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Abstract
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Chair of the Supervisory Committee:
Professor Michael Stiber

Computing and Software Systems

Experimental investigation of the collective dynamics in large networks of neurons is a

fundamental step towards understanding the mechanisms behind signal and information

processing in the brain. In the last decade, the emergence of high performance computing

technology has allowed long-duration numerical simulations to model large-scale neural

networks. These simulated networks exhibit behaviors (ranging from stochastic spiking to

synchronized bursting) that are observed in living preparations. These simulations’ high

spatiotemporal resolution and long duration produce data that, in terms of both quantity

and complexity, challenge our interpretative abilities. This thesis presents an application

of machine learning techniques to bridge the gap between microscopic and macroscopic

behaviors and identify the small-scale activity that leads to large-scale behavior, reducing

data complexity to a level that can be amenable to further analysis.
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Chapter 1

BIOLOGICAL BACKGROUND

One of the central goals of neuroscience is to understand how the brain stores and transmits

information. Numerous electrophysiological studies have led to recognize that nervous systems

convey information through neural activity patterns; however, it has not resolved into a

clear picture of how functional neural networks operate as information processing systems.

Although this is a long-term task, piecemeal efforts in deciphering neural activities in the

brain still lead to progress in many areas, such as understanding neural pathologies, designing

neural prosthetics, and inspiring artificial intelligence models. The following sections in this

chapter provide a very brief introduction to several elementary notions of neurosciences and

important dynamical properties of neural networks. The aim of this chapter is to provide the

reader with minimum information necessary to relate the topics covered by this thesis.

1.1 Neuroscience Basics

1.1.1 The Nervous System

The nervous system is a complex network composed of specialized cells that carry messages

between the brain and the body. In most types of organisms, the nervous system can be

divided into two major parts — the central nervous system (CNS) and the peripheral nervous

system (PNS); the former includes the brain and spinal cord whose main function is to

integrate and process sensory information, and the latter includes a large system of nerves

which are long fibers that connect the CNS to every other part of the body.

As an essential communication system inside the human body, the nervous system

performs three main functions: gathering sensory input, integrating that input internally,

and communicating proper motor output; these functions are completed by a number of
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specialized cells, or neurons. Based on their roles, neurons found in the human nervous

system can be divided into three classes: sensory neurons that convert external stimuli from

the surroundings and send signals to the CNS, motor neurons that receive signals from the

CNS and covey commands to muscles, organs and glands, and interneurons that connect one

neuron to another within the CNS.

1.1.2 Neurons and Synapses

Fundamentally, neurons, or nerve cells, are the basic functional units of the nervous

system that receive and transmit information by electrochemical signaling. A typical neuron

consists of three functionally distinct parts: the cell body, soma, and the processes that

extend outward from the cell body, dendrites and axon. A dendrite is where a neuron receives

signals from other cells and transmit them to the soma. The soma integrates input signals

and determines if an output signal should be generated. If the output signal is generated, it

travels along the axon toward other neurons. Figure 1.1 shows the structure of a neuron.

In neuroscience, the sending neuron and the receiving neuron are commonly known as

presynaptic neuron and postsynaptic neuron, respectively. The connecting point of where the

axon of presynaptic neuron communicate with the dendrite of the postsynaptic neuron is

called a synapse, an electrical or electrochemical signal junction between neurons. As far as

we know, there are more than 100 billion neurons in the human brain and each of them can

have more than 10,000 synaptic connections with other neurons through synapses.

1.1.3 Neuronal Spikes

The signals that are used in communication among neurons are sequences of electrical

pulses that are known as action potentials, or spikes (Figure 1.1). The generation of spikes

depends on a neuron’s membrane potential, an electrical potential (voltage) difference between

the inside of the neuron and its surroundings. Typically the membrane potential rests at

about −70mV but can be altered by incoming signals. Some signals are excitatory inputs

that cause positive change in the membrane potential and make a neuron more likely to
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Figure 1.1: (a) Single neuron in a drawing by Ramon y Cajal [2]. Dendrite, soma, and axon
can be clearly distinguished. The inset shows an example of the neuronal action potential
observed on an electrode. The action potential (spike) is a short voltage pulse of 1-2 ms
duration and an amplitude of about 100 mV. (b) Signal transmission from a presynaptic
neuron m to a postsynaptic neuron n through the synapse (dashed circle). The axons at the
lower right end lead to other neurons.

generate a spike; as opposed to inhibitory inputs which cause negative change and make a

neuron less prone to spike. Only when the summation of input signals reaches above the

threshold value, the neuron sends out an action potential, or fires a spike. After a spike

is fired, there is a period of time when the membrane potential becomes transiently more

negative than the resting potential and the neuron is incapable of generating another spike

until the membrane potential recovers to its normal resting potential. This is known as the

refractory period of a neuron.

A spike does not vary in amplitude like a graded potential. Instead, it obeys the all-

or-none law where a neuron either does not reach the firing threshold or a full spike is

generated (Figure 1.2). Since the shape (voltage waveform) and size (magnitude) of spikes

are stereotypical, they are assumed to carry minimal information; therefore, it is considered
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that information is encoded in the spike rate or in the spike timing. Arguably neuronal spikes

are viewed as binary events, in which 0 represents no spike and 1 represents a spike for each

time step. An analogy of information processing in neuron networks is therefore commonly

used — neurons communicate with spikes as computers manipulate with bits.

Figure 1.2: Schematic representation of the all-or-none spikes [1]

1.2 Neuronal Network Behaviors

Over time, experimental studies have given us a variety of observations on cortical neural

networks. A number of behavioral features of network dynamics have been identified, including

whole network bursting, spike wave propagation, and neuronal avalanches.

1.2.1 Whole Network Bursting

The most striking behavior of network dynamics in cultured cortical networks is network

bursting. A network burst or population burst is defined as a synchronized spiking event

that involves most or all of the neurons throughout the network. Previous investigations

showed that network bursts are a major component of cultures’ activity patterns in developing

networks of cortical neurons. Wagenaar et al. [3] found that after two weeks in vitro, the

network activity of cortical cells was dominated by network bursts, but the sizes, shapes,

and temporal patterns of these bursts changed widely at different stages of the maturation
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process. Other studies also agreed that network bursts began to occur and varied as the

development progressed, repeating at irregular intervals and developing increased intensity

and decreased duration [4, 5, 6].

1.2.2 Neuronal Avalanches

This whole-network bursting is but one aspect of emergent behaviors observed in living

preparations and simulations. Another feature that has been noted in spiking activities is

a power-law relationship in the propagation of network activity that shares characteristics

with systems being in a state of self-organized criticality (SOC). SOC describes that large

interactive systems naturally evolve towards a critical state in which any perturbation is

capable of triggering cascades of events (or avalanches) throughout the system, and these

events can be well-described by power laws. It is a common phenomenon observed in certain

complex systems with multiple interacting components, for example, neural networks, forest

fires, and earthquakes [7, 65].

Experiments on cortical cultures and slices have produced results consistent with power-

law distributed avalanche sizes[8, 9, 10]. The term neuronal avalanches is therefore proposed

to describe are runs of sequential spikes that occur more frequently than the overall average

and are shown to exhibit power-law distributions of avalanche sizes probability. In addition,

simulations of small networks have demonstrated development of neuronal avalanches with

similar power-law probability distributions [11, 12, 10].

