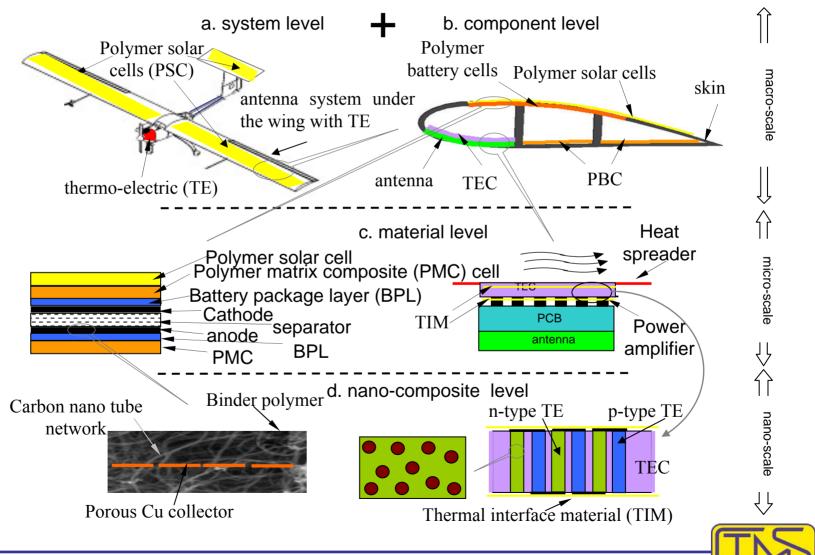
AFOSR-MURI on Energy Harvesting and Storage Systems (EHSS)

Period: May/2006-May/2011
Funding: \$6M
Dr. B. "Les" Lee (Air Force Office of Scientific Research), PM
Dr. Joan Fuller (Air Force Office of Scientific Research), Co-PM
Dr. Victor Giurgiutiu (Air Force Office of Scientific Research), Co-PM

Researchers: Minoru Taya, PI, UW

UW: Chunye Xu (ME), G. Cao(MSE),
S. Jenekhe(ChemE), Y. Kuga(EE)
CU: M. Dunn, K. Maute, R. Yang
UCLA : T. Hahn, S Ju
VPI : D. Inman

Collaborating Industry, Boeing, etc.


Goal : To develop a set of energy harvesting materials and systems for future AF vehicles

Aug 25,2006

UW - Center for Intelligent Materials and Systems

Multi-scale approach to design of energy harvesting aircraft systems

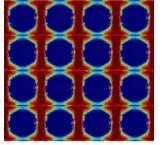
UW - Center for Intelligent Materials and Systems

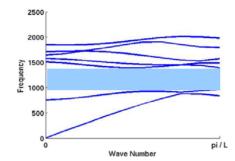
MURI - EHSS Tasks

- A. Design Tools for Multifunctional Materials and Structures (Dunn, Maute and Taya)
- B. Energy Harvesters based on thermoelectrics (Yang and Taya)
- C. Energy harvester based on polymer solar cells (Jenekhe ,Xu, Nango)
- D. Manufacturing and durability of energy harvesting structures (Ju and Hahn)
- E. Design of Energy Storage System (Xu, Cao, Kuga)
- F. Electric System Design (Kuga)
- G. Multimode Energy Harvesting for ISR/MAV Missions (Inman)
- H. Educational Programs (Taya and Dunn)
- I. Validation of the Proposed EHSS (all)

