### Knowledge Assessment Flow Cytometry Workshop, Part 2 April 27, 2015

Each question may have MULTIPLE correct answers. Select all that are correct.

### 1. Compensation corrects for:

- a. problems with your achilles heel/itchy feet
- b. fluorescence spillover
- c. high optical background from certain molecules
- d. overlapping spectral emission
- e. overlapping spectral excitation
- f. area under the curve of lost light

# 2. True or False: Compensation subtracts the contaminating light from the primary detector

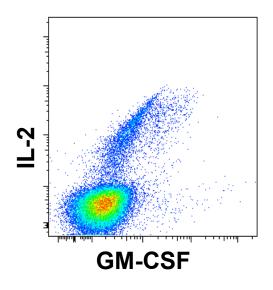
### 3. Which of the following are true for compensation:

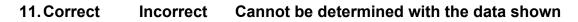
- a. You should match stained comp beads with unstained beads from the same lot
- b. You should match stained cells with unstained beads
- c. The comp signal must be as bright or brighter than signal detection on cells
- d. You only need to run single stained tubes for tandem dyes

## 4. What is the purpose of clicking "H" (height) under the FSC parameter?

- a. FSC-H allows you to run beads as compensation controls
- b. FSC-H in combination with FSC area allows you to discriminate doublets from singlets
- c. FSC-H allows you to compensate after acquiring
- d. FSC-H allows you to lift your cells for better compensation
- 5. What is the reason(s) why partial or complete compensation at the time of collection ("on-line") on a Calibur is more accurate than collecting samples uncompensated and then compensating in external software such as FlowJo?
  - a. The software compensation is not as accurate because the mathematical compensation algorithms differ between the external software and the Calibur, and the Calibur algorithm is more mathematically correct
  - b. The data is analog and the log transformers on a Calibur may not be accurate across all 4 decades of the scale. Compensation at the time of

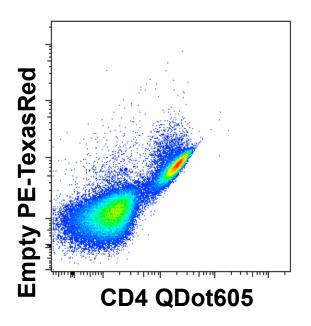

collection is performed on the non-transformed data, whereas compensation after collection is performed on the log-transformed data.


- c. There is actually no difference between on-line and software compensation for Calibur data.
- d. Data that is exported from the Calibur cannot be imported accurately into external software.

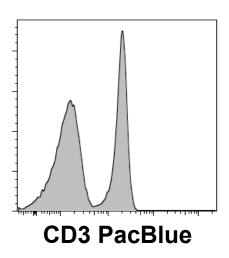

# 6. Some of the differences between the Calibur and LSRII include:

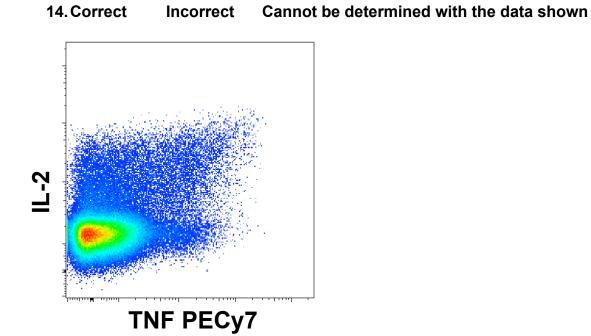
- a. The data from the Calibur is analog and the data from the LSRII is digital.
- b. The acquisition software for the Calibur is CellQuest and the acquisition software for the LSRII is DiVa.
- c. The Calibur uses a flow cell but the LSRII uses a nozzle and stream in air
- d. Data from the Calibur can only be analyzed in CellQuest, but data from the LSRII can be analyzed in any FACS analysis software.
- 7. True/false: Compensation controls should always be as bright or brighter than the fluorochrome-matched antibody staining of your sample.
- 8. True/false: It is acceptable to use the CD8 PE-Cy7 Ab to compensate the IFNg PE-Cy7 in your panel.
- 9. True/false: It is acceptable to use the CD8-FITC Ab to compensate the IFNg-FITC in your panel.

Indicate whether the fluorophores shown in the following samples are correctly compensated by circling your selection.