1.2.3 Spatiotemporal Spike Wave Propagation

To investigate spatiotemporal patterns of spiking activity, one important question is how

neural activity propagates through cortical networks that are connected through synapses.

There has been documentation about propagating waves of neural activity observed via

multi-electrode recordings in a number of different neocortical areas including visual [13, 14],

auditory [15] and motor cortex [16]. In recent work, spike propagation was observed as a

cluster of excitation waves in both simulated and cultured neuronal networks [17]. This
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phenomenon is called spike wave propagation, and describes how the neural activity patterns

are organized spatiotemporally as synchronous waves which propagate from one site to

neighboring sites in all directions. In addition, spike propagation results showed that the

propagation route and speed changed in response to alterations in the variances of the synaptic

propagation delay and refractory period where larger variances resulted in faster propagation

of spikes [18].
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Chapter 2

NEURAL DATA ANALYSIS BACKGROUND

There are multiple factors which simultaneously affect the activity of neurons and collec-

tively influence the overall network dynamics. In modern neuroscience, neurons are recognized

as information processing units that perform complex computations on inputs including,

but not limited to, past history, reflecting biophysical properties (such as refractoriness),

and the activities of neighboring neurons that are synaptically connected. Determining such

computation is extremely difficult when we often know the output (the spikes) but have little

information on the input (synaptic activities). Hence, scientists must draw inferences about

the computation from its results, namely the output spike train data. In this chapter, we

present methods and challenges in spike train data analysis from literature review and define

the problem and goal for this thesis.

2.1 Spike Train Data

Spiking activity that no longer contains amplitude information and is recoded solely in

the sequence of times is called a spike train. A spike train is a realization of a point process

where a series of point events occur in time, separated by random intervals. An ensemble of

spike trains from simultaneously recorded neurons is a spatiotemporal point process where

each data point represents the time and location of a spike event.

To understand spike train data, both at the level of individual neurons and in groups of

neurons, one approach is to study cultures of cortical cells grown on multi-electrode arrays

(MEAs) [19, 20, 21]. These cultures allow recordings of individual neurons and local groups

of neurons during development. MEAs can capture the time-varying extracellular potential

at each recording location; spikes are then identified in the recording and discriminated to
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specific neurons based on the shape of the action potential wave-form. These two steps are

called spike detection and spike sorting, respectively. The spike train data collected from

simultaneously recorded neurons promises to yield insight into how neurons interact and

influence one another.

Another approach is to model neuronal networks and record spike train data from numerical

simulations [22]. Such simulations exhibit many of the same behaviors that are consistent

with those observed in living preparations. Gritsum, le Feber, and Rutten [6] developed a

detailed model that integrated growth-activity model and network topology; their simulation

results yielded realistic bursting patterns. Simulations also allow scientist to investigate

how different system parameters affect the output activities, potentially result in a better

understanding of network behaviors or better designs for subsequent simulations.

2.2 Traditional Analysis

In traditional spike train data analysis, a variety of point process statistical methods are

applied to electrophysiological recordings for identifying statistically important temporal or

spatiotemporal patterns and their associations [23]. The auto-correlation function describes

the probability of emitting a spike as a function of the time elapsed from the preceding

spike in the same spike train [24]. The cross-correlation of two simultaneously recorded

spike trains can be quantified using the cross-correlogram, which describes the probability

of observing a spike in one spike train as a function of time before or after a spike in some

other spike trains [25]. The cross-intensity function estimates the spike rate of one neuron

at different lags relative to the spiking activity of a second neuron [26, 27]. These methods

only measure the paired associations in neural activity. To evaluate higher-order neural

interactions, greater than pairwise, for example, spike coincidences assess the statistical

significance of the occurrences of similar spiking patterns among two or more neurons to

identify groups of patterns that are worthy of further analysis [28, 29]. Maximum likelihood

and maximum entropy methods have also been popular in predicting higher-order network

correlations [30, 31, 32, 33, 34].
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These traditional statistical methods have worked well when applied to small numbers

of neurons and restricted time frames to identify statistically conspicuous spiking patterns.

However, since the ability for neuronal networks to process information derives not only from

neurons’ individual abilities to generate temporal sequences of spikes, but also from their

collective dynamics at the network level [35], it is essential to study activities from a larger

number of neurons (thousands or more). With the number of observed neurons increases, the

number of possible interactions, or patterns, grows rapidly as well. Traditional statistical

methods become unwieldy when they aim to count the occurrences of each of these patterns

and distinguish them from chance patterns, demonstrating that the total number of possible

patterns is simply too large for an exhaustive search. For instance, pair-wise interactions

between 100 neurons requires 10,000 parameters. To precisely identify these patterns from

recordings hours to days in length, during which spikes happen in the millisecond time scale,

is not computationally feasible. The need for algorithms and analysis tools that scale well

with the growing data size and complexity has become an emergent issue.

2.3 Machine Learning Analysis

Recent progress in electrophysiological recording technology has enabled the number of

parallel spike trains to grow rapidly (currently allowing a hundred or more neurons to be

simultaneously recorded), doubling every 7 years, mimicking Moore’s law [36]). Similarly,

the utilization of general purpose graphics processing unit (GPGPU) has allowed neural

simulations to model tens of thousands of neurons in extremely long-duration simulations and

complete in reasonable time periods (days or weeks, instead of months or years) [37, 38, 39].

These development of high-throughput data acquisition technologies and high performance

simulations has begun to transform neuroscience and other modern science (and their

computational counterparts) from a data-poor into a data-rich science. In addition, the

availability of rich data sets has led researchers from classic hypothesis-driven approaches to

innovative data-driven approaches when they can no longer comprehend the complexity and

high dimensionality of data by human perception alone.
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In dealing with complex, large, high dimensional data, machine learning (ML) has

steadily become more successful in extracting key features and relationships which might

be difficult to be discovered using traditional statistics. ML utilizes a variety of statistical,

probabilistic and optimization tools to learn and improve performance from new data and

past experiences without being explicitly programmed. Over the past 20 years, ML techniques

such as regression, Bayesian statistics, regularization and dimensionality reduction (or feature

reduction) have been applied extensively in the field of bioinformatics [40, 41]. In neural

data analysis, principal component analysis (PCA) and linear discriminant analysis (LDA)

have been popular for linear dimensionality reduction, but further analysis is still needed

for assessing the meanings and representations of components or combination of features

[42, 43, 44, 45]. In event relationship analysis, formal concept analysis (FCA) and frequent

item-set mining (FIM) are commonly used in extracting frequent patterns of spike activities;

however, finding the cause for these patterns has continued to pose a problem [46, 47, 48].

While these unsupervised methods contribute to learn alternative, low-dimensional repre-

sentations of the neural data by labeling or grouping reoccurring spatiotemporal events for

pattern recognition, supervised learning methods have gradually gained popularity in neural

encoding and decoding to characterize the relationship between the stimulus and activity of

individual neuron or neurons in the ensemble [49]. Neural encoding is to map from stimulus

to response and construct models that attempt to predict responses to other stimuli; neural

decoding is to reverse map and obtain a reconstruction of the original stimulus. In this

domain, ML offers predictive models such as support vector machine (SVM), decision tree

(DT), artificial neural network (ANN) that are able to map non-linear heterogeneous input

and output patterns when the physiological relationships are unclear [50, 51].

