed large-scale, 
long-duration simulations of biological neural networks and 
collected all of the spiking activity of every neuron. These 
simulations produced whole-network bursting behavior, and 
we identified the burst events via macroscopic analysis. We 
then isolated spike sequences just before bursts, and spike 
sequences temporally distant from bursts, to provide input to 
a set of ML algorithms. We applied these algorithms to see if 
there were features in these sequences that could reliably 
predict that a burst would occur. We also found the origin 
location for each burst and applied ML algorithms to 
determine if predicting such origins could be used to identify 
relevant spatially localized activity patterns. 

A. Data Acquisition 
The BrainGrid neural simulator was used to simulate 

networks of 10,000 neurons in a 100×100 rectangular 
arrangement for the equivalent of 28 days’ development, as 
described in detail in [4]. These simulations mimicked living 
preparations in which dissociated cortical cells were cultured 
on multi-electrode arrays, over a period of weeks forming 
networks that produced whole-network bursting behaviors. 
Simulations matching those that produced bursting behavior 
in that previous study were re-run on a 2.4GHz Intel Xeon 
E5-2620v3 system with NVIDIA K80 GPUs. This paper 
presents results from a single simulation (target rate = 1.0 
spikes/sec; 90% excitatory neurons) as a representative 
example. 

Each spike produced during a simulation had its time (as 
an integer time step value, with one step being 0.1ms) and (x, 
y) neuron position recorded; each dataset was stored as a 
30GB HDF5 file. 
B. Ground Truth: Burst Identification 

Whole-network bursts were identified and their start and 
end times were determined as follows. A burst is defined as 
an occurrence of a very high rate of neural spiking across the 
entire network; they are easily distinguished from other 
activity. In this study, we identified burst events by 
assimilating all neuron spikes into a single train (i.e., 
discarding neuron position information) and grouping spikes 
into neuronal avalanches, where an avalanche is a run of 
sequential spikes all separated by inter-spike intervals (ISIs) 
smaller than the overall mean ISI [8]. Fig. 1 shows the size 
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distribution of avalanches. We determined that large 
avalanches containing more than 104 spikes exactly 
corresponded to the bursts identified in the corresponding 
simulations from [4]; moreover, all other avalanches had 
fewer than 103 spikes. Thus, bursts are easily 
distinguishable from other network behaviors by this 
straightforward, one-dimensional analysis. Out of a total of 
15,408,016 avalanches identified, with between 2 and 
111500 spikes, there were 4490 bursts in the simulation. 

C. Ground Truth: Burst Origin 
We then visualized burst evolution as sequence of images 

(with each pixel as a neuron and color corresponding to 
spiking rate) or movies to see their spatiotemporal patterns. 
Fig. 2 shows the visualization result for burst evolution and 
burst origin location. This showed that bursts originated at 
single locations and propagated as waves across the network. 
We identified the approximate burst origin by calculating the 
centroid, (x, y), of neurons that spiked the most in the first 
100 time steps (0.01s) for each burst.  

D. Pre-Burst vs. Non-Burst Precursors 
To determine if particular patterns of spatiotemporal 

activity triggered bursts, we divided the spike data before 
each burst into non-burst and pre-burst for pattern 
recognition. Fig. 3 illustrates how pre-burst and non-burst 
data were defined relative to a single burst event. With burst 
start and end times determined as in section II.B, we grouped 
N consecutive spikes before each burst as a pre-burst data 
sample. We grouped another N spikes 1000 time steps (0.1s, 
the “gap” in the figure) earlier as a non-burst data sample. In 
this study, we chose N values of 50, 100, and 500 for 
investigation.  

For each spike i in a data sample, we retrieved its neuron 
(x, y) location and its firing time, τi = ti - t0, relative to the first 
spike (spike 0) in that data sample. Every data sample was 
then arranged in the following format to include its spatial 
and temporal information: τ0, x0, y0, τ1, x1, y1, …, τN-1, xN-1, yN-1. 

