Educating the well-rounded engineer

Insights from the Academic Pathways Study

2009 October 20
Frontiers in Education 2009
Cindy Atman, Director
Center for the Advancement of Engineering Education
University of Washington

Based upon work supported by National Science Foundation Grant No. ESI-0227558. Opinions, findings and conclusions or recommendations expressed in this material are the authors' and do not necessarily reflect the views of the NSF.

Academic Pathways Study

► APS lead: Sheri Sheppard
► APS team: Cynthia Atman, Lorraine Fleming, Ronald Miller, Karl Smith, Reed Stevens, Ruth Streveler
► CAEE Leadership team: Robin Adams, Cynthia Atman, Sheri Sheppard, Lorraine Fleming, Larry Leifer, Ronald Miller, Barbara Olds, Karl Smith, Reed Stevens, Ruth Streveler, Jennifer Turns
CAEE-related sessions at FIE

- How Do Engineering Educators Take Student Difference Into Account?
 Yesterday, 4:30–6:00 pm (M4E); B. Sattler, J. Turns, K. Gygi

- Research Findings on Engineering Student Learning and Engineering Teaching
 Today, 10:00–11:30 am, El Mirador East (T2A); D. Chachra et al.

- Developing Engineering Student’s Philosophical Inquiry Skills
 Today, 3:30–5:00 pm, El Mirador West (T4B); R. Korte & K. Smith

- Outside the Classroom: Gender Differences in Extracurricular Activities of Engineering Students
 Tomorrow, 8:00–9:45 am, La Condesa West (W1D); D. Chachra, H. L. Chen, D. Kilgore, S. D. Sheppard

- We are Teaching Engineering Students What They Need to Know, Aren’t We?
 Tomorrow, 8:00–9:45 am, La Espada (W1E); H. Matusovich, R. Streveler, R. Miller

Selected APS findings: Successful engineering students

- Learning skills and language of engineering, e.g., teamwork, communication
- Becoming more confident with design
- Developing identity as engineers
- Better understanding what engineers do, e.g., through co-ops, internships
- Good persistence rates, but little in-migration
Selected APS findings: Challenges

- Heavy workload, competitive culture
- Disconnect between early math/science courses and “real engineering”
- Difficult transition from individual work on “textbook” problems to teaming on open-ended problems
- Gendered experiences, confidence
Which three are the most important?

- Contemporary issues
- Societal context
- Global context
- Conducting experiments
- Professionalism
- Management skills
- Science
- Business knowledge
- Leadership
- Engineering tools
- Life-long learning
- Data analysis
- Math
- Creativity
- Design
- Ethics
- Engineering analysis
- Teamwork
- Communication
- Problem solving

Importance (seniors)
Preparedness (seniors, self-report)

Global context

Contemporary issues

Societal context

The well-rounded engineer

- Understanding engineering as discipline and profession
- Life-long learning
 “...the engineer of 2020 will learn continuously throughout his or her career, not just about engineering but also about history, politics, business, and so forth.”
- Consideration of broader context
 “Successful engineers in 2020 will, as they always have, recognize the broader contexts that are intertwined in technology and its application in society.”
Research methods & samples

 - National Survey of Student Engagement
 - \(N = 11,819 \); matched pairs (first-year and senior) from 247 institutions

L Longitudinal cohort (2003–2007)
 - Surveys, structured interviews, ethnographic interviews and observations, engineering design tasks
 - \(N = 160^* \) from four campuses

B Broad national sample (Spring 2008)
 - APPLES2 survey
 - \(N = 4,266^*, \) cross-sectional sample from 21 engineering colleges

W Workplace cohort (2007)
 - Interviews
 - \(N = 17^*, \) early-career engineers at a U.S.-based, global manufacturer

*Oversampled for underrepresented groups

Undergraduate engineering education

A. Pathways in

B. Pathways through

C. Pathways out

engineering curriculum

Real life

FIE 2009, Atman 11

FIE 2009, Atman 12
A. Pathways in

B. Pathways through
 1. What we offer
 2. What students learn

C. Pathways out
 1. Career choices
 2. Early-career engineers

Outline
Motivation to study engineering

N = 1,130
FIE 2009, Atman

Motivation to study engineering

N = 326 women + 795 men
FIE 2009, Atman
RECAP: Student motivation

- Engineering majors are motivated in part by the opportunity to be well-rounded.
 - Social good
 - Potentially part of intrinsic psychological, behavioral

DISCUSSION: Pathways in

Do these findings match your experiences on your campus?
B. Pathways through

1. science
2. engineering analysis
3. capstone
4. internship/research

Outline

A. Pathways in
 - Student motivation

B. Pathways through
 - 1. What we offer
 - 2. What students learn

C. Pathways out
 - Career choices
 - Early-career engineers
Engineering vs. other majors: Educational experiences (seniors)

<table>
<thead>
<tr>
<th>HIGH</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culminating senior experience</td>
<td>Study abroad</td>
</tr>
<tr>
<td>Practicum/co-op/internship/field experience</td>
<td>Indep. study/self-designed major</td>
</tr>
<tr>
<td>(95%)</td>
<td>Foreign language coursework</td>
</tr>
</tbody>
</table>

(%) engineering seniors)
What counts as engineering?

1. "idealized world"
 - well-defined problems
 - individual
 - single solution

2. "real world"
 - open-ended problems
 - teams
 - multiple solutions

RECAP: What we offer

- Compared with other majors, we offer more opportunities for practice, but place less emphasis on opportunities for a well-rounded education.

- The structure of our curriculum often begins with “idealized world” that doesn’t necessarily require well-roundedness, and doesn’t get to “real world” which requires well-roundedness until the later years.
Outline

A. Pathways in
 ● Student motivation

B. Pathways through
 1. What we offer
 2. What students learn

C. Pathways out
 ● Career choices
 ● Early-career engineers

Engineering vs. other majors:
Engagement and outcomes scales

<table>
<thead>
<tr>
<th>HIGH</th>
<th>LOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY higher order thinking practices</td>
<td>71</td>
</tr>
<tr>
<td>FY gains, practical competence</td>
<td>73</td>
</tr>
<tr>
<td>Sr gains, practical competence</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(0–100 scale)
Important design activities

“Of the twenty-three design activities below, please put a check mark next to the SIX MOST IMPORTANT:

- Abstracting
- Brainstorming
- Building
- Communicating
- Decomposing
- Evaluating
- Generating alternatives
- Goal setting
- Identifying constraints
- Imagining
- Iterating
- Making trade-offs
- Modeling
- Planning
- Prototyping
- Seeking information
- Sketching
- Synthesizing
- Testing
- Understanding the problem
- Using creativity
- Visualizing

FIE 2009, Atman

Important design activities

Year 1

N = 89

% participants including item among six “most important”
Important design activities, changes

- Visualizing*
- Planning*
- Communicating*
- Using creativity
- Building
- Prototyping
- Evaluating
- Modeling
- Iterating**
- IDing constraints***

FIE 2009, Atman

What counts as engineering: The student experience

"idealized world"
- well-defined problems
- single solution
- individual

"real world"
- open-ended problems
- teams
- multiple solutions

FIE 2009, Atman
Alternating design tasks

1. Midwest floods
2. Street crossing
3. Midwest floods
4. Street crossing

Midwest floods design task

10-minute, paper-and-pencil design task

“Over the summer the Midwest experienced massive flooding of the Mississippi River. What factors would you take into account in designing a retaining wall system for the Mississippi?”
Year 3 floods task responses

Floods coding scheme
Close/broad contextual factors

- **Broad context** factors: social, natural, riverbank, surroundings, etc.
 - “aesthetic appeal – is it going to draw local complaint?”
 - “the surrounding habitat – make sure little or no damage is done to the environment”
 - “would wall impact use of the river by industry?”

- **Close context** factors: technical, wall, logistical, water, etc.
 - “cost of materials”
 - “check the budget available for the operation”
 - “how to contain the river water that has flooded out”

More factors in Year 3

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[N = 69 \text{ (longitudinal sample)} \]
\[\rho < 0.001 \text{ (total factors)} \]
More close context in Year 3

![Bar chart showing differences in close and broad context factors between Year 1 and Year 3.](chart.png)

- Year 1: Close factors = 6, Broad factors = 6
- Year 3: Close factors = 8, Broad factors = 5

- Average number of factors:
 - Year 1: Close - 6, Broad - 6
 - Year 3: Close - 8, Broad - 5

- \(N = 69 \) (longitudinal sample)
- \(p < 0.001 \) (total factors and close context factors)

Gender differences

- **Important design activities**
 - Women were less likely to select *Building*, more likely to select *Seeking information* and *Goal setting*.

- **Midwest floods**
 - Women cited more factors than men.
 - Specifically, women cited more *broad context* factors than men.
Alternating design tasks

1. Midwest floods
2. Street crossing
3. Midwest floods
4. Street crossing

RECAP: What we offer, what students learn

▶ Just as they are given more opportunities to practice than other majors...
 ...students report greater gains in practical competence.

▶ Just as opportunities to become well-rounded are not emphasized...
 ...students report fewer gains in areas related to well-roundedness (e.g., life-long learning skills, personal development).
RECAP: What we offer, what students learn

Reflecting the trajectory of their curriculum, from “idealized world” to “real world,” from well-defined problems to more open-ended design...

...students develop in their use of the language of engineering and design

Reflecting the emphasis on practical competence relative to well-roundedness...

...students may not exhibit adequate attention to context when engaged in design.

DISCUSSION: Pathways through

Do these findings match your experiences on your campus?
C. Pathways out

Outline

A. Pathways in
- Student motivation

B. Pathways through
- 1. What we offer
- 2. What students learn

C. Pathways out
- Career choices
- Early-career engineers
Career choices

- Students who complete a major in engineering are not necessarily committed to careers in engineering or even STEM.
- Commitment to engineering career after graduation varies with institution.
- Student career decisions strongly swayed by specific, significant experience, e.g., internship, faculty interaction, mentor advice.

Early career engineers

- Perception of not doing a lot of “real engineering”
 “I don’t feel like I’ve had to actually do engineering”
- Problems highly uncertain, ambiguous, complex
 “In the real world, it’s a lot more difficult to model things... There’s a lot more variables involved…”
- More practical, hands-on work
 “There’s no mathematical formula you could use, like you would in school...”
RECAP: Pathways out

- Graduates don’t always choose engineering careers
- When they do, they don’t always feel well-rounded enough

Outline

- A. Pathways in
 - Student motivation
- B. Pathways through
 - 1. What we offer
 - 2. What students learn
- C. Pathways out
 - Career choices
 - Early-career engineers
Supporting student pathways

Student voices:
Significant learning opportunities

- Relevant and meaningful (applicable, experiential, real-world, hands-on)
- Challenge, conflict, dilemma, frustration, and/or obstacles
- Promotes self-directed learning
- Student ownership of the experience
- Facilitates a broader vision, shows how the pieces fit together
Senior-year setbacks

Compared with first-years, seniors...
- ...are less involved in engineering courses.
- ...interact more frequently with instructors.
- ...are less satisfied with instructors.
- ...are less satisfied with their college experiences.

The well-rounded engineer

- Understanding engineering as discipline and profession
- Life-long learning
 “...the engineer of 2020 will learn continuously throughout his or her career, not just about engineering but also about history, politics, business, and so forth.”
- Consideration of broader context
 “Successful engineers in 2020 will, as they always have, recognize the broader contexts that are intertwined in technology and its application in society.”
Recalling the large list of learning outcomes

Contemporary issues Life-long learning
Societal context Data analysis
Global context Math
Conducting experiments Creativity
Professionalism Design
Management skills Ethics
Science Engineering analysis
Business knowledge Teamwork
Leadership Communication
Engineering tools Problem solving

Important skills/knowledge

<table>
<thead>
<tr>
<th>Skill</th>
<th>Year 4 % participants including item among five “most important”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem solving</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Teamwork</td>
<td></td>
</tr>
<tr>
<td>Engineering analysis</td>
<td></td>
</tr>
<tr>
<td>Ethics</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Creativity</td>
<td></td>
</tr>
<tr>
<td>Life-long learning</td>
<td></td>
</tr>
<tr>
<td>Data analysis</td>
<td></td>
</tr>
<tr>
<td>Math</td>
<td></td>
</tr>
<tr>
<td>Engineering tools</td>
<td></td>
</tr>
<tr>
<td>Leadership</td>
<td></td>
</tr>
<tr>
<td>Business knowledge</td>
<td></td>
</tr>
<tr>
<td>Science</td>
<td></td>
</tr>
<tr>
<td>Management skills</td>
<td></td>
</tr>
<tr>
<td>Professionalism</td>
<td></td>
</tr>
<tr>
<td>Conducting experiments</td>
<td></td>
</tr>
<tr>
<td>Global context</td>
<td></td>
</tr>
<tr>
<td>Societal context</td>
<td></td>
</tr>
<tr>
<td>Contemporary issues</td>
<td></td>
</tr>
</tbody>
</table>

FIE 2009, Atman
Skills/knowledge preparedness

- Teamwork
- Problem solving
- Communication
- Professionalism
- Data analysis
- Math
- Leadership
- Life-long learning
- Engineering analysis
- Creativity
- Ethics
- Science
- Design
- Engineering tools
- Conducting experiments
- Management skills
- Societal context
- Global context
- Business knowledge
- Contemporary issues

% participants, "more prepared"

Campuses responding

- Bringing understanding of real engineering to the early years...
 - Enabling informed choices (major, career)
 - Enabling students who care about social good and broader goals to see that they fit
- Empowering students to own their learning, become life-long learners
- Helping students develop “interdisciplinary respect”
Campuses responding

- Helping faculty and administrators recognize...
 - that listening to students is important,
 - that what we assess signals what we value, and
 - that when we reinforce one narrow model of engineering, we lose important voices and talent.

DISCUSSION

How are you supporting student pathways on your campus?
Many pathways

Science Engineering analysis Capstone
Math Design Internship/research

Student experiences vary widely.
It is important to support the many pathways that students take.

Building sidewalks where paths are worn
Selected APS references

