Applying Research from *How People Learn* to Engineering Classrooms

INFORMS
November 2007

Cynthia J. Atman
Jim Borgford-Parnell
Center for Engineering Learning and Teaching
University of Washington

Co-Designed with
Jennifer Turns, University of Washington
Lorraine Fleming, Howard University
“How People Learn”

http://books.nap.edu/html/howpeople1/.

Source: National Resource Council (2000)
Why use “How People Learn” to inform teaching?

Important to understand how our students think and what they bring to the classroom (experiences, skills, prior knowledge, etc.)

How People Learn gives a valuable framework
Who are our students?

Emerging findings from the Academic Pathways Study (APS)

- Part of the NSF-funded Center for Advancement of Engineering Education (CAEE)
- Large scale, multi-method, longitudinal study of undergraduate engineering students
- Three cohorts of students from four very different undergraduate engineering programs and a group of early career engineers

Sheppard (lead), Atman, Fleming, Miller, Smith, Stevens, Streveler
APS Research Questions

Skills
• How do students’ engineering skills and knowledge develop and/or change over time?

Identity
• How do these students come to identify themselves as engineers?

Education
• How do pre/engineering students navigate their educations?
Emerging Findings Across the Study:
From the student perspective

Large variation in student pathways

- Reasons for choice of major
 - Financial security
 - Contribution to society
 - Influence of family or mentors

- Curriculum and skill development issues
 - Heavy workloads, competition, stress
 - First two years give little “vision” of engineering (design and teamwork come late)
 - Understanding context vs. detail (a “systems” view)

- Perspectives on diversity
 - What it means to students’ views of becoming an engineer
Emerging Findings Across the Study:
From the student perspective (cont.)

Large variation in student pathways

- Commitment to field of engineering
 - Affected by personal situation, learning experiences, institutional procedures
 - Decision to be an engineer re-examined often

- Reasons for leaving
 - Lack of confidence in math/science skills
 - Fear of losing scholarships
 - Perception that engineering is too narrow (often little understanding of the contributions of engineering to social good)
 - Factors affect men and women differently
“How People Learn”

http://books.nap.edu/html/howpeople1/.

Source: National Resource Council (2000)
Workshop Goals:

1. Explore research results from *How People Learn*

2. Think about ways these results might be applied in the context of your own classroom
Main Workshop Activity: Think / Pair / Share

Think: Individually think about an assigned topic

Pair: Discuss your thoughts with a colleague

Share: Group discussion
Describe a topic you teach

Think: Think of a brief description of a topic you teach that you would like to focus on today (2 min)

Pair: Discuss with a colleague (4 mins)
“How People Learn”

Three main findings:
• Students have preconceptions
• Knowledge organization matters
• Students benefit from a “metacognitive” approach to instruction

1. Preconceptions

“Students come to the classroom with preconceptions about how the world works.”

If their initial understanding is not engaged, they
- may fail to grasp the new concepts and information that are taught, or
- they may learn them for purposes of a test,
- revert to their preconceptions outside the classrooms.”

Student Preconceptions

Figure 1. Differences in the assumptions between a flawed single loop mental model and the correct double loop model.

Student Preconceptions

Student preconceptions: Applying to your teaching

Think: In what ways could your teaching take into account student preconceptions? (2 min)

Pair: Discuss with a colleague (4 mins)

Share: Discuss as a group (4 mins)
Student preconceptions: Applying to your teaching
Ideas from workshop participants

Ideas....
2. Organization of Knowledge

“To develop competence in an area of inquiry, students must:

a) have a deep foundation of factual knowledge,

b) understand facts and ideas in the context of a conceptual framework, and

c) organize knowledge in ways that facilitate retrieval and application”

-> Draws on research on expert/novice differences

Expert/Novice differences in physics

Engineering Student Knowledge Networks
Engineering Student Knowledge Networks

Diagram:
- Ethics
- Uncertainty
- Modeling
- Environment
- Theory
- Science
- Research
- Impact
- Implementation
- Society
- Communication
- Experimentation
- Analysis
- Evaluation
- Design
- Teamwork
- Economics
- Engineering

Notes:
- They all link back to ethics.
- When practicing engineering, one must always practice good ethics.
- There is uncertainty in research.
- Before the project can be designed, the analysis and evaluation of the environment and modeling are required. Each of these courses requires certain engineering.
Engineering Student Knowledge Networks

Student One:

Student Two:

Knowledge Organization: Applied to your teaching

Think: In what ways could your teaching take into account knowledge organization? (2 min)

Pair: Discuss with a colleague (4 mins)

Share: Discuss as a group (4 mins)
Knowledge Organization: Applying to your teaching
Ideas from workshop participants

Ideas...
3. Metacognition

“A ‘metacognitive’ approach to instruction can help students take control of their own learning by defining learning goals and monitoring their progress in achieving them.”

Metacognition

Senior/Freshmen differences in design processes

Successful Graduating Student (Quality Score = 0.63)

Canonical Entering Student (Quality Score = 0.37)

Metacognition: Applied to your teaching

Think: In what ways could your teaching take into account metacognition? (2 min)

Pair: Discuss with a colleague (4 mins)

Share: Discuss as a group (4 mins)
Metacognition: Applying to your teaching
Ideas from workshop participants

Ideas....
Recap: Three main findings from “How People Learn”

- Students have preconceptions
- Knowledge organization matters
- Students benefit from a “metacognitive” approach to instruction

Going Forward:

Think: Think about the topic you will teach with respect to the research findings from “How People Learn” Think about one research result you may try to implement (2 min)

Pair: Discuss with a colleague (4 mins)

Share: Discuss as a group (4 mins)
What result could you implement?

Ideas from workshop participants

Ideas...
Revisiting Workshop Goals:

1. Explore research results on how people learn
2. Think about ways these results might be applied in the context or your own classroom
Good Luck!

“How People Learn”
Acknowledgment

This material is based on work supported by the National Science Foundation under Grant No. ESI-0227558, which funds the Center for the Advancement of Engineering Education (CAEE). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

CAEE is a collaboration of five partner universities: Colorado School of Mines, Howard University, Stanford University, University of Minnesota, and University of Washington.

CELT is an engineering education research and faculty development center at the University of Washington. The following are funding partners with CELT: The Mitchell T. Bowie and Lella Blanche Bowie Fund, The Boeing Company, Ford Motor Company, GE Fund, Mark and Carolyn Guidry, Jim and Sue Hewitt.