E. Data Analysis with Supervised Learning 
We applied machine learning techniques to determine if 

burst initiation could be predicted from pre-burst activities 
and, if so, whether the approximate origin of a burst could be 
predicted as well. We tested both Decision Tree (DT) and 
Support Vector Machine (SVM) approaches for binary 
classification to predict initiation. We labeled each pre-burst 
data sample as 1 and each non-burst data sample as 0. DT 
uses a tree-like graph for decision making whereas SVM 
finds the maximum margin hyper-plane that best separates 
two classes in a high-dimensional feature space. While SVM 
is designed to handle high dimensional data, DT can be a 
cheaper, yet effective solution if the majority of the features 
(dimensions) don’t contribute much information to the 
classification problem. 

In total, we had 8980 samples (4490 pre-burst and 4490 
non-burst), where each data sample had 3N (τ, x, y) features. 
Since we had a balanced dataset, model accuracy was used 
for performance evaluation over F score for its intuitiveness. 
To prevent prediction results being affected by sequential 
temporal relationships between consecutive bursts or between 
consecutive data samples, all data samples were randomly 
shuffled before they were used for model training. 
Classification models were evaluated using k-fold cross 
validation (k=10), in which the data was divided into k 
subsets and every time only k-1 subsets were used to train the 
model, leaving the last subset for testing.  

For burst origin prediction, each pre-burst data sample 
(for N=100) was labeled with its subsequent burst origin (x, 
y) for multivariate regression analysis. One important 
macroscopic feature of the simulation behavior was that it 
settled down to a stable burst initiation location during 
development, with 50% of the bursts originating from the 
same region at later stages of the network development. We 
wanted to apply ML techniques to activity patterns that were 
less easily predictable. Therefore, in this study, we chose 

Figure 1.  Avalanche size distribution. There are two distinct categories 
of avalanches that can be easily distinguished by their size. 
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y Figure 3.  Definition of pre-burst and non-burst data. Blue and red lines 
indicated the start and end of times for non-burst and pre-burst windows, 
respectively, with a gap of 1000 time steps in between.  

 

 

Figure 2.  Evolution of a single burst. Images show beginning to the end of a single burst event from left to right, with each image corresponding to 
network activiy within 10 time steps (1ms) and images are 30 time steps (3ms) apart. Each pixel is a neuron, with firing rate represented by color. 

 

 



  

only the first 150 bursts — those with origins that varied 
across the network — to analyze.  

Linear regression, Lasso regression, Ridge regression, 
and artificial neural networks (ANNs) were used to predict 
two outcome variables (x, y) using the first 150 pre-burst data 
samples. We trained the ANN model with grid search for 
hyperparameter optimization. We experimented with 
different activation functions (logistic, tanh, ReLU), number 
of hidden layers (1 to 4), and different number of neurons in 
each hidden layer (20, 100, 200, 500); we present the best 
result here. Regression model accuracy were assessed by 
R-squared score, mean absolute error (MAE), and root mean 
squared error (RMSE). While R-squared allows us to 
understand the percentage of variance in the target data 
explained by the model, MAE and RMSE help quantify 
the error by averaging the residuals of the model.  

All classification work was done in MATLAB using its 
built-in statistics and machine learning toolboxes. Regression 
analysis was performed using scikit-learn, a Python machine 
learning library. All training was done on a 2.4GHz Intel 
Xeon E5-2620v3 system. 

III. RESULTS 

Binary classification results are shown in Table 1. We 
found that DT performed well in all three cases (N=50, 100, 
500), with model accuracy all above 98%. Linear SVM 
performed best when N=50 and 100, also producing smallest 
k-fold errors. However, SVM model performance plummeted 
with N=500. The polynomial SVM model did much worse 
than Linear SVM in this application; hence only the results 
for a second degree polynomial kernel (d=2) when N = 100 
and 50 are presented. As for training time, SVM models 
generally took longer to train compared to DT models.  

