Project Description

Associate Professor
Phone: (206)685-2840
Office: Foege N210D


My laboratory focuses on the role of carbohydrates in the body and how they can be utilized to develop new drug delivery mechanisms.
Label-free biosensors
Surface modification/characterization
Global health
Host-pathogen interactions
Drug development/delivery
Carbohydrate Microarrays
Carbohydrates and glycoconjugates play an essential role in biology and medicine. Glycans are implicated in fertility, control many host-pathogen interactions (including influenza and gastroenteritis), serve as cancer antigens, and effect tumor metastasis. The Ratner laboratory is developing label-free glycoarray technologies to study carbohydrate-protein, carbohydrate-nucleic acid and carbohydrate-cell interactions with particular emphasis on the effects of surface chemistry, method of immobilization, density of attached glycan, and glycan accessibility on microarray performance. These tools will be used by the research community to improve our understanding of the biological roles of carbohydrates and aid in the development of novel drugs and treatments for cancer and infectious diseases.

Anti-adhesion Drugs
Pathogens, including protists, bacteria and viruses, are among humanity’s most significant and worthy adversaries. A great deal can be learned about fundamental biological processes by studying these supposedly simple organisms. Our lab is interested in developing new tools—based on label-free carbohydrate arrays—to study the roles played by glycans in mediating adhesion between pathogen and host. The ultimate goal of studying host-pathogen interactions is to design new means for disrupting pathogenesis.

Biomimetic Biomaterials: Nature has a great deal to offer when it comes to novel biomaterials. An especially remarkable material made by many pathogens is the cyst wall biopolymer, a natural stealth biomaterial. Many protozoan pathogens encyst to form a resilient and infectious cyst or spore, including Giardia, Entamoeba, Toxoplasma, Cryptosporidium, Acanthamoeba, Microsporidia, and Cyclospora. A mixture of carbohydrate and protein polymers, the cyst or oocyst wall protects the parasite during its passage between hosts, enabling the cell to resist bacterial degradation, shielding the cell from the hydrolytic environment of an animal’s digestive tract, and evading host immunity. Our lab is studying these biopolymers with an eye for designing materials based on their unique properties and composition.

Carbohydrates can be used as molecular biomarkers, providing a window into cellular processes, wound healing, tissue differentiation, pathogen virulence and host-pathogen interactions. Utilizing mass spectrometry, the Ratner lab is identifying carbohydrate-modified proteins critical to infectious diseases—including malaria, giardiasis, trichomoniasis and amoebic dysentery. This research is being used to develop an understanding of enteric pathogens, to provide candidates for diagnostics and vaccine development, and to illuminate the molecular mechanisms of infection.

PhD, Chemistry, Massachusetts Institute of Technology, 2004
BA, chemistry, Pomona College, 1999
2012 Visiting Scholar, State Key Lab, Dalian University of Technology, China
2012 Bioengineering Award for Outstanding Teacher/Mentor
2011 Wallace H. Coulter Translational Research Award
2010 NAE Frontiers of Engineering Education
2010 NAE U.S. Frontiers of Engineering (US FOE), UW Nominee
2010 Bioengineering Award for Outstanding Teacher/Mentor
2007 Recruitment Award, Washington Research Foundation
2004 Ruth L. Kirschstein NRSA Postdoctoral Fellowship, NIH
2002 Excellence in Teaching by a Graduate Student, MIT
2000 NIH Predoctoral Research Fellowship, Biotechnology Training Program, MIT
1999 Phi Beta Kappa, Pomona College
1999 Pomona College Scholar, Pomona College
1998 Nominated Associate Member of Sigma Xi, Pomona College
1995 Phi Beta Kappa Award for Top Graduating Senior, Shorewood High School
BIOEN 315: Biochemical Molecular Engineering
BIOE 497: Bioengineering Education Outreach
Dhayal, M; Ratner, D. M. XPS and SPR Analysis of Glycoarray Surface Density. Langmuir, 2009, 25, 2181-2187.

Ratner, D. M.; Cui, J.; Steffen, M.; Moore, L. L.; Robbins, P. W.; Samuelson, J. Changes in the N-Glycome, Glycoproteins with Asn-Linked Glycans, of Giardia lamblia with Differentiation from Trophozoites to Cysts. Eukaryotic Cell. 2008, 7, 1930.

Adams, E. W.; Ratner, D. M.; Seeberger, P. H.; Hacohen, N. Carbohydrate-Mediated Targeting of Antigen to Dendritic Cells Leads to Enhanced Presentation of Antigen to T Cells. ChemBioChem, 2008, 9, 294-303.

Ratner, D. M.; Seeberger, P. H. Carbohydrate Microarrays as Tools in HIV Glycobiology. Curr. Pharm. Design. 2007, 13, 173-183.

Ratner, D. M.; Murphy, E. R.; Jhunjhunwala, M.; Snyder, D. A.; Jensen, F. K.; Seeberger, P. H. Glycosylation as a Challenge for Microreactor-based Reaction Optimization in Organic Chemistry. Chem. Commun. 2005, 5, 578-580.

Ratner, D. M.; Adams, E. W.; Disney, M. D.; Seeberger, P. H. Tools for Glycomics: Mapping Interactions of Carbohydrates in Biological Systems. ChemBioChem, 2004, 5, 1375-1383.

Adams, E. W.; Ratner, D. M.; Bokesch, H. R.; McMahon, J. B.; O’Keefe, B. R.; Seeberger, P.H. Oligosaccharide and Glycoprotein Microarrays as Tools in HIV-Glycobiology: A Detailed Analysis of Glycan Dependent gp120 / Protein Interactions. Chem. Biol. 2004, 11, 875-881.

Ratner, D. M.; Adams, E. W.; Su, J.; O’Keefe, B. R.; Mrksich, M.; Seeberger, P. H. Probing Protein-Carbohydrate Interactions with Microarrays of Synthetic Oligosaccharides. ChemBioChem. 2004, 5, 379-383.

Adams, E. W.; Uberfeld, J.; Ratner, D. M.; O’Keefe, B. R.; Walt, D, R.; Seeberger, P. H. Encoded Fiber-Optic Microsphere Arrays for Probing Protein-Carbohydrate Interactions. Angew. Chem. Int. Ed. 2003, 42, 5317-5320.


In the News

  • Wendy Thomas and Dan Ratner

Wendy Thomas, Daniel Ratner receive 2016 UW College of Engineering Awards

April 18th, 2016|Comments Off on Wendy Thomas, Daniel Ratner receive 2016 UW College of Engineering Awards

  • Researchers in UW's NNIN Washington Nanofabrication Facility

UW nanofabrication lab to receive $37M to expand work on tiny chips, sensors

August 3rd, 2015|Comments Off on UW nanofabrication lab to receive $37M to expand work on tiny chips, sensors

  • Illustration of PPAMs device
  • Illustration demonstrating how a diagnostic device can be printed with an inkjet paper, processed and scanned
  • Yager diagnostic device
  • Illustration demonstrating how to use multi-step diagnostic device
  • simple diagnostic for HIV

Rapid results lead the way in inventing the high-tech, low-cost future of medicine

February 14th, 2014|Comments Off on Rapid results lead the way in inventing the high-tech, low-cost future of medicine

  • UW Bioengineering assistant professor Dan Ratner

Sticky paper offers cheap, easy solution for paper-based diagnostics

July 30th, 2013|Comments Off on Sticky paper offers cheap, easy solution for paper-based diagnostics