On the other hand, one area of neural data analysis in which ML has become indispensable

is in spike detection and spike sorting. ML classification and regression methods such as

Support Vector Machine (SVM), K nearest-neighbor (KNN) or K-means clustering were used

to classify spikes by their shapes (wavelets) and automate the process, improve the accuracy

of spike identification and classification (which critically affect the subsequent spike analysis)
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for the increasingly complex data from neural recordings [52, 53, 54, 55]. One important

message we got from these previous work was that while there are a broad range of ML

methods with different advantages for neural data anlayisis, the decision about which one is

appropriate depends on the requirements of the task.

2.4 Purpose of the Work

The goal of this thesis is to develop simple and meaningful spatiotemporal representations

from raw spike train data and apply a set of machine learning techniques to locate burst

trigger pattens from large amount of spike events. Our ideas are constructed from the

following assumptions and hypotheses:

1. Large spatiotemporal neural dataset are an important consideration for emerging data

analysis techniques not only with the quantity but also the complexity of the data.

2. General machine learning methods can, in a relatively straightforward manner, use

simple representations of the neural data to investigate major dynamical behaviors in

the network.

3. In the large high-dimensional data, only a subset of the neural dimensions are relevant

for triggering major network events. These relevant dimensions need to be identified

and combined in a manner in which information about the event is maximized.

With these hypotheses, the proposed approaches serve as a mean to reduce data quantity

and complexity, improve data visualization, and connect macroscopic behaviors to the relevant

small-scale activities of individual cells, aiding researchers in their quest to understand the

neural data from the increasingly high-dimensional datasets. In particular, we are interested

in applying machine learning techniques to see if stereotypically brief, localized patterns of

activity that trigger network bursts can be identified among many millions of spikes from

many thousands of separate spike trains.
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Chapter 3

DATA ACQUISITION METHODS

Previous studies have shown that it is crucial to investigate how groups of neurons interact

with each other, and how their individual spiking activities evolve into generating profound

network behaviors. Since there are obvious physiological barriers that keep us from gathering

detailed information from collective dynamics of large networks of neurons, understanding

such activities is hardly possible without numerical studies.

We wanted to collect simulated spike data with millisecond-scale resolution from large

neural population (at least 104 cells) over long periods of development (days to weeks)

to approximate the size and time scale in living preparations. At the same time, it is

additionally necessary to strike a balance between using simple computation models to

decrease network complexity and maintaining the essential network features. Kawasaki and

Stiber [56] proposed a simple model of cortical culture growth which includes the minimal

dynamics at each level necessary to reproduce network behaviors that are seen in the living

systems. Most importantly, they developed a GPU-enabled neural simulator for closed-loop,

MEA-scale simulations to model the entire network development at the temporal resolution

of individual neuron spiking activities with the option of recording the location of each spike

to provide spatial resolution. In this thesis work, we reproduced simulations from [56] as our

spatiotemporal dataset. In this chapter, a brief introduction to the models used in [56] was

given to reiterate the basic properties of neuron and spike generation that were previously

discussed in chapter 1; simulation configurations and details are also explained.
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3.1 Computation Model

In [56], they used a leaky integrate-and-fire model that includes synaptic, constant bias,

and noise currents [57]. According to Kirchoff’s law 1, the model is formalized as

Cm
dVm
dt

=
1

Rm

(Vrest − Vm) + Isyn + Iinj + Inoise (3.1)

with Vm and Vrest being the membrane potential and resting membrane potential, Cm and Rm

being the membrane capacitance and resistance, and Isyn, Iinj, Inoise representing the total

synaptic current, constant depolarizing current and noise current, respectively. When Vm

exceeds the firing threshold, Vthresh, a spike is generated. Vm is then reset to Vrest and maintain

the value for Trefract duration to approximate the absolute refractory period. Generated spikes

are then transmitted to connected neurons via synapses. The synapse and neurite outgrowth

models that determine the network connectivities were explained in detail in [56].

3.2 Simulation Configuration

The BrainGrid neural simulator [39] was used in this work to produce spike data for a

network of 10,000 neurons simulated and recorded for 600 million temp steps with 0.1 ms

resolution, that is equivalent to 28 days in vitro. The network is arranged in a 100×100

rectangular grid with inhibitory, excitatory, and endogenously active neurons uniformly

distributed; the neuron distribution layout refer to [56]. Simulations in [56] used this network

layout and varied the growth parameter ε and the network structure parameter which

represents fraction of excitatory cells. Their results showed that the network is capable of

producing stationary bursting when ε is 1.0Hz or 1.9Hz, with the 90% or 98% excitatory

cells. In this thesis work, one simulation (ε = 1.0Hz and 90% excitatory cells) was chosen as

a representative dataset for spatiotemporal data analysis and a second simulation (ε = 1.9Hz

and 98% excitatory cells) was used for validating the analysis results.

1In computational neuroscience, the electrical properties of neurons’ membranes are depicted in terms of
electrical circuits (termed membrane equivalent circuit accordingly), and Kirchoff’s law describes the total
current flowing across the neuron membrane as the sum of the capacitive current and the ionic currents.
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These simulations were re-run on an 2.4GHz Intel Xeon E5-2620v3 system running

Ubuntu Linux 16.04.3 using an NVIDIA Tesla K80 GPU with CUDA 8.0 libraries. Every

spike produced during the simulation had its time (as an integer time step value with each

time step being 0.1 ms,) and (x, y) neuron position recorded. There were 6 × 108 time steps

in a simulation and it took about 120 hours to run to completion. The resulted datasets were

about 30GB in size, stored in HDF5 data format.

The key information collected from simulation:

• simulationEndTime Total simulation time in seconds (60,000 s)

• probedNeurons Unique ID for each neuron (0 ∼ 9999)

• xloc x location for each neuron (0 ∼ 99)

• yloc y location for each neuron (0 ∼ 99)

• spikeshistory Total spike count for every 10 ms time bins

• spikesProbedNeuron Spiking timing and location for every spike



15

Chapter 4

PRELIMINARY DATA ANALYSIS METHODS

Past neural spike data analyses have established knowledge about the major features

of network behaviors. One of the most substantial network events is the convergence from

spontaneous, random spiking to whole-network synchronous bursting, with individual bursts

lasting for almost half a second and involving all or most neurons in the network firing

multiple times. It is believed that besides spike rate and spike timing, network bursting

is one of the mechanisms used in neural networks to carry significant information [58, 59].

Therefore, growing attention has been paid to study network bursts and it was chosen to be

the main event to investigate in this thesis work.

It is crucial to have a preliminary analysis that helps us understand the data and sets

the goals for the subsequent analysis. For this purpose, a set of methods were developed to

identify and visualize different network events including neuronal avalanches and network

bursting in order to learn about their characteristics. Many of the results from this step

later served as input data for machine learning methods. In this chapter, data visualization

and analysis methods were explained in detail; in addition, a data analysis workflow was

presented at the end of this chapter to show the complexity of analyzing large datasets.