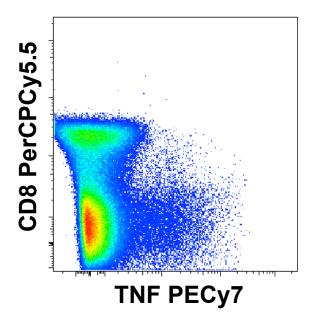





12. Correct Incorrect Cannot be determined with the data shown




# 13. Correct Incorrect Cannot be determined with the data shown





### 15. Correct Incorrect Cannot be determined with the data shown



#### 16. True/false: A log scale allows you to display negative values

#### 17. What is true regarding fluorescence minus one controls:

- a. These are useful for optimizing a new antibody panel
- b. Determine the proper position for gating positive events
- c. Gates may be placed higher than that determined by the FMO
- d. Gates may be placed lower than that determined by the FMO
- e. FMO controls are typically only performed during panel development/optimization, but can be included in every experiment for selected markers

# 18. While running your FMO control you see that CD3 Qdot655 has huge spillover into the PE-Cy5 channel. What steps can you take to solve this?

- a. Cry
- b. Choose an antigen that is expressed at lower level as the Qdot655 reagent
- c. Drop Qdot655 from the panel
- d. Drop PE-Cy5 from the panel
- e. Re-gate the FlowJo plot
- f. Drop the PMT voltage in the PE-Cy5 channel

### 19. When data are properly compensated:

- a. The median fluorescence intensity (MFI) of the positive and negative cells (or beads) in the compensation sample are equivalent in the primary channel (the channel for that comp sample)
- b. The MFI of the positive and negative cells or beads in the compensation sample are equivalent in the secondary channels
- c. The MFI of the negative cells (or beads) is zero in all channels
- d. The stain index is equivalent in all channels

### 20. Which of the following are correct for performing proper compensation:

- a. Using comp beads and cells in the same experiment for compensation, as long as you run unstained beads and unstained cells for each
- b. For amine-binding viability dyes, cells or amine beads can be used for compensation
- c. For compensation of CFSE, FITC-stained comp beads can be used
- d. Only one negative bead control is required if monoclonal antibodies are of rat or mouse origin, but it must be the same lot
- e. Fluorescent monoclonal antibodies bind to comp beads by capturing photoelectrons
- f. When compensating a tandem dye such as PE-Cy5.5, you need to set up single tubes for both PE and Cy5.5

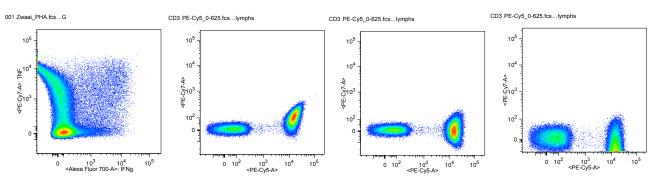
# 21. True/false: Compensation does not introduce error, but only reveals the measurement error.

## 22. Which of the following is true of bi-exponential transformation of flow data:

- a. It affects the visualization of the data only but not the data itself
- b. It allows visualization of negative values
- c. It helps in determining whether the data are properly compensated
- d. It changes the entire axis scale from log to linear
- e. All of the above

## 23. The fluorescence minus one control (FMO) is useful for:

- a. Determining where to place the gate to identify positive cells
- b. Determining the amount of non-specific binding of a staining reagent
- c. Determining whether a new staining panel will work well
- d. Optimizing the target MFI settings on your instrument


### 24. Cross-laser compensation is only a problem when:

- a. Fluorochromes detected off different lasers have similar emission spectra but each is excited by only one laser
- b. A fluorochrome is excited by more than one laser and there are bandpass filters in the detectors from the different lasers that overlap

- c. This problem is limited to Qdots; other fluorochromes never have this problem
- d. An example is Qdot655 detected in the APC channel

## 25. Related to the issue of "spreading" in the data following compensation:

- a. This can be corrected by increasing the compensation percentage
- b. This is due to error in the measurement and has contributions from errors in all the channels that have spillover into the channel of interest
- c. Any gate for positive events must be placed above the upper level of the spreading
- d. This phenomenon only occurs between fluorochromes detected from different lasers and not between those detected from the same laser



## 26. Indicate which of the plots below are correctly compensated.

Intracellular cytokine staining (ICS) is a commonly-used method for measuring and characterizing antigen-specific T cells. Positivity testing is often useful. Antigen-stimulated response is often compared against the response without stimulation (the negative control). Positivity methods include:

- Use of a fold increase of the stimulated over the unstimulated (typically 3-fold or greater).
- Fisher's exact test comparing event counts of cells gated as cytokine positive or negative in the stimulated and unstimulated samples.
- Adjustment for multiple testing for multiple different antigens used for stimulation.
- In addition to the requirement for a fold increase, inclusion of a minimum threshold (as a means to reduce false positivity).
- MIMOSA also compares stimulated with unstimulated but uses a Bayesian approach.
- 27. True/false: Because the Fisher's method uses a p-value threshold, the sensitivity to detect a positive response is not affected strongly when small numbers of cells are collected for a sample.
- 28. True/false: As a Bayesian approach that borrows information across samples, a minimum sample size is needed to use this approach.