Tasks and Milestones

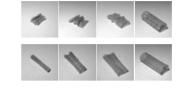
Milestones and Deliverables	The first 3 years			The last 2 years	
inflestones and Deliverables	1 st year	2 nd year	3 rd year	4 th year	5 th year
A Design Tool-component level	-				
A1 Electrochemo-mechanical coupling Model		▼			
A2 Multi-scale, multi-physics constitutive Model			▼		
A3 Design optimization model					▼
B TE energy harvester					
B1 Optimized TE materials	▼				
B2 Processing of TE materials		▼			
B3 Process TE unit			▼		
B4 Process of TE models				▼	
B5 Integration and testing with heat sources					▼
C Polymer solar cell harvester					
C1 Optimization of donor-acceptor copolymers by DFT		▼			
C2 Process and characterization of molecular hetero junction PSC			▼		
C3 Demo of PSC sheet with goal of 10% Efficiency				▼	
C4 Process and demo of layer PSC About with 20% or more efficiency					▼
D Manufacturing and durability					
D1 Multifunctional manufacturing and integration schemes		▼			
D2-1 Multifunctional characterization capability	▼				
D2-2 Existing state-of-the art materials and material forms			▼		
D2-3 1 st generations of new materials				▼	
D2-4 2 nd generations of optimized new materials					▼
E Energy storage system					
E1 Cathode material system	▼				
E2 Anodic material system		▼			
E3 Environmentally storage electrolyte system			▼		
E4 Demo of PBC			▼		
E5 Demo of super capacity				▼	
E6 Integration of PBC and PSC					▼
F Electrical system design					
F1 Power conditioner	▼				
F2 Hybrid power unit		▼			
F3 Wireless system			▼		
F4 Overall electrical system design					▼
G Multimode Energy Harvesting					
G1 System analysis of UAV		▼			
G2 Design rules					▼
H Education Programs					V
I Validations					
I1 components				▼	
I2 UAV demonstrator					▼

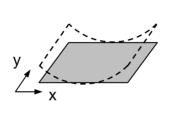

Computational Design Tool Development

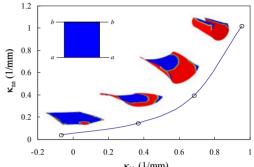

🔊 CU – Multi-Physics Optimization Toolbox							
Problem	<u>M</u> ultiphysics	<u>M</u> aterial	<u>O</u> ptimizer	<u>S</u> ensitivity	<u>C</u> riteria		
2-D	Thermo-mechanical	Gold	SQP	Direct	Mass		
3-D	Electro-thermo-mechanical	Polysilicon	MMA	Adjoint	Displacement		
Harmonic	monic Electro-chemical-mech.		SLP	FD 🕨	Stress		
		•	•		Temperature		
V			•		Current		
	Power						
piezo-electric system design • overall system design							
	• placement of EHS systems						
• power storage management							
photovoltaic							
thermo-electric photovoltaic component design • mechanical de					•		
	storage	• coupled ana skin • integration			ysis & design		
thermo-electric							
antenna							
	material design						
		tural battary da		structure			
		ctural battery de i-physics analys		+ electro			
		-priysius arialys		separato	or		
				- electro	de		

Multiphysics Material & Micro Device Design

Phononic Metamaterials Design


Bandgap Metamaterials

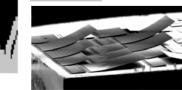


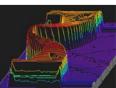


Application-Specific Metamaterials

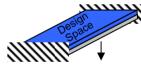
Photoelastic Metamaterials Design



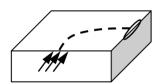


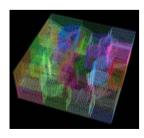

uniaxial bending

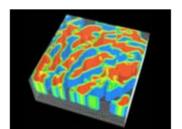
Electro-Mechanical Microsystem Design



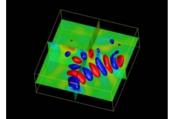
optimized gold pattern


 κ_{bb} (1/mm)



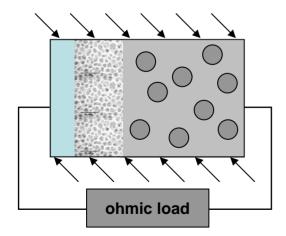

optimized actuator

surface wave guide



decomposed FE mesh

optimized material layout

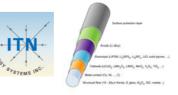


wavefield in a the optimized material

Design Tools for EH&S Composites

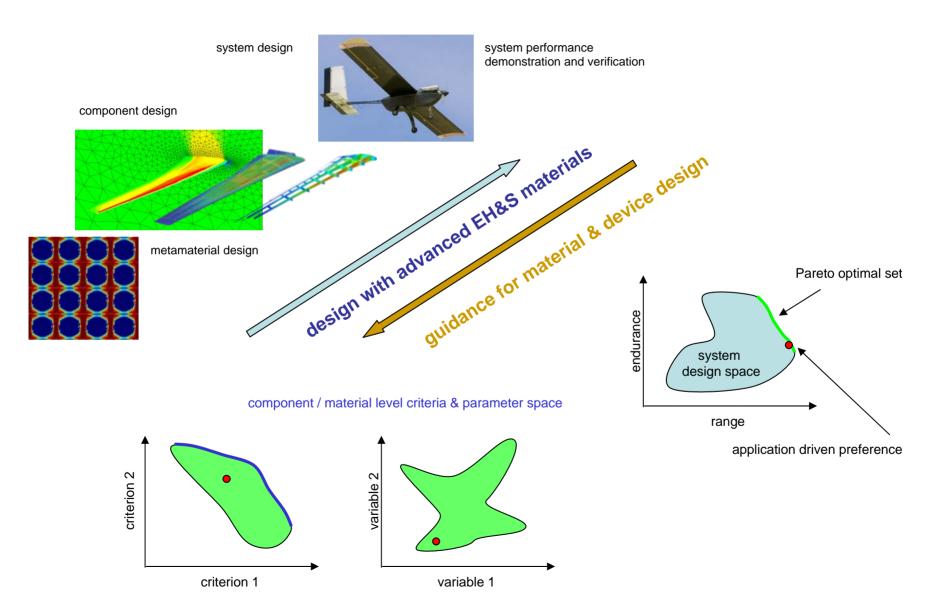
😥 CU - Topology Optimization Toolbox						
<u>P</u> roblem	<u>M</u> ultiphysics	<u>M</u> aterial	<u>O</u> ptimizer	<u>S</u> ensitivity	<u>C</u> riteria	
2-D	Thermo-mechanical	Gold	SQP	Direct	Mass	
3-D	Electro-thermo-mechanical	Polysilicon	MMA	Adjoint	Displacement	
Harmonic	Electro-chemo-mechanical	Aluminum	SLP	FD 🕨	Stress	
-	_	_	-		Temperature	
V			V		Current	
					Power	

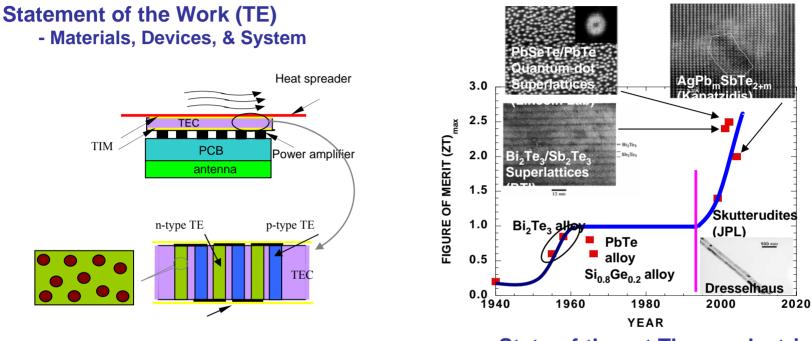
Focus I: Design of Batteries with Load-Barring Capabilities maximize energy storage & stiffness & strength



Preliminary work: developed and implemented a micro-structural electrochemical-mechanical battery finite element model

Collaboration with local companies & labs





Design Tools for EH&S Enabled Vehicles

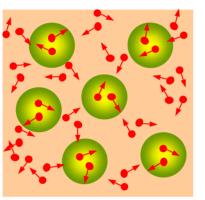
Nanocomposite Thermoelectric Materials and Energy Harvesting System

State-of-the-art Thermoelectrics

Nanocomposites - Bulk Thermoelectric Materials with Embedded Nanostructures

- Cost-Effective
- Mass Production
- A Paradigm Shift on TE Research

Expectations

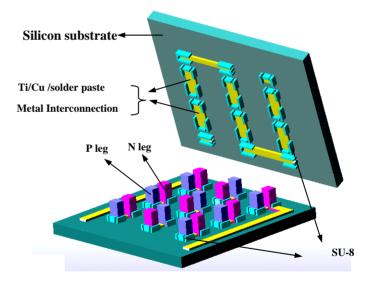

- Reduced thermal conductivity.
- Electrical conductivity comparable to or better than bulk.
- Increased Seebeck Coefficient.
- Overall Enhanced ZT by a factor of 2-5.

CU-Tasks on Thermoelectrics

- Design and characterize thermoelectric nanocomposites
- Design of TE devices
- Testing TE devices and system integration