4.1 Avalanche Identification and Characterization

A neuronal avalanche is defined as a sequence of spikes that happen more frequently than

the overall mean inter-spike interval (ISI). From the literature, neuronal avalanches were

identified by discarding the spatial information entirely, assimilating all neuron spikes into a

single spike train [8, 9, 60, 12, 10]. In other words, any two consecutive spikes are grouped into

the same avalanche if their ISI is smaller than the mean ISI. However, the original definition
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of perturbation propagation in self-organized criticality assumed that the perturbation is

triggered externally and propagates through some neighborhood in a chain reaction [7]. From

this definition, we concluded that spatial information should be also considered in identifying

avalanche events.

Therefore, two different methods were used to identify neuronal avalanches. The first

method followed the original neuronal avalanche definition by considering only the temporal

information and grouping spikes as temporal avalanches [8]. In the second method, we took

the original definition of self-organized criticality into account and applied both spatial and

temporal constraints to identify groups of spikes as spatiotemporal avalanches.

4.1.1 Temporal Avalanches

From the simulation results, the spikesProbedNeuron dataset provided us with the

information about the time and location of every single spike. This was then converted into

the number of total spikes at each time step in order to get information about the inter-spike

interval (ISI) in the spike data. ISI is defined as the time interval between two consecutive

spikes in the spike train. Let N be the total number of spikes in the dataset, tn be the

occurrence time of the nth spike, and Tn be the ISI given by:

Tn = tn+1 − tn, n = 1, 2, . . . ,N − 1 (4.1)

So, the mean ISI, T , is

T =
N−1∑
n=1

Tn

/
N − 1 (4.2)

To identify temporal avalanches, we compared ISI with the intervals between consecutive

time steps that have spiking activity. Due to the limitation on our temporal resolution 0.1 ms,

there were situations in which one time step contained multiple spikes. In those cases, spikes

fired at the same time step were grouped into the same avalanche.
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4.1.2 Spatiotemporal Avalanches

We suspected that many temporal avalanches contained spikes that were close in time but

distant in space and therefore should be considered as background activity and excluded from

the avalanche event. The idea of the spatiotemporal method was to group spikes that were in

close proximity in both space and time. This allowed us to exclude putative avalanches that

were composed of a small number of spikes that were separated by large distances and clearly

not causally related; it also helped us separately identify multiple avalanches in different parts

of the network that overlapped only in time (but were spatially distinct). To do so, we defined

a spatial constraint r as the radius for a circular spatial window to define a population of

inter-connected neurons in which their spiking activities directly influence each other. Second,

we determined a temporal constraint τ based on the number of neurons within the spatial

window πr2 and calculated τ as the mean ISI for this population:

τ = T × M

πr2
(4.3)

where M was the total number of neurons in the network (10,000).

Our purpose was to apply this spatiotemporal constraint to identify sequences of spikes

that were close in both space and time by recognizing contiguous spiking activities. However,

this method may encounter a situation where a spike in one avalanche could be spatially

close to another avalanche at the same time. This happened when two or more avalanches

that began separately but propagated towards each other, and there was no sure way to

group these ambiguous spikes. Therefore, we decided to add the proposed spatiotemporal

constraints on top of the avalanches that had already been identified using the temporal

method. In this way, we solved the ambiguous spike problem because all of the avalanches

were already pre-defined; what the spatiotemporal constraint did was throw out distant

outliners from each avalanche.

We analyzed temporal avalanches from the last 1/4 of simulation because that was when

the network had matured and reached a stable state as previously determined [56], and

applied this spatiotemporal constraint only on avalanches that contained less than 104 spikes.
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There were two reasons behind this decision: first, we found that there were two distinct

groups of temporal avalanches identified and they showed very different network behaviors.

The group with above 104 spikes was actually categorized as network bursts (as explained

in section 4.2.1); in this analysis we focused on avalanches only and bursts were therefore

disregarded. Second, this added constraint removed spikes that were considered irrelevant

background activity or “noise” from temporal avalanches. Since most if not all neurons

participated in synchronized spiking and generated more than 104 spikes in a single burst,

noise only accounted for a very small fraction of the total number of spikes and would not

cause a major impact in this analysis.

4.1.3 Self-Organized Criticality

The avalanches were examined on their characteristics such as size, duration, and their

probability distribution. We defined avalanche size as the number of spikes, and duration as

the time interval from the earliest spike to the last. In either case, avalanches were considered

as propagation of system perturbations and their probability distributions were of interest.

The size probability distribution was given by counting the occurrence of each possible size

(range from 2 to the largest avalanche found) and plotting that as a fraction of the total

number of avalanches versus size. We wanted to see if the avalanches obeyed the power-law

relationship observed in self-organized systems and compare our result with the literature.

4.2 Burst Identification and Characterization

Two methods were used to identify bursts from the spike data. First, burst events were

identified from avalanches by size. A second method applied a burst threshold on binned

spike counts from the whole network as in [56], which was also consistent with methods in

the physiological literature regarding bursting in cortical cultures. We investigated to see if

these two different methods identified the same bursts in the network. To distinguish, we

named them avalanche bursts and binned bursts, respectively.
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4.2.1 Avalanche Bursts

Avalanches identified in the previous section represented spike events that were either

temporally clustered or spatiotemporally clustered. Network bursts observed in living systems

showed that bursts are synchronous spiking which are spatially distributed throughout the

network over a period of time; therefore, bursts are essentially large avalanches. Results in

[56] showed that all bursts contained more than 3 × 104 spikes. Having this size reference, we

categorized all avalanches with size more than 104 as avalanche bursts.

4.2.2 Binned Bursts

As high-frequency occurrences of multiple spikes, network bursts can be observed from

the elevated spike count over a period of time. Burst identification in [56] applied a burst

threshold over binned network spike counts to identify burst start and end time (in time

bins). They divided the spike data into 10 ms time bins (each bin was 100 time steps with

every time step being 0.1 ms), calculated the number of spikes in each bin, and applied the

burst threshold of 0.5 spikes/sec/neuron or 50 spikes/bin. In our work, we used the same

bin size and burst threshold to identify binned bursts.

4.2.3 Burst Visualization

To apply spatiotemporal data analysis to bursts, we first performed visualization to

provide a general idea of bursts’ spatiotemporal patterns and properties. Intuitively, we

discovered that by making a movie where each frame shows the (x, y) location of a spike in

the network for a time step allowed us to see every spike in bursts. However, it is not practical

to represent a time step for a frame when a burst happens over a couple thousand time steps.

For instance, for a burst that happened across 3000 time steps, we are looking at a movie of

a few minutes with reasonable frame rates1. This would work if we were to investigate a few

1The American standard for video frame rate is 30 frames per second (fps), higher quality video can have
higher fps. In burst movies, low frame rates should be used in order to observe the spike activity in each
frame.
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bursts in details but not when thousands of bursts are identified in a simulation and the goal

is to understand bursting behaviors in the big picture.

With the start and end time (in time bins) of bursts identified in the binned burst method,

we applied spike train binning (Figure 4.1) with the same bin size (100 time steps). For each

burst, images were created for each 10 ms bin instead of each time step, and the color of

each square pixel in the 100 × 100 arrangement was determined by the number of spikes

produced by the neuron at that (x, y) location. These images were either output individually

or concatenated to produce burst movies.

Figure 4.1: Example of spike train binning (bin size = 3). Image a, b and c represent three
consecutive time steps in a 5 × 5 arrangement. The binary values in each location represents
a single spike train value. The rightmost image shows the result of binned spike trains of a,
b, and c. The color in each square corresponds to the spike count or spike rate of the neuron
at that (x, y) location. The brighter colors indicate higher spike rates.