TABLE I.  BINARY CLASSIFICATION RESULTS FOR BURST INITIATION 

Method N Training 
Time 

Model 
Accuracy  

10-fold 
error 

Decision 
Tree 

500 0.7169 s 0.9829 0.0122 
100 0.1053 s 0.9959 0.0041 
50 0.0470 s  0.9922 0.0045 

Linear 
SVM  

500 219.8 s 0.6058 0.3848 
100 0.4716 s 0.9978 0.0005 
50 0.3316 s 0.9981 0.0000 

Polynomial 
SVM (d=2) 

100 269.2 s 0.8296 0.1013 
50 271.9 s 0.9016 0.0686 

 
Regression results are shown in Table 2. The best 

performing ANN model had 3 hidden layers, each with 200 
neurons with ReLU activation functions.  

TABLE II.  REGRESSION PERFORMANCE FOR BURST ORIGIN 

Method R2 MAE RMSE  
Linear 0.977 3.085 4.212 
Lasso 0.9839 2.656 3.775 
Ridge 0.9777 3.084 4.210 
ANN 0.9406 5.737 8.743 

 

IV. DISCUSSION 

From the classification results, we see that the DT model 
predicts burst initiation despite the large feature size (3N). 
DT constructs a tree by considering information gain as a 
criterion. It chooses the best feature to split each node so that 
it produces the “purest” subsets, and stops when data cannot 
be split further. In other words, a decision tree is built by 
calculating feature importance. This is one reason that DT is 
widely used as a feature selection technique. DT results 
indicate that there was a pattern predictive of burst in all three 
cases (N=50, 100, 500). We also found that when N=500 
(1500 features), there were only 27 predictors being used to 
construct the DT model with 98% accuracy. In addition, half 
of the 27 features were from the last 100 spikes. This 
suggests that such ML techniques can be used as the first 
stage of analysis for large quantities of biological data to 
identify regions of interest for subsequent examination by 
more conventional approaches. 

The linear SVM model for N=500 is only 60% accurate 
while it achieves 99.8% accuracy for N=50 and 100. Since a 
SVM finds the best classifying hyper-plane in the 
high-dimensional input space, this indicates that there were 
many redundant features when we included 500 spikes.  This 
finding helped us narrow down the search window for burst 
trigger from including 500 spikes to 100 spikes. By 
comparison, the results for polynomial kernel SVMs were 
much worse than linear kernels, suggesting that our data’s 
feature space is linearly separable and that the polynomial 
may have been over-fitting.  

The multivariate regression models used here predicted 
two outcome variables representing the (x, y) location for 
burst origin based on pre-burst activity. From the R-squared 
scores, one can see that at least 94% of the data variance can 
be explained by our models. The fact that the lasso regression 
model performed best suggests that only a subset of features 
was important for burst origin prediction, since lasso selects a 
subset of features by reducing the coefficients of others to 
zero. ANNs performed worst in this task, however, these 
models are notoriously sensitive to fine-tuning of 
hyperparameters and thus continued experimentation might 
lead to better performance in this case.  

For all of our regression models, RMSE was a little 
higher than MAE. Since RMSE weights large errors more 
highly than MAE, this indicates that there was a subset of 
distant outliers in our prediction. Overall, results showed that 
the predicted (x, y) locations were off by 2 to 5 neurons, 
which is quite accurate. 

V. CONCLUSION 

The ML results allow us to conclude that, even in the 
absence of detailed analysis of pre-burst spiking patterns, 
there is commonly a localized spatiotemporal pattern of 
spikes that provides reliable information not only that a burst 
will occur but also where that burst will start. This can focus 
subsequent analysis on the patterns among a small number of 
spikes and neurons (fewer than 50 for each burst). For the 
current investigation, that corresponds to a reduction of more 
than seven orders of magnitude from the full, 600 million 
spike, data set. 
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