Andrew J. Boydston

A J Boydston

Associate Professor of Chemistry
Ph.D. University of Texas at Austin, 2007
(Organic, Organometallic, and Polymer Chemistry)

(206) 616-8195


Boydston group website


Research Interests

Mechanochemical Transduction in Polymeric Systems

Investigations in the Boydston group focus on developing polymers and materials that undergo controlled, autonomic responses to environmental stimuli, particularly mechanical impetus. Our group seeks to understand how polymer architecture and composition influence mechanochemical reactivity, and how mechanochemical transduction can be used to design functional materials. Main focus areas include the development of new mechano-responsive functional groups, environmental influences on mechanochemical efficiency, and amplification of chemical reactions driven by the application of force. At the fundamental level, we are interested in how different force-guided structural changes (e.g., bending versus stretching versus torsion) translate into chemo-mechanical coupling efficiency and selectivity, how chemical catalysis can be combined with mechanical impetus, the use of mechanical energy to initiate spontaneous reaction cascades, and how branch points in macromolecular structures distribute forces resulting from stress and strain. We are motivated by  potential for mechanochemical reactivity to impact important areas such as drug delivery, sensory materials, and self-reinforcing materials.

Organocatalyzed Electro-organic Synthesis

Achieving improved and broadened synthetic capabilities is key to the development of advanced materials and efficient syntheses of target molecules. Redox reactions are some of the most important and fundamental processes to the synthetic chemist. Our group is targeting new reactions at the interface of electro-organic synthesis and organocatalysis to effect oxidations and reductions of organic substrates in a metal-free manner. By conducting experiments under a controlled cell potential, we are able to intercept reactive intermediates generated during organocatalyzed transformations and electrochemically change their oxidation states. Notably, electrochemical techniques can provide unique selectivity and reaction efficiency not achieved by stoichiometric oxidants and reductants.


Representative Publications

Ogawa, K. A.; Goetz, A. E.; Boydston, A. J. “Metal-Free Ring-Opening Metathesis Polymerization” J. Am. Chem. Soc. 2015, 137, 1400-1403.


Ogawa, K. A.; Boydston, A. J. “Recent Developments in Organocatalyzed Electro-organic Chemistry” Chem. Lett. 2015, 44, 10-16.


Peterson, G. I.; Larsen, M. B.; Storti, D. W.; Ganter, M. A.; Boydston, A. J. “3D-Printed Mechanochromic Materials” ACS Appl. Mater. Interfaces 2015, 7, 577-583.


Peterson, G. I.; Church, D. C.; Yakelis, N. A.; Boydston, A. J. “1,2-Oxazine Linker as a Thermal Trigger for Self-Immolative Polymers” Polymer 2014, 55, 5980-5985.


Peterson, G. I.; Boydston, A. J. “Kinetic Analysis of Mechanochemical Chain Scission of Linear Poly(phthalaldehyde)” Macromol. Rapid Commun. 2014, 35, 1611-1614.


Peterson, G. I.; Boydston, A. J. “Modeling the Mechanochemical Degradation of Star Polymers” Macromol. Theory Simul. 2014, 23, 555-563.



More Publications ...

Awards & Activities

  • Camille Dreyfus Teacher-Scholar Award (2016)
  • NSF CAREER Award (2014)
  • Cottrell Scholar Award (2014)
  • Army Research Office Young Investigator Program Award (2011)
  • National Institutes of Health (NCI) National Research Service Award (2008-2010)
  • International Precious Metals Institute Student Award (2006)
  • University of Texas Professional Development Award (2006)
  • George Kozmetsky Award for Outstanding Graduate Research in Nanotechnology (finalist, 2006)
  • University of Texas Graduate Fellowship (2005-2006)


More Awards and Activities...

Site Map | Contact Us