4.2.4 Burst Origin

Burst visualization revealed that bursts originated in small spatial regions and then

propagated across the network. Each burst initiation was then analyzed to assign a (x, y)

location as its burst origin. From the previous section, images were made for each time bin

in a burst using spike train binning. The first image of a burst (corresponding to the spikes

occurring in the first 10 ms of that burst) contained information about its initiation, and was

used to find the centroid coordinates of locations with the highest spike rate, or brightest
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pixel values. In other words, the origin was computed as the mean of the x and y coordinates

of neurons that produced the most spikes in the first 10 ms; this was invariably either a single

neuron or a compact cluster. We called this method brightest pixel selection and examples of

identifying centroid using this method is shown in Figure 4.2.

Figure 4.2: Examples of burst origin by computing the centroid of the brightest pixels. For
each image, numbers in each square represent pixel values and red pentagram marks the
centroid of the brightest pixels (highest pixel value = 5). Images from left to right show the
centroids of 1, 2, 3, and 4 brightest pixels, respectively.

When selecting the brightest pixel, a threshold of 2 was used to avoid situations in which

a bin only contains neurons that fired once and their centroid did not approximate burst

origin. This is because time bins are determined sequentially from the very first time step

to the last, by applying the binned burst method and aggregating 100 time steps into one,

the burst can initiate at any time in the first bin. If the burst starts late in the bin, the

highest spike count in that first bin can be as low as 1. As we know that the burst threshold

is 50 spikes/bin, this means there were more than 50 neurons that had the same spike count.

When this happens, the mean position of these neurons can significantly deviate from the

origin location that we anticipated using this method. Therefore, we applied a threshold of 2

in selecting the brightest pixel and if the condition was not met, the next bin was used to

calculate the origin. These computed origins were manually examined to double-check that

there were no unreasonable artifacts.
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In the burst events we identified, there were cases when two bursts happened in tandem,

originated at different locations in the network but were temporally inseparable; they propa-

gated towards each other and eventually collided and formed a greater burst until it exited

the network, we called them twin bursts. In cases of a twin burst, the origin of the burst that

happened slightly earlier was identified as the origin.

4.2.5 Burst Propagation Speed

Since bursts propagate outward from their origins and across the entire network as a

wave, their propagation speeds can be determined by using the origin location and brightest

pixel selection method. For each burst, we searched for the brightest pixels for each image

(corresponding to the spikes occurring in the each 10ms bin in the burst) and their distances

to the origin were then calculated (and averaged if there were more than one brightest pixel

in the image). Because each image represents a time bin, the time differences for every bin

relative to the first bin were known. By performing the same calculation for every image in

a burst, we had the relative distance and time (bin difference) for any bin to compute the

propagation speed. The burst speed V for each bin was given by

Vij =
dij
tij

(units : ms−1) (4.4)

where i is the burst number, j is the bin number, dij is the distance (or mean distance)

between the (x, y) location of the brightest pixel (or pixels) in bin j and the origin location of

burst i. tij is the time difference of bin j relative to the first bin in burst i in milliseconds. As

the spatial grid used in the simulation is dimensionless, speed is presented in units of ms−1.

For every burst, we calculated the speed for every bin relative to the first bin and finally

these speeds were averaged to produce the overall burst propagation speed. To avoid situations

as discussed in the previous section where the brightest pixel being 1 and introduce inaccurate

results, we discarded the information from the first and last two bins for every burst.
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Figure 4.3: High level workflow diagram of preliminary analysis. This is a simplified diagram that left out a great
amount of details intended to serve as an overview of preliminary analysis as well as a demonstration of the complexity
of the work. Blue and white entities represents datasets or data documents, grey entities are major functions and
methods, pink entities are important self-defined variables used in this work, and green entities represent the analysis
results.
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Chapter 5

MACHINE LEARNING METHODS

In the previous chapter, we conducted a number of visualizations and investigations of

macroscopic, whole-network behaviors on our dataset; we identified avalanches and bursts

from the network and examined important characteristics of these behaviors to compare

with the literature. Thus far, we have performed a hypothesis-driven approach in which

we defined the hypothesis and attempted to provide answers to the specific questions for

the hypothesis. However, data can contain information that is undiscovered and therefore

cannot be completely hypothesized and analyzed. With the high dimensionality, complexity,

and volume of our dataset, we believe that machine learning can enable us to discover

unfathomable information or patterns, from which we can learn much more than through our

current graphs and images.

Machine Learning (ML) methods are computer algorithms capable of adaptively improving

their performance of a task based on their own previous experience and discovering hidden

patterns in high dimensional data [61, 62, 63]. These methods pertain to the ability of data-

driven approaches to abstract and gain information about a system directly from observed

data without establishing mechanistic relationships that govern the system. Due to these

advantages that ML has to offer which align well with our own interests and the idiosyncrasies

of the dataset, we decided to utilize ML for subsequent analysis. Based on the preliminary

results, we further applied a set of ML techniques to study the burst spatiotemporal behaviors.

Our goal was to perform relatively straightforward ML methods to see if a small number of

spatiotemporal spikes were predictive of the macroscopic network bursts and therefore could

be identified as trigger events from the large amount of spike data. If so, it would suggest

that these microscopic patterns were behaviorally significant.
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Figure 5.1 shows an overall data analysis process which illustrates the key steps from

collecting data to discovering useful information. The previous chapters provide details about

step 1 and 2 in Figure 5.1; data preparation procedures, ML algorithms, and performance

metrics used in step 3, 4, 5 are explained in this chapter.

Figure 5.1: Overall data analysis process.

5.1 Data Preparation

Prior to any direct application of ML algorithms, it is important to be conscious of the

content of the raw data so essential pre-process procedures can be taken to ensure the data

quality and effectiveness of the algorithms. In this case, because every spike produced by the

network was recorded, there was no missing values or inconsistent features, but decisions about

how much data needed (among hundreds of millions of spikes) to predict each burst and how

to represent spatiotemporal spikes must be made. The quality, amount, and selection of data

are critical to the success of ML solutions and human attention with in-depth understanding

about the dataset were required for decision making. The data preparation task is subdivided

as a set of relevant steps and explained in the following subsections.
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5.1.1 Data Extraction: Pre-Burst & Non-Burst Precursors

To investigate if particular patterns of spatiotemporal activity triggered bursts, we isolated

spike sequences just before bursts as pre-burst precursors, and spike sequences temporally

distant from bursts as non-burst precursors. These precursor data were used as input for ML

algorithms. To find the target data sequences, the start and end times of bursts, or burst

boundaries, defined in time steps, were needed. Our two burst identification methods picked

out the same bursts, but avalanche bursts were grouped in time steps whereas binned bursts

were in 10 ms time bins. Henceforth, the burst boundaries determined by avalanche bursts

were used in extracting the sequences for precursors.

Figure 5.2: Definition of non-burst and pre-burst precursor windows (W = 500). The spike
activity for every time step before and during a burst is plotted showing the highest spike
count of 41. Blue and red lines indicate the time windows for non-burst and pre-burst
precursors. A gap of 2000 spikes was used to define the end boundary of non-burst window.

