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Abstract

Neuroinformaticspresentsa greatchallengeto thecom-
puter sciencecommunity. Quantities of data currently
rangeup to multiple-petabytelevels.Thedataitself are di-
verse, includingscalar, vector(from1 to4 dimensions),vol-
umetric(upto 4 dimensionalspatio-temporal), topological,
and symbolic,structured knowledge. Spatialscalesrange
from Angstromsto meters, while temporal scalesgo from
microsecondsto decades.Basedatavarygreatlyfromindi-
vidual to individual,andresultscomputedcanchangewith
improvementsin algorithms,datacollectiontechniques,or
underlyingmethods.

Wedescribea systemfor managing, sharing, processing,
and visualizingsuch data. Envisionedas a “r esearcher’s
associate”, it will facilitate collaboration, interface be-
tweenresearchers and data,and performbookkeepingas-
sociatedwith thecompletescientificinformationlife cycle,
fromcollection,analysis,andpublicationto review of pre-
viousresultsandthestartof a new cycle.

1. Introduction

Neuroscientistsstudy the various anatomical,physio-
logical, andfunctionalcomponentsof nervoussystemsto
betterunderstandhow the “low-level” activity of individ-
ual cells mapsto behavior. In this researchprocess,large
amountsof complex dataarecollected,but technologyhas
not yet providedsystemswhich integratethis datato help
scientistsanalyze,visualize,andunderstandit [4, 10].

Thereareseveralaspectsof thiswhichareunusualwhen
comparedto mostotherscientificdataprocessingactivities.
�
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Figure 1. An example rendered neuron. Cell
is sho wn within outline of enclosing gan-
glion. The cell is represented as a tree (with
each branc h inc luding diameter data along its
length) and an associated “c loud” of output
sites (too small to be visib le here).

First of all, the basedatagatheredfrom experimentsare
diverse,includinganatomical(2D and3D images,3D ge-
ometriesasshown in Fig. 1), physiological(times series,
point processes;seeexamplein Fig. 2), molecular(2D and
3D densitydistributions),andsymbolic(functions,behav-
iors). Additionally, dataaregatheredfrom singlecells in



Figure 2. An example physiological recor ding, in this case of the simultaneous disc harge of two
nerve cells (X-axis is time; Y-axis volta ge). Cell disc harges are often recor ded as a sequence of
volta ges along time . Alternativel y, they may be assimilated to point processes by noting onl y the
times of occurrence of the large volta ge spikes.

individual animalsand can vary greatly from one animal
to another. However, researchersusuallydon’t want to ask
questionsabouta particularcell or individual; they wantto
generalizefrom the examplesthey’ve seento producean
understandingof how cellsandsystemsfunction.

We addressherethreemajor problemsassociatedwith
neurosciencedataprocessing,or neuroinformatics:

1. The constructionof a basicsystemto supportneuro-
sciencedatamanagement:theLOGOS system.

2. Providing researcherswith the ability to present
queriesandreceiveresponsesin termsof typicalcells,
relying on an extensioncalledMETALOGOS to map
thesehigher-level constructsto operationson data
gatheredfrom individualexperiments.

3. The useof METALOGOS asa cells-to-systemsinter-
face, wherebytheusercanmanipulatedatapertaining
to largenumbersof cellswhichcollectively contribute
to a particularfunction.

To make 2 and3 above moreconcrete,considerthefol-
lowing example[5]. Crickets have elongatedsensoryor-
gans,calledcerci, which projectbehindthem. Thesecerci
are coveredwith hairs which serve as transducersfor air
motion. Transducedsignalsare carriedby sensoryneu-
ronsto an abdominalganglion: a collectionof nerve cells
andinter-neuronalconnections.Themany sensoryneurons
eachtransmittheir messagesto a numberof second-level
neurons,or interneurons; eachinterneuronreceiving input
from many sensorycells.

The obviousquestionto askhereis: what computation
doesthe cercalsensorysystemas a wholeperform? It is
not usuallyfeasible,however, to performanexperimentto
answerthis questiondirectly. Instead,a researchercould
performthefollowing experiments:

1. Stain a single neuronin an individual cricket with a
chemicaldye, so that its entirestructurecanbe seen
easily. Digitize its three-dimensionalgeometry. As
shown in Fig. 1, a cell is representedas: a treewith
eachbranchhaving particulardiametersat eachnode,
and a cloud of small spheres,or varicosities, which
correspondto connectionpoints betweenthat cell’s
outputandothercells’ inputs. This couldbedonefor
a largenumberof sensorycellsandinterneurons

2. Insertanelectrodeinto a cricket,andrecordthephys-
iological responses(similar to thatshown in Fig. 2) of
sensorycells to air currentshaving differentdirection
andmagnitude. This would allow one to computea
tuningcurvefor eachcell: a mappingfrom thespace
of wind velocity to neuronoutput intensity. For sen-
sorycells,thismapis typically a simplefunction.

3. Make physiological recordings of interneuron re-
sponsesto air motion.

Experiments1 and2 canbeusedto build a databasefor
the first stagesof the cercalsystem[11]. However, it is
likely that the resultsof experiment3 would be difficult
to interpretinitially, sinceeachinterneuronreceivesinput
from many sensorycells (andthusthemapfrom wind ve-
locity to responseis complex anddifficult to eithersumma-
rize meaningfullyor provide constanciesfrom oneanimal
to another).Instead,onemustfirst determinewhatcellular
aspectsareconservedacrossdifferentanimals:in thiscase,
thedirectionalsensitivity of correspondinghairsandthere-
gion of the ganglionto which eachhair’s sensoryneuron
projects.

Basedon this, thesummarydisplayshown in Fig. 3 can
beproduced.A numberof sensorycellswereusedto gen-
eratethis diagram. For each,the distribution of varicosi-
tieswasusedto produceanestimateof whatits connection



Figure 3. System-le vel view computed from
a number of individual cells and animals.
This displa y sho ws sign and magnitude of re-
sponse to air motion to the right rear encoded
by shade of grey (original was in color) and
diamond size.

strengthto anothercell would be at eachpoint in the vol-
umeof theganglion. If an interneuronhasan input region
in asub-volumedenselyfilled with sensorycell outputs,we
would expectit to receive strongsignalsfrom thatsensory
cell. Contrastingly, an input in a sparsesub-volumewould
yield little input.

Thisdensityfunctionwasthenusedasaweightfor mul-
tiplicationwith thesensorycell’swind velocitytuningfunc-
tion. The total systemresponsefor a numberof sensory
neuronscanbecomputedasthesumof theindividualcells’
tuning functions,weightedby their densitiesat eachpoint
within theganglion.Usingthis3D mapof netvelocity tun-
ing, onecancomputetheoverall systemresponseto a puff
of air of aparticularspeedanddirection,which is shown in
thefigureasgrey level (from acolororiginal).

We cantake this onestepfurther, by showing how this
system-level responsemapsto the input of a particularin-
terneuron.Fig. 4 shows theresponsein Fig. 3 mappedonto
an interneuron’s structure.All branchesof the interneuron
smallerthansomecutoff diameterwereassumedto receive
input from sensorycells. For eachpoint on the surfaceof
thesebranches,thenetsystemresponsecomputedfor Fig.3
wastakenastheinputthatwouldbereceived[11], indicated
by shadeof grey in Fig.4 (betterdisplayedin thecolororig-
inal). Oncethis is accomplished,onecould thenproceed

Figure 4. System response in Fig. 3 mapped
onto rendering of an interneur on (greyscale
rendering of a color original).

to comparetheseinputswith the physiologicalrecordings
madeof the interneuronoutputto helpdeterminethecom-
putationit performs.

There are additional designgoals for LOGOS which,
while perhapsnot as novel as thosediscussedabove, are
no lessnecessary. Theseinclude:

� The logical and physicalviews shouldmake explicit
distinctionsbetweenraw and(possiblyvariouslevels
of) processeddata[2, 7].

� Humanunderstandingof any field changesover time;
datacaptureandanalysischanges,too. The schemas
whichunderliedatastorageshouldbeevolvable[3].

� Scientific computingoccurswithin a heterogeneous
hardwareandsoftwareenvironment;a scientificdata
managementsystemshouldaccommodatethis [8].

� A domain-specificuserinterfacewhichaccommodates
differing levelsof usersophistication(includingthose
whowrite theirown applications)shouldbeused[2].

� Becausethis is a scientificdatamanagementsystem,
capabilitiessuchasmaintenanceof audit trails, error
tracking,anddatasecurityareessential[10].
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Figure 5. LOGOS system architecture , sho wing suppor t for distrib ution of data management, compu-
tation, and user interface tasks.

2. LOGOS Architecture

The overall LOGOS systemarchitectureis presentedin
Fig. 5. Its basicdistributednatureis dictatedby thedesire
to supportexisting hardwareandsoftwarewhenever feasi-
ble. It is thereforedividedinto threemainmodules:a data
manager (DM) asa persistentdatastoreandqueryserver
(implementedusing ObjectStore,an off-the-shelf object-
orienteddatabasemanagementsystem),a workspace(WS)
for performingdataanalysisandothercomputationallyin-
tensive tasks(theresultsof which might laterbecomepart
of thedatamanager’sstore),anda userinterface(UI).

Many researchersmakedailyuseof MacintoshandIntel-
basedmachines,andit wasdecidedearly-onto supporttwo
user interfaces: one hostedon a high-performanceUnix
workstationand anotherimplementedfor less expensive
hardware. However, useof a lessexpensive machineon
one’s desktopmight not meanlack of accessto morepow-
erful hardwareelsewhere. A separateworkspaceprocess,
which canbe hostedon somecycle server, minimizesthe
penaltypaid. If onehasaccessto a graphicsworkstation,
thenahigher-performanceuserinterface— currentlybased
on Open Inventor [12] — would be available, and there
would betheoptionof runningtheworkspaceon thesame

workstationor anothermachine.CurrentLOGOS develop-
mentis performedonSiliconGraphicsworkstations.

Thereis oneadditionalway thatsomeusersmight want
to accessthe system. Insteadof using the user interface
provided with LOGOS, one might want to stick to some
existing software,for examplea neuralsimulationsystem
like GENESIS[1] or a mathematicalanalysispackagelike
MATLAB. Appropriateaccessmethodscanbeprovidedso
thata userof GENESIS,for example,couldconnectto the
datamanagerto retrieve experimentaldatato serve asthe
basisfor simulations.

Theneuroinformaticsproblemis complex, andit is un-
realisticto supposethatany initial systemdesignwill solve
all of theissuesof userinterfacedesign,visualization,data
management,useof domainknowledge,etc. LOGOS was
designedto be a framework for researchinto theseissues,
andthusits divisioninto thesemajorsubsystemsmaximizes
our ability to isolateeachof theseareas. Object-oriented
designandimplementationusingC++ hasbeenusedto in-
creaseour ability to encapsulateindependentsystemfunc-
tions. Of course,thereis necessarilya correspondencebe-
tween WS and UI data objects,since WS data must be
viewedby the user. However, this architecturedoesallow
isolationof decisionsof how the userviews and interacts
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Figure 6. User interface modules.

with thedatafrom theoperationstheWSperformsonthem.

2.1. User Interface

Fig.6 showsthattheuserinterfacehasfour components:
one or more viewers/manipulators, which handleexami-
nation and interactive modificationof data, a workspace
overview (WSO), which provides views of metadata(in-
formationaboutworkspacedataandfunctionobjects),lan-
guage resourcessupportingmulti-lingual capabilities,and
the user interfacecontroller (UIC), which sequencesthe
operationsof theUI componentsandtheir communication
with theworkspaceandprovidesa file systeminterfacefor
commandscripts and data import/export. This provides
isolationof datavisualizationto the viewers/manipulators
(currentlyimplementedusingOpenInventor)andmetadata
UI issuesto theWSO.TheUIC providesa “generic” con-
nectionto theworkspace.

Uponsystemstartup,theUIC requeststhat theuserlog
in to thesystem.This allows for securityin accessto data
andlogging of who performedwhat operations.The UIC
thenconnectsto theWS andrequestlogin verification.As-
sumingthe login is accepted,the UIC thenpresentsa list
of datatypesthat it can accept(constrainedby the capa-
bilities of its viewer) andthe WS replieswith a list of in-
formationaboutdataobjectsit containsandfunctionsthat
it can provide. The UIC displaysa WSO, which shows
the systemwidefunction and dataobject information and

allows the userto selectdataobjectsandoperationsto be
performedon them.Commandsfrom theWSOflow to the
UIC, which maydispatchthemto theWS or createoneor
moreviewersor manipulators.

A viewer is ameansfor renderingdata,typically graphi-
cally, andallowing a limited setof localandWSoperations
to be performedon the renderingor data,respectively. A
viewerproducesnonew dataitemsto addto theworkspace.
A viewer providesa setof local operationswhich modify
theappearanceof the rendering.A viewer alsoallows the
userto requestWSperformanceof certainoperationsonthe
datacorrespondingto a particularrendering,which would
passvia theUIC to theWS. Theviewer extendstheWSO
commanddispatchingcapabilityby allowing userspecifi-
cationof somesubpartor singleelementof adataobjectas
theinput for a WSfunction.

A manipulatoris a viewer that also offers interactive
functionsover its data. A manipulatorcan producenew,
deriveddata,which passvia theUIC to theWS.An exam-
ple is the interactive alignmentof two neurons,which can
produceanalignmentdataobjectfor storagein theWS(see
section3.4for a discussionof thealignmentprocess).

2.2. Workspace

The workspaceshown in Fig. 7 hasfour major compo-
nents:a workspacecontroller (WC) which managescom-
municationwith theUI andsequencesthe activities of the
otherWS modules,processingplug-inswhich representa
setof operationsover thedata(seesection3.2),a Working
memory(WM) that providesa temporarydatarepository,
andaquerymanager (QM) whichassemblesqueriesfor the
datamanagerandtransfersdatabetweentheDM andWM.

WhenaUI requestsaconnectionto theWS,theWC first
performslogin verification. Assuminglogin is successful,
the WC retainsinformationaboutthe currentuserfor the
durationof thesession,andusesthis to tagnewly imported
basedataandnewly computedderiveddata.TheWC then
negotiatesaconnectionprotocolwith theUI, thisconsisting
primarilyof theUI notifyingtheWCof thetypesof datait is
capableof displaying(this guaranteedto bea subsetof the
datatheWC is capableof sending)andtheWC providing
a list of datacontainedin WM andfunctionsprovided by
the processingpluginsandQM. Subsequently, the WC is
responsiblenotonly for receiptanddispatchof computation
requestsfrom theUI, but alsoupdatingtheUI onchangesin
thecontentsof WM (theresultof thecomputationrequests)
andconvertingdatain theWM into typesdisplayableby the
UI.
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3. Data, Functor, and Metadata Models

Data in LOGOS canbe consideredasexisting in a dis-
cretized,2D space,with one axis beingphysicallocation
within thesystem(UI, WS,DM) andtheotherbeingthecat-
egory of information. Threecategoriesexist: data, includ-
ing base(experimental)and derived, functors or function
objectsencapsulatingWS processingplugins,DM opera-
tions,andUI manipulatorcapabilities,andmetadataabout
dataandfunctors.

Datamay move from onephysicallocation to another.
When they do, they may changeform (data structures,
methods)and/orcontent(e.g., pruning down of WS data
to visualizableattributesbeforetransmittalto theUI). Cre-
ation of dataor functor objectsimplies creationof corre-
spondingmetadata,and movementof the former implies
thepreviousmovementof thelatter. Thus,themetadatacan
containinformation(or handles) necessaryfor referringto
databetweensubsystems.

TheUI mustdealwith eachcategoryof datadifferently.
Its WSOis a tool for metadataviewing andinteraction.At
its simplest,it usesmetadatato display lists of WS data
and available functions,appliesconstraintsabout functor
argumentnumberandtypeto providebasicerrorchecking,
and passeshandlesto dataand functorsto the UIC con-
troller for dispatchto theWSor viewers/manipulators.The
viewersandmanipulatorsreceivearenderablesubsetof the
contentsof WS dataobjects,their metadata,anda subset
of functormetadata,allowing theuserto commandcertain
WS operationson the displayeddata. The UIC receives
metadataandrenderabledatafrom theWS andhandlesfor
dataandfunctorsfrom theWSOandviewers/manipulators,
providesfunctormetadatafor manipulatoroperations,and
routesdatato theappropriatedestinations.

Within the workspace,all threecategoriesresidein the

WM, which is merelya passive, non-persistentstore. The
WC receiveshandlesto functorsanddatafrom theUI, ex-
ecutesfunctors,receivesmetadatafor any new datacreated
in theWM, andpassesthisnew metadataon to theUI. The
WC also,uponUI request,filtersWM datato producevisu-
alizablerepresentations(asper the capabilitysettransmit-
ted by the UI at connecttime) and transmitsthem to the
UI. Whendataarecreatedin aUI manipulator, theWC will
createmetadatafor them,storebothin WM, andreturnthe
new metadatato theUI.

Theaboveuseof metadatato describegenericcharacter-
isticsof bothdataandfunctorsservesto loosenthecoupling
amongsystemcomponents,allowing, for example,thead-
dition of functors(and, to someextent, datatypes)to the
WSwithoutmodificationof theUI.

3.1. Data

All data,whetherimportedinto thesystemasraw exper-
imentalresultsor derivedvia (possiblymany) operationson
otherdata,aresubclassedfrom anabstractDataclass.WM
operationsare all performedon objectsof classData (or
Info — metadata— objects,seesection3.3). Functors,on
theotherhand,maybespecializedto operateon particular
subclassesof Data or certainof their componentparts.For
brevity’s sake, we presentheretwo examplesof theobject
hierarchiesusedin LOGOS for storinganatomicaldataand
dataderivedfrom anatomicalinformation.

Fig. 8 presentsa partial LOGOS class hierarchy for
anatomicalexperimentaldatagatheredfrom a single ani-
mal: a Preparation. Suchdatausually include both the
anatomyof oneor moreNeurons andadditionalanatomi-
cal featuresnot associatedwith any or these.Theseaddi-
tional features,or Fiducials,areusedto registercoordinate
systemsbetweenindividuals.Fiducialsare“landmarks”—
relatively invariantacrossindividuals— usedto bring the
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spatialcoordinatesystemsin which multiple preparations’
anatomicaldataarecapturedinto alignment.

A neuronhasa treelike structure,andthusa genericbi-
nary tree classis the ancestorof much of its data. Un-
fortunately, it is often impracticalor impossibleto capture
thecell’s anatomyin its entirety, asits branchdiameterde-
creasessignificantlyasdistancefrom thecentralcell body
increases.However, theconnectionsbetweencells,or vari-
cositiesaretypically largeandimportantenoughthat they
aredigitized separately, and modeledas a set of spheres.
In both cases,the basicdatatypeis the 4-tupleof ����������� �
locationanddiameter! .

Fiducials,on theotherhand,usuallyhave only their lo-
cations(without any diameterdata)recorded,as they are
mostly the outlines of large internal structures(saved as
paths)or key featurelocations(savedaspoints).

As wasalludedto in the introductionandthe previous
discussionof aligningcoordinatesystems,computinggen-
eral resultsfrom the specificexamplesobtainedfrom par-
ticular individuals is challenging. Preciseanatomicalor-
ganizationis not identical from one animal to the next.
However, thereareof coursecertainorganizationalaspects

which are preserved amongall membersof a particular
species.Therefore,thoughthe precisecoordinatesystems
for any two individualsarenot the same,the topologyof
thatspaceis, andin many casesthecoordinatesof onemay
betransformedto thatof theotherby simpleoperationslike
translation,rotation,andscalingalongindividualaxes.This
transformationis a3DAlignment, shown in Fig. 9.

A 3DAlignmentis aDerivedData, andis computedfrom
two Preparations: a referenceandanalignee. Theprocess
involveslocatingcorrespondingfiducialsbelongingto each
preparation,and thenusing themto determinethe appro-
priate transformation.The computationassociatedwith a
3DAlignmentmaybeperformedinteractively in somecases
(seesection3.4).

Another kind of derived data, this time combiningin-
formationaboutseveralneuronsfor a higher, system-level
overview, is theSynapticDensityField. A SynapticDensity-
Field is computedfrom the VaricositySets of oneor more
neurons(for which a single, unifying 3DAlignmentmust
exist). It is a real-valuedfunction of the �"�#���$�%�&� space
definedby their unifying 3DAlignment, with the value at
eachpoint beingan estimateof the input strengthexerted
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by the neuronson any otherneuronthatwould receive in-
put at that point. Synapticdensityis oneway to produce
anaverageneuron from specificonesmeasured.It canalso
be extendedto a vector-valuedfunction, and the result is
a completemapof wind velocity within thephysicalspace
definedby thesensoryneurons’varicosities[6]. Section3.5
describeshow LOGOS functorscanbecombinedto produce
aSynapticDensityField.

3.2. Functors

The LOGOS functor concept is similar to that pro-
vided by the C++ StandardTemplateLibrary [9] (STL):
it is an object that can be called like a function (an ordi-
nary function,a function pointer, or an objectthat defines
operator()). However, unlike the STL, compile-time
type checkingis not very useful here; we thereforedis-
pensewith theSTL functorclassesandprovideonefunctor
classand mechanismsfor run-timecheckingof argument
type, number, andorder, aswell as“documentationdata”
displayablefor theuser’s benefit(printablefunctionname,
shortdescription,etc). For eachfunctor, a corresponding
metadataobject(FunctorInfo) is createdwith thefollowing
information:

Name Stringcontainingfunctionname,for userinterface.

Description Short documentationstring describing the
function,for userinterface.

Arguments Numberof arguments;unsigned.

ArgTypes One for eachargument;an enum that is also
usedto designatedataobjecttype.Notethattheactual
argumentspassedat theeventualfunctioncall mayin-
cludeadditioninformation,perhapstakenfrom associ-
atedmetadata.

ArgDesignators Somefunctorstakein multiplearguments
of thesametype,but treatthemdifferently. Theuser
interfacecannotbe relied upon to provide argument
orderinformation,sotheroleof eachargumentcannot
be implicit in their specificationorder. A string that
documentsan argument’s role canbe associatedwith
any or all (seesection3.4for anexample).

ReturnType An enum specifyingthe type of dataobject
createdby the functor. Note that this doesnot imply
that the functionsthat areeventuallycalledhave this
returntype;they returnstructuresthatcontainsuccess
or failureinformationpluspointersto datathatcanbe
usedby the WS to constructthe appropriatedataob-
ject.

Handle A referenceto thefunctoritself, usedto invoke it.

3.3. Metadata

Thereare two typesof metadata:that which describes
dataandthatwhich describesfunctors. The latter wasde-
scribedin section3.2;wesummarizetheformerhere.Like
FunctorInfo, DataInfoservesthepurposesof run-timetype
checkingandinput validationanddocumentation.Unlike



functors,however, differentdataobjectsof the sameclass
are interchangeable(functorsat least have their inherent
computationalcapabilitiesthatdefinethem). We mustrely
onobjects’DataInfoto allow usto distinguishamongthem.
DataInfoincludes:

Name A string containinga creatorselectedname. For
experimentaldataimportedinto thesystem,theseare
typically selectedusing somesystemenablingquick
identificationof theexperiment.For deriveddatagen-
eratedby somefunctor, thesemaybelessuseful.

Notes A stringcontaininguser-enterednotes.

History Functorand argumenthandles, along with date,
time,anduser. For experimentaldata,thiswould indi-
cateimport date,time, andcreator. For deriveddata,
thiswouldpoint to thefunctorthatreturnedit, plusthe
functorarguments.A completehistorycanbe gener-
atedby recursively following thehistoryentryof each
dataobjectargument’sDataInfo.

Tuning An optionalfield, which for preparationsindicates
thewind directionthatelicitsa maximalresponse.

Handle A referenceto thedataobjectitself.

3.4. Interactive Example: The Alignment Process

The processof interactively aligning two preparations’
coordinatesystemsis a simple exampleof how dataand
metadataareusedby theUI. Theinteractivealignmentpro-
cessinvolvesdisplayingtwo preparations,containingboth
neuronstructureandfiducial landmarkdata,in a manipu-
lator that providestools for translation,rotation,andscal-
ing. Onepreparation— the reference— remainslocked
in placewhile theother(thealignee) is moved,turned,and
stretcheduntil theuserjudgesthat thetwo setsof fiducials
arematchedascloselyaspractical.Theresultis a3DAlign-
ment.

Like all LOGOS operations,this begins in the WSO,
which is displayinglists of WS dataobjectsandfunctors.
Theinteractivealignmentfunctorresidesin theUIC, which
createsthefollowing FunctorInfofor theWSO:

Name ‘‘Interactive
Alignment’’

Description ‘‘Use manipulator to
manually align two
preparations’’

Arguments 2
ArgTypes arg0: preparation

arg1: preparation
ArgDesignators arg0: ‘‘reference’’

arg1: ‘‘alignee’’
ReturnType 3DAlignment
Handle referenceto theUIC functor

Supposethe userselectstwo preparationsand the “In-
teractive Alignment” operation. The WSO then checks
the number of data objects selectedagainst the “Argu-
ments”field above andthe type of eachargumentagainst
the “ArgTypes” entries. Next, we note that thereare two
“ArgDesignators”,indicating that eachargumentplays a
particularrolein theoperation.TheWSOmustthenprompt
theuserto assigna role (“Reference”versus“Alignee”) to
eachof thepreparations.

At this point, we are readyto executethe functor, and
theWSOpassesthe functorandargumenthandles(thear-
gumentrolesnow beingimplicit in their order)to theUIC.
In this case,this is a UIC functorwhich createsa manipu-
lator, fetchesrenderableversionsof the preparationsfrom
the WS, andpassesthe preparationsandtheir metadatato
themanipulator. Theusercantheninteractwith themanip-
ulator(or dootheroperationswithin LOGOS, asthemanip-
ulator is managedasa separatewindow) until heor sheis
satisfiedwith the alignment. At that point, the manipula-
tor returnsa new 3DAlignmentobject,which is passedto
the WS alongwith its newly-createdmetadata(which in-
cludesa historyentryshowing it wascreatedby aninterac-
tivealignmentof thetwo preparations).

3.5. Abstraction: Computation of Response Maps

A morecomplex operationthat involvesWS functorsis
the computationof the responsemapshown in Fig. 3. To
computethis, we mustaddresstheproblemof determining
a“typical” cell’s influencebasedonourspecificexperimen-
tal data[11]. Ordinarily, this would be accomplishedvia
statisticaltechniques.However, thesearenotdirectlyappli-
cableto thetree-likestructureof a neuron.Two reasonable
assumptionsareusedto renderthis problemtractable:that
sensorycells influenceinterneuronsonly via their varicosi-
tiesandthat theprobabilityof an interneuronreceiving in-
put from a typical sensorycell canbe computedfrom the
distanceits branchesarefrom its varicositiesandthevari-
cosities’surfacearea.Determinationof a typical cell’s in-
fluenceis thenreducedto:

1. computinga functionof 3D spacewithin theganglion
basedon thedistributionof varicositiesin eachprepa-
ration.

2. combiningthesemultiple functionsto form a single,
overall influencefunction (by summation,for exam-
ple).

Themetadataassociatedwith theresponsemapcompu-
tationis:



Name ‘‘Compute Response Map’’
Description ‘‘Estimate overall

response to a stimulus’’
Arguments 2
ArgTypes arg0: preparationList

arg1: userReal
ArgDesignators arg0: none

arg1: ‘‘Direction’’
ReturnType ResponseMap
Handle referenceto thefunctor

The argumentto this functor is a list of one or more
preparationsanda numberfor which theuseris prompted
(stimuluswind direction);aftertheWSOperformsits argu-
mentchecking,thehandlesarepassedto theUIC andthen
onto theWS.Theresponsemapfunctoris composedof five
simpleroperations[11]:

1. Find composite3DAlignments which producea com-
mon spacefor a set of preparationsand apply them,
producinga setof alignedpreparations.

2. For a singleVaricositySet, computea synapticdensity
field. This is doneby iterating throughthe varicosi-
ties,computingits contribution to theoverall field (as
a gaussianfunctionof the sphere’s surfacearea),and
summingtheindividualcontributions.Thisproducesa
SynapticDensityField object.

3. For asinglePreparation, computeits responseto wind
blowing in aparticulardirection.

4. For a single SynapticDensityField, computea func-
tional transformationby multiplying the field values
by a constant,producingaResponseMap.

5. Sumasetof ResponseMaps,producinga new one.

Thesearesequencedby the WC. Oneparticularoperation
that is likely to fail is number1, if no compositealign-
mentcanbefound(via aminimumspanningtreealgorithm)
thatbringsall preparationsinto the samespace.This fail-
urewould bereportedto theUIC, andtheuserwould need
to do additionalalignmentsbeforetrying again.Assuming
success,the WC would return metadatafor the final Re-
sponseMap, andperhapssomeof the intermediateobjects
produced(whetherthe intermediateobjectsare temporary
or not is animplementationissueto beconsideredfor algo-
rithm efficiency).

Note that thesefive simpleroperationsmight be utility
functionsknown only to theWS,or they mightbefunctors.
The lattercapability— compositionof functorsinto more
complex operations(aswith the STL functor adaptors)—
is at theheartof theMETALOGOS extension.

4. METALOGOS and the Application of Do-
main Knowledge

A follow-on to the LOGOS project is METALOGOS, a
systemwhich addsdomainknowledgeso that usersmay
pose system-level queriesand receive responsesat that
level. For example,researchersoftendesireto think not in
termsof particularcellsin particularindividuals,but rather
a particularclassof cells. We may know that all sensory
cells connectedto a particularregion of the sensoryorgan
havevelocity tuningcurveswith peaksensitivities for high-
speedair motion. Thoseconnectedto otherregionsmight
have muchlower peaksensitivities. A convenientcatego-
rizationmightbe“f ast”versus“slow”, andwemightassign
asensoryneuronto onecategoryor anotherbasedontuning
data,if presentor calculablefrom physiologicaldata,or lo-
cationof its connection,if only anatomicaldatais available.
Thus,onetypeof domainknowledgeusedbyMETALOGOS

is categorical or taxonomic. Categoriesmay be entered
manually, and thus attributed to an individual person,or
computedfrom statisticalclusteranalysis.

Domainknowledgealsoincludesknowledgeof thecon-
sequencesof variousalgorithms,for instancehow comput-
ing a synapticdensityfield establishesa mappingbetween
singlecells in individual animalsandeither“typical” cells
of that typeor cell systems.Knowledgeaboutdataobjects
or functorswould be storedin their associatedmetadata,
and would start with codifying the information currently
containedin stringsin a machine-usableformat.

Thebasicflow of processingin METALOGOS is:

1. Acceptsystems-level query.

2. Usedomainknowledgeto mapsystems-level queryto
a dataflow diagram,startingwith queriesof existing
baseandderiveddataandusingavailablefunctorsto
producea resultthat is a responseto thequery. If no
suchdataflow programcanbedetermined,any partial
diagramsshouldbe reportedalongwith failure to the
userinterface,so the experimentercaneithermodify
the query, modify the dataflow diagram,or addaddi-
tionaldomainknowledge.

3. Otherwise,passdataflow programto commandand
displayinterfacefor execution.

4. Returnresultto userinterface.

METALOGOS is also meantto deal more thoroughly
with issuessuchasattributionof sourcesfor data,etc.This
is to someextentanextensionof trackingerrorpropagation
throughcalculations;in thiscase,individualuserswouldbe
ableto assignlevelsof “trustworthiness”to others,andthe
systemwill computea reasonableestimateof thetrustwor-
thinessof its results,basedon who originatedthe knowl-



edgeit used. Ideally, METALOGOS would include— ei-
ther aspart of its databaseor via interfaceor broker pro-
grams— links betweendataandthe publicationsthat use
them. This would provide both a mechanismfor making
the datauponwhich a publicationis basedpublic andthe
meansfor otherinvestigatorsto easilyexaminethedataand
algorithmsusedby othersto draw their conclusions,per-
hapsusingone’sown dataastests.

5. Discussion

Moving neuroinformaticsbeyond the stageof merely
producingenhancedfile systemsor electronicanatomical
atlasesis a difficult task. Successfulsystemswill require
architectswho arecomfortablein both the biological and
computerdomains,aswell asclosecollaborationwith ac-
tive biology researchers.Thoughonewould not expectto
have solutionsto the large numberof userinterface,visu-
alization, database,knowledgerepresentation,etc. prob-
lemsa priori , thesystemsproducedshouldbeusefuleven
in their infancy. This implies a decompositionof the de-
sign into componentswhich areasindependentfrom each
otheraspractical.Sinceany initial dataschemaswill evolve
andgrow considerablyover thesystem’s life cycle, its ini-
tial designshouldallow this and,asfar aspossible,foresee
possibleareasof change.The systemshouldalsohave at
leastanelementof “the vision thing”: anultimategoalthat
will improvebothin depthandbreadththeresearchprocess
itself.

6. Implementation Status

As of the dateof this writing, componentsof the user
interface(viewer/manipulator, WSO)andworkspace(WC,
WM) havebeenprototyped.Theseprototypesarecurrently
beingmodifiedfromstand-alone,testversions.Theremain-
ing UI andWS modulesarein thedetaileddesignandcod-
ing stages;we expecttheUI andWS to befully functional
andintegratedtogethershortly. Datamanagerimplementa-
tion awaitsacquisitionof theObjectStoreODBMS.
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