
Using mathematical 
models for health 
economic analyses  

Ruanne V Barnabas, MD, DPhil 
Assistant Professor, Global Health, Allergy & Infectious Diseases 
University of Washington 



Outline 

•  Introduction to modeling 
•  Infectious disease modeling 
▫  Introduction; R0 

•  How models can be used to estimate health 
outcomes 
•  Example: Potential impact of ART for prevention 
•  What study data can you use to parameterize 

models 
•  When to use which model 



An	
  introduc+on	
  to	
  Mathema+cal	
  Models	
  
•  Framework for understanding and communicating infectious 

disease* 
•  Explicit assumptions help delineate which parameters are based on 

evidence 
•  Quantitative or qualitative results are compared with observed or 

experimental data 
•  Validated models can be used to estimate the potential impact of 

interventions (e.g. ART for prevention) on health outcomes 
▫  HIV incidence cases 
▫  HIV associated death 
▫  HIV associated disability adjusted life years (DALYs) 

*Garnett, G. P. (2002). Sex Transm Infect 78(1): 7-12. 



Models in health economic analyses 
•  Used to structure the economic question and compare all 

relevant alternatives 
•  Extrapolate beyond observed data 
•  Link intermediate and final endpoints 
•  Generalize results to other settings/patient groups 
•  Synthesize evidence to simulate comparisons where 

RCTs don’t exist 
•  Indicate the need for further research 

HERC short course, Oxford, 2012 



Types of models 
•  Static models – equilibrium (time-invariant) 
• Dynamic models – time dependent change 
▫  Force of infection can change over time 
▫  Includes herd immunity 

• Both static and dynamic models can be either 
deterministic or stochastic (constrained random 
variables) 

• Choice of model depends on scientific question  



Where do models fit in the path from 
discovery to implementation? 

Observation 

Clinical Trials 

Implementation Science 

Mathematical Modeling 
& Health Economic Analyses 

Freezer 
project 
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The basic and effective reproductive numbers 
R0  The Basic Reproductive Number - The number of new infections 
caused by one infection in an entirely susceptible population 
 
Rt  The Effective Reproductive Number - The number of new infections 
caused by one infection at a given time 

R0 = D . C . β 
Mean length  
of time infectious Rate at which  

sexual contact  
occurs  

Likelihood of  
transmission on 
a sexual contact   

Rt = R0 . x Proportion of  
contacts susceptible 
-Vaccination 
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ART implementation 



Methods: Intervention package (1) 

Community 
Sensitization 

Household  
Consent 

Individual 
•  Consent 
•  Questionnaire 
•  Pre-test counseling 
•  HIV test 

Data 
collection 

HIV+ 
Linkage to care 
and treatment 

HIV- 
• Linkage to 

prevention 



Results 

Findings	
   N	
  (%)	
  

Adults	
  tested	
   3,393	
  (96%)	
  

HIV+	
  iden9fied	
   635	
  (19%)	
  

Visited	
  a	
  clinic	
  by	
  month	
  12	
   96%	
  

Started	
  ART	
  by	
  month	
  12	
  (among	
  those	
  eligible	
  for	
  ART)	
   74%	
  

Virally	
  suppressed	
  by	
  month	
  12	
  (among	
  those	
  on	
  ART)	
   77%	
  

•  Ankole region, southwest Uganda, and KwaZulu-Natal, South Africa 
•  Sept. 2011 – May 2013 

Barnabas, et. al., Lancet HIV, 2014 



Model: community structure & partnerships 

Community – receives home HTC 

Key 

Woman 

Man 

Outside community – no intervention 

Household 

Stable  
partnership 
Temporary 
partnership 

Smith, et. Al, Lancet HIV, 2015 



Individual-based model structure 

          Births and HIV-related deaths 
          HIV infection 
          HIV disease progression 
          HIV care cascade 
          ART drop-out 
+ natural mortality not shown 
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Model prediction compares well with 
observed data 
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Home HTC and linkage has the potential to decrease HIV incidence 
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Status quo
Home HTC

•  Under new South African ART initiation criteria (CD4 ≤500 cells 
per µL), home HTC and linkage has the potential to reduce HIV 
incidence by 36% and total DALYs by 21% over 10 years. 
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What data do we need for models? 
• Demographics 
• Mixing patterns 
• Natural history 
• Transmission probability 
• Factors that change susceptibility 
• Factors that change infectiousness 
• Effectiveness of interventions 
• Engagement in health care 
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How to choose the appropriate model for 
health outcomes 

No 

No 

No 

Yes 

Yes 

Yes 

Adapted from Barton et al. 2004 

What model should I use? 

Is the interaction between 
patients important (e.g. 

transmission)? 

Do you need to model 
recursive events? 

Do you require your 
model to represent a lot of 

health states? 

Individual sampling 
model? 

Do you need to model 
individuals? 

Systems Dynamic Model 

Discrete Event Simulation 

Decision Tree Model 

Markov Model 

Yes 

No 



Summary 
•  Infectious disease modeling is a useful tool – 

assumptions are explicit, characterize uncertainty 
•  Study data can be used to parameterize models 
•  Models can be used to estimate health outcomes 
•  Consult with a health economist and/or modeler to 

choose an appropriate model to answer your question 

•  Contact: rbarnaba@uw.edu  
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