Figure 5.2 illustrates how the time windows of pre-burst and non-burst precursors were

defined relative to a burst event. For each avalanche bursts, we selected W consecutive spikes

right before each burst as a pre-burst data sample and selected another W spikes with a

distance of 2000 spikes (the“gap” in Figure 5.2) before each burst as a non-burst data sample.
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The gap was chosen based on the inter-burst intervals (IBIs) and mean spike rate calculated

from previous analysis. The smallest IBI found in the data was 5445 time steps and the mean

spike rate was 0.9503 spikes/step. With these information, we assumed the burst boundaries

were identified accurately and there was no more than 1 spike at each time step when the

network was not bursting; a gap of 2000 spikes gave us sequences that were far enough from

the upcoming bursts, eliminating the chances of precursor window containing any pre-burst

activities, and at the same time distant from the preceding bursts to avoid including activities

that may pose post-burst behaviors. Additionally, we investigated the location of the spikes

that best predict burst initiation (those spikes might form patterns that “trigger” bursts) in

the data sequence. We did this by varying the size of the precursor window and the “mask”

(defined in Figure 5.3). Our purpose was to find the optimal pre-burst window which is the

smallest (contains as few spikes as possible) and farthest (as far away from the burst as

possible) yet still highly predictive of bursts.

Figure 5.3: Illustration of the optimal pre-burst window and mask. Green line corresponds
to the burst start boundary defined in avalanche bursts. Red window represents pre-burst
window which contains W spikes, and mask contains k in between the window and the burst.
The smallest and most predictive pre-burst precursor can be found by reducing window size
W and increasing mask size k.
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In this work, we experimented various W values, ranging from 5 to 500. For each spike

i in a data sample, we retrieved its neuron (x, y) location and its firing time, φi = ti − t0,

relative to the first spike (spike 0) in that data sample. Every data sample was then arranged

in the following format to include its spatial and temporal information:

φ0, x0, y0, φ1, x1, y1, . . . , φW−1, xW−1, yW−1 (5.1)

While spatiotemporal datasets are mostly represented as images, it often requires the redesign

of most machine learning methods to accept image or video input. This alternative and yet

simple representation reduced the data complexity by treating each dimension (φ, x, y) of a

spike as a feature. For a sequence of W spikes, there are 3 ×W features in each data sample.

5.1.2 Data Labeling: Ground Truth

To study how the microscopic activity affect network bursts, we performed several

binary classification and multivariate regression tasks. First, we investigated if the pre-burst

precursors were predictive of a burst compared to non-burst precursors. Each pre-burst

precursor was labeled as 1 and each non-burst precursor as 0 for binary classification. If

precursors were capable of predicting burst initiation, we wanted to see if burst origin locations

were predictable by labeling each pre-burst precursor with its subsequent burst origin (x, y)

for multivariate regression analysis.

5.1.3 Data Cleaning & Shuffling

In our data samples, there were cases that avalanche method was not able to identify

the burst boundaries as we expected and further contaminated the result of precursor data

extraction. In these cases, many of the bursts had their start boundaries identified too late

or end boundaries identified too early because there were times when no spike at a time step

was recorded. These “drop downs” in spike count indicated spike intervals that were bigger

than the mean ISI; the drop downs then became the cutting points in grouping avalanches
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and the burst boundaries. When this happened, the precursor windows that were determined

entirely on burst boundaries would not be appropriate anymore (Figure 5.4).

Figure 5.4: Examples of bad precursors as a result of poorly identified burst boundaries. The
blue window “N” represents the non-burst precursor; the red window “P” represents the
pre-burst precursor.

We speculated that these poorly identified burst boundaries could disappear as we improved

the time resolution in the simulation. With finer time resolution, ideally having only one

spike for each time step, we should have a better estimation of mean ISI that were able to

group spikes into different events more accurately. However, finer resolution translated to

longer simulation and larger dataset. At this point, we decided to work with what we had

and performed data cleaning to remove the bad precursors from our data samples.

Data samples with either a bad precursor window (width smaller than window size N)

or a bad gap (width with smaller than gap size) were found in our data. Among 9729

bursts, there were 538 of them found to produce “bad data” (bad pre-burst or bad non-burst

precursor window) and they happened throughout the data, showing no particular occurrence

pattern. We manually inspected some of the precursors and decided that these thresholds

were quite effective on finding the bad data while keeping the good ones. Bad data samples

were therefore removed from our dataset. After data cleaning, we were left with precursor

sequences from 9191 bursts as input for ML methods.



30

On the other hand, one important macroscopic feature of the simulation behavior was

that bursts settled down to a few stable burst initiation locations during development and

the majority of bursts originated from those regions at later stages of network development.

Including all the data samples produces an imbalanced dataset and can skew the result. We

wanted to apply ML techniques to activity patterns that were less easily predictable, so we

chose only the first 500 bursts — those with origins that varied across the network — to

analyze. As a control, we applied the same regression analysis to non-burst data samples.

Moreover, to prevent prediction results being affected by sequential temporal relationships

between consecutive bursts or between consecutive data samples, all data samples were

randomly shuffled before they were used for model training.

5.2 Binary Classification

Binary Classification is a supervised learning method of classifying a data into two pre-

defined categories or labels, in our case, “no burst” and “burst”. Among various ML classifiers,

Decision Tree (DT) and Support Vector Machine (SVM) with both linear and nonlinear

kernels were chosen to predict burst initiation.

DT uses a tree-like graph for decision making; it constructs the tree using the top-down

approach by considering information gain as a criterion and chooses the best feature to split

each node so that it produces the “purest” subsets and stops when data cannot be split

further. In other words, a decision tree is built by calculating feature importance. DT is easy

to interpret by non-statistician and is intuitive to follow, it copes with irrelevant features

and is able to combine heterogeneous data types into a single model. As for SVM, it finds

the maximum margin hyper-plane that best separates two classes in a high-dimensional

feature space by plotting each data sample as a point in n-dimensional space (where n is the

number of features in the data sample) with the value of each feature being the value of a

particular coordinate. SVMs are very universal learners, they can provide generalized models

in the presence of many features as long as the data is separable with a wide margin. In its

basic form, SVM learns linear threshold function, but with different kernel functions, SVM
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can also be used to learn polynomial classifiers. While SVM is well suited to handle high

dimensional data, DT can be a cheaper, yet effective solution if the majority of the features

do not contribute much information to the classification problem.

Classification models were confirmed using k-fold cross validation (k = 10) in which the

data was divided into k subsets and every time only k − 1 subsets were used to train the

model, leaving the last subset for testing. The performance of the classification model is

evaluated in terms of accuracy, precision, recall, confusion matrix, and F1 score. Since F1

score provides a harmonic mean of precision and recall by combining the two numbers into

one measure, it is chosen to be the main performance metric shown in the results.

5.3 Multivariate Regression

Multivariate regression is a technique that estimates a single regression model with more

than one outcome variable. In our case, there are two outcome variables to predict: x and y

location of the burst origin. Linear regression, Lasso regression, Ridge regression and artificial

neural networks (ANNs) were used for predictive modeling.

