Kristi AnsethDynamic Cell Scaffolds through Photochemical Reactions

12:30 – 1:30pm, Foege N130A (Wallace H. Coulter Seminar Room)

Talk Abstract

A better understanding of the physical and biomolecular cues in the stem cell niche has led to a growing interest in the development of material systems for improved 3D culture environments, as well as delivery vehicles to promote cell survival and differentiation. As a result, hydrogels based on both protein components (e.g., collagen and Matrigel) and highly-tunable synthetic chemistries (e.g., PEG) have evolved to address many of these needs. However, as advances in real-time tracking of dynamic cellular functions have emerged, complementary approaches to alter the surrounding extracellular environment in a user-defined and highly-controlled fashion are needed. Such materials systems have the potential to significantly improve our understanding of how cells receive information from their microenvironment and the role that these dynamic processes may play in biological questions related to their differentiation. Towards the goal of developing dynamically tunable scaffolds, this talk will highlight several approaches for in situ hydrogel property manipulation with light, allowing intimate control of a cell’s microenvironment in both time and space. The synthesis and characterization of gels with photolabile linkers (e.g., nitrobenzyl ether) and photoconjugation reactions (e.g., thiol-ene) will be discussed, along with more recent developments in photoreversible reactions (e.g., addition fragmentation chain transfer reactions). These photoactive hydrogels afford unique user-defined manipulation of the biochemical and biomechanical nature of the extracellular microenvironment. This talk will present several examples where user-triggered changes in the material environment can be used to study study and direct human mesenchymcal stem cell function by modifying the local hydrogel environment.

Biography

Kristi S. Anseth is a Howard Hughes Medical Institute Investigator and Distinguished Professor of Chemical and Biological Engineering at the University of Colorado at Boulder. Dr. Anseth came to CU after earning her B.S. degree from Purdue University in 1992 and her Ph.D. degree from the University of Colorado in 1994 and completing post-doctoral research at MIT as an NIH fellow. Her research interests lie at the interface between biology and engineering where she designs new biomaterials for applications in drug delivery and regenerative medicine. Dr. Anseth’s research group has published over 250 publications in peer-reviewed journals and presented over 200 invited lectures in the fields of biomaterials and tissue engineering. She was the first engineer to be named a Howard Hughes Medical Institute Investigator and received the Alan T. Waterman Award, the highest award of the National Science Foundation for demonstrated exceptional individual achievement in scientific or engineering research. Dr. Anseth is an elected member of the National Academy of Engineering (2009), the Institute of Medicine (2009), and the National Academy of Sciences (2013). She is also a dedicated teacher, who has received four University Awards related to her teaching, as well as the American Society for Engineering Education’s Curtis W. McGraw Award. Dr. Anseth is a Fellow of the American Association for the Advancement of Science, the American Institute for Medical and Biological Engineering, and the Materials Research Society. She serves on the editorial boards or as associate editor of Biomacromolecules, Journal of Biomedical Materials Research — Part A, Acta Biomaterialia, Progress in Materials Science, and Biotechnology & Bioengineering.