Linear regression is a linear approach for modeling the relationship between explanatory

predictors (or independent variables) and scalar responses (or dependent variables). Simply

put, linear regression model gives a linear equation that best describes the relationship

between features and label by minimizing the sum of the squared error. Lasso and Ridge

regressions are extensions of linear regression with different regularization methods to reduce

model complexity and overcome overfitting. Lasso and Ridge regression are closely related,

but only Lasso has the ability to select predictors. In this work, ANNs were also used

for regression modeling since ANNs use adaptive weights and can approximate non-linear

functions of their inputs, they can easily adapt to different problems by customization; thus,

ANN become a great alternative when a more traditional model cannot fit the solution. On

the other hand, the customization also greatly effect the model performance and model tuning

is required. We trained the ANN models with grid search for hyperparameter optimization; a

set of different hyperparameters in Table 5.1 were experimented to find the best combination.
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Regression model accuracy were assessed by R-squared score, mean absolute error (MAE)

and root mean squared error (RMSE). While R-squared allows us to understand the percentage

of variance in the target data explained by the model, MAE and RMSE help quantify the

error by averaging the residuals of the model and provide different insights of the result.

Table 5.1: ANN Model Hyperparameters

Hyperparameter Types/Values

activation function logistic, tanh, relu

learning rate constant, invscaling, adaptive

solver sgd, adam

# of hidden layers 1, 2, 3, 4

# of neurons per layer 20, 100, 200, 500, 1000

batch size 10, 50, 100, 250, 500

max iteration 100, 200, 500, 1000, 2000
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Chapter 6

RESULTS

6.1 Avalanche Characteristics

Our simulation data contained a total of 570,189,562 spikes and 19,183,767 temporal

avalanches with size ranging from 2 to 55,205 spikes. Among them, 3,199,919 temporal

avalanches were identified for the last 1/4 of the simulation (corresponding to the last 7 of 28

days in vitro) when the network was stationary as previously determined [56]. After applying

spatiotemporal constraints, the number of avalanches was eliminated down to 156,604. The

size probability distribution in Figure 6.1 shows that there were clearly two groups in the

data; one group has sizes ranged from 2 to 103, another with size between 104 to 105.

Figure 6.1: The probability distribution of avalanche size for the last 1/4 of data. Black
circles represent temporal avalanches and blue circles represent spatiotemporal avalanches.
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6.2 Burst Characteristics

After bursts were identified, we gathered information about the size (number of spikes),

width (time steps involved), mean spike rate (size/width), peak (the time bin that contained

the highest number of spikes) for each burst and they were consistent with the results in [56].

Furthermore, we generated images to represent each bin in a burst and identified the origin

and propagation speed for each burst. The results are presented in the following sections.

6.2.1 Burst Spatiotemporal Patterns

The network was visualized as sequence of binned images (or movie frames) with each pixel

as a neuron and the pixel color corresponding to spiking rate to display the spatiotemporal

pattern of bursts. Figure 6.2 presents an example visualization of a whole network burst as it

develops over time. The first image of the burst shows its origin location as frequent spike

activities within a small region, and the evolution development reveals that bursts originate

in a single location and spread as a wave of activity across the network.

Figure 6.2: Spatiotemporal evolution of a single burst (from left to right). Each image
includes 10ms (100 time steps) of activity and images are 30 ms (300 time steps) apart.

6.2.2 Burst Origin Evolution

Figure 6.3 displays the evolution of burst origin locations for all 9729 bursts. It shows

that burst origins varied widely in early network development and clearly settled down to a

small number of origins that occurred repeatedly in a random order, or “active origins”, and
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these active origins changed to a different set of locations over time. Based on these insights,

we further examined the burst origin occurrence patterns in different stages of the network

development and displayed them in Figure 6.4.

Figure 6.3: Evolution of burst origin locations. Left: (x, y) location of each burst origin
(*) and their sequence (lines). Right: x (top) and y (bottom) coordinates of burst origins
plotted versus burst number which also indicates the time of occurrence of each burst.

Figure 6.4: Active origins in different stages of development. Bursts that were included in
each stage are listed on top of each image with their burst numbers.
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6.2.3 Burst Speed Evolution

Figure 6.5 shows burst propagation speed as a function of burst number for all bursts,

along with a 100-burst moving average. Consistent with the results in [56], burst initially

propagates slower, starts out with a speed of 0.4 ms−1, and rapidly speed up early on (burst

1 ∼ 2000); speed continues to grow with gradual progression then drop and raise again right

before it enters the last 1/4 of simulation (around burst 6500). After the network reaches

maturity (burst 8000 ∼ 9729), burst speed settles to a stationary speed around 0.85 ms−1.

Figure 6.5: Evolution of burst propagation speed. The black dots mark the burst speed
during network development for individual bursts and the blue line shows the moving average
of 100 bursts. There is a clear trend showing bursts increase in propagation speed over time.
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6.3 Classification: Burst Initiation

Binary classification results with different window size W are shown in Table 6.1. We

found that DT and linear SVM both had the highest F1 score (0.9992 and 0.9983) when

W = 10, and also produced the smallest 10-fold error (0.12% and 0.16% misclassification

rate). Similarly, both methods performed the worst when W = 500, linear SVM in particular,

its F1 score plummeted from above 0.99 to 0.88. DT models performed well in all scenarios

and took notably less time to train. The polynomial SVM model did much worse than the

other two models in which its F1 score only achieved 0.90 when W = 10 and 50.

Table 6.1: Classification Model Performance

Method W F1 score 10-fold error training time (s)

Decision

Tree

5 0.9859 0.0 F1 score116 0.0477

10 0.9992 0.0012 0.0304

50 0.9967 0.0031 0.1360

100 0.9951 0.0052 0.2489

500 0.9803 0.0201 2.4913

Linear

SVM

5 0.9905 0.0109 366.1565

10 0.9983 0.0016 437.9697

50 0.9981 0.0019 4.7366

100 0.9973 0.0028 345.4788

500 0.8809 0.1793 384.0659

Polynomial

SVM (d=2)

5 0.7573 0.2064 335.8493

10 0.9298 0.2017 404.4486

50 0.9501 0.0809 417.7756

100 0.8277 0.1797 391.9752

500 0.8480 0.1780 420.6529
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With the size of window and mask (defined in Figure 5.3) incrementing from 1 to 50

spikes, we ran 2500 DT models (50 × 50) to find the location of burst trigger pattern and

the result is shown in Figure 6.6. It is clear that the F1 scores were quite consistent as long

as the window contains more than 5 spikes; there was a very subtle trend showing that the

performance drops with increased window size. On the other hand, model performance is

closely correlated with the mask size: the larger the mask, the poorer the performance. The

best F1 scores happen when window contains 8 to 30 spikes and mask has fewer than 5 spikes.

Figure 6.6: Classification result for different window and mask size varying from 1 to 50
spikes. Each color in the square corresponding to the F1 score for the particular window and
mask combination at that (x, y) location.
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6.4 Regression: Burst Origin Prediciton

Regression results on pre-burst data are shown in Table 6.2. The result of grid search

showed that the best performing ANN model had 2 hidden layers, each with 1000 neurons

with ReLU activation functions, constant learning rate, adam solver. The best batch size is

50 and maximum iteration is 200. Regression results from all models achieved above 95% R2

score. The control, non-burst data samples were not predictive of burst origin with poor R2

scores and large MAE and RMSE (30 ∼ 50); therefore, the results are not shown.

Table 6.2: Regression Model Peformance

Method W R2 MAE RMSE

Linear

10 0.9579 4.2872 5.3510

50 0.9923 1.8264 2.4884

100 0.9853 2.6417 3.4106

Ridge

10 0.9586 4.2707 5.2998

50 0.9924 1.8190 2.4817

100 0.9877 2.4233 3.1111

Lasso

10 0.9615 3.4920 5.1873

50 0.9943 1.5071 2.1304

100 0.9947 1.4771 2.0244

ANN

10 0.9552 3.4971 5.613

50 0.9949 1.4649 2.0133

100 0.9920 1.7840 2.4784
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Chapter 7

DISCUSSION

The probability distribution of avalanche size in Figure 6.1 displays that the spatiotemporal

avalanches follow the power-law relationship more consistently especially when compared

to small temporal avalanches (size smaller than 50). This suggests that small temporal

avalanches are over-represented, violating the power law distribution; we hypothesized this

could have been caused by “spurious” avalanches: spikes occurring near each other in time

but far away in space. Our spatiotemporal constraint eliminated some spurious avalanches,

either by reducing their size or removing them entirely. The result was a relationship that is

more consistent with power law distribution, confirming the hypotheses.

For burst analysis, Figure 6.3 and Figure 6.4 show that the network develops a set of

active origins that change over time, and bursts become highly likely to initiate at these

locations as the network development progresses. Figure 6.5 reported a trend that burst

propagation speed increases during development and is consistent with the literature [64].

From the classification results, high F1 scores from the majority of our models showed

that pre-burst precursors were very predictive of burst initiation. For each of the three

methods, W = 10 and W = 50 yielded the highest F1 scores among all models indicating

the most predictive spikes are within this range of window sizes. By comparison, polynomial

SVM models performed much worse than linear kernels, suggesting that the feature space

of our data is linearly separable and that the polynomial kernel may have been over-fitting.

The results from polynomial SVM models are therefore considered non-representative and

disregarded in the following discussions.

Overall, DT and linear SVM models had very competitive results; however, it took

significantly less time to train DT models than SVM models despite different feature sizes
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(3 ×W ). It is quite noticeable that SVM model has one exceptional training time of 4.7366

seconds when W = 50 while other models took more than 300 seconds to train. Regardless

of the feature size, SVM will continue to map data into higher and higher dimensions until a

hyperplane can be formed to segregate one class from another; this suggested that an optimal

hyperplane was most obvious to identify when W = 50. As SVM takes all features of the

data into account, the fact that the performance of SVM model achieved over 0.998 when

W = 50 and W = 100 and only 0.8809 when W = 500 indicates that there was an increased

amount of redundant features or “noise” when we included 500 spikes. Although SVM can be

a powerful binary classifier for high dimensional data, the presence of irrelevant or redundant

features in the dataset may provide repetitive or even contradictory information which gives

rise to misleading the construction of a precise SVM model. This property of SVM helped us

reduce the search window for burst triggers from the included 500 spikes down to 50, and at

most 100 spikes

On the other hand, DT uses only a subset of the features to construct the model and

all models reached high F1 scores (over 0.98), this indicates that there were some patterns

predictive of a burst in all cases (W = 5, 10, 50, 100, 500). Additionally, we found that when

W = 500, there were only 82 out of 1500 predictors (3 ×W ) being used to construct the

model and 35 of them were from the last 50 spikes in data sample; alghough there was no

distinctive pattern showing any of the 3 types of feature (φ, x, y) to be more important than

others or a consistent set of predictors found in every case. These results also suggested

that DT can be used as the first stage of analysis for large quantities of biological data to

identify regions of interest for subsequent examination. DT was thereby used to investigate

the location of burst trigger pattern shown in Figure 6.6. The result shows that a burst is no

longer predictable when mask size is bigger than 50 spikes if we consider F1 score smaller

than 0.8 as poor prediction; this suggests that the trigger pattern can contain fewer than 10

spikes and that are most 50 spikes before the burst starts.

The multivariate regression models used here predicted two outcome variables representing

the (x, y) location for burst origin based on pre-burst activity. From the R2 scores, one can
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see that at least 95% of the data variance can be explained by our models. When W = 50,

all models reported the best R2 score of over 99.2% with small MAE and RMSE prediction

errors (less than 2.5). Considering the fact that burst origin locations were approximations, it

is quite accurate that the predicted (x, y) locations were only off by 1 to 3 neuron positions in

a 100 × 100 network setting. Unlike classification results which the best scores were achieved

for both DT and SVM when W = 10, regression results report the worst R2 scores and this

indicates that longer sequences of spikes are needed to improve burst origin prediction.

For models of W = 50, lasso model performed better (99.47%) than linear and ridge

models, suggesting that only a subset of features were important for burst origin prediction

since lasso selects a subset of features by reducing the coefficients of others to zero. ANN

models are notoriously sensitive to the fine-tuning of hyperparameters and thus the result

can vary greatly. The best R2 score we achieved is 99.49% while continued experimentation

might lead to better performances. For all of our regression models, RMSE was a little higher

than MAE. Since RMSE weights large errors more highly than MAE, this indicates that

there was a small number of distant outliers in our prediction.
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Chapter 8

CONCLUSION

This thesis investigated the spatiotemporal behaviors of full spiking activity from a closed-

loop simulation of neuron-activity-driven network development which used the simplest model

of cortical culture growth to duplicate the salient features of in vitro burst development

[56]. In avalanche analysis, spatiotemporal avalanches are shown to be more close to the

original definition of self-organized criticality in [7], and this is proven by presenting its

size probability distribution followed the power-law relationship more consistently. In burst

analysis, visualization results show that bursts originate at single locations, later develop into

a set of active origins, and propagate across the network in a wave-like fashion; their origins

and propagation speeds change during network development.

This is the first application of machine learning to spike train data analysis (beyond spike

sorting and encoding/decoding) as far as the author is aware. The ML results allow us to

conclude that, even in the absence of detailed analysis of pre-burst spiking patterns, there is

commonly a localized spatiotemporal pattern of spikes not only providing reliable information

about if a burst will occur but also where that burst will start. In addition, our results show

that subsequent analysis on the burst trigger patterns can be narrow down to a small number

of spikes and neurons, fewer than 50 spikes prior of every burst. For the current investigation,

this corresponds to a reduction of more than seven orders of magnitude from the full dataset

that contains 600 million spikes.
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Chapter 9

FUTURE WORK

First, data from simulations with higher time resolution (e.g. 0.05 ms) may provide a

better approximation of mean ISI to group avalanches which in turn identify burst boundaries

more accurately, eventually improve our current results.

Second, since fewer than 50 spikes are shown to contain the burst trigger pattern, statistical

methods can then be applied to find statistically significant pattens and use them as templates

for pattern matching for the entire data. If consistent patterns are found to be predictive of

bursts and present before every burst, we can conclude if this is indeed the burst trigger by

identifying all occurrence of this particular patten in the data and calculating the relevance

between this pattern and bursts.

Last but not least, spatiotemporal spikes were represented as a single train of feature

sequences in this work; however, as we visualized bursts using binned images, we found that

our data could also be represented by images so that convolutional neural network (CNN)

and recurrent neural network (RNN) with long-short term memory (LSTM) can be applied

to learn the time-relevant, localized trigger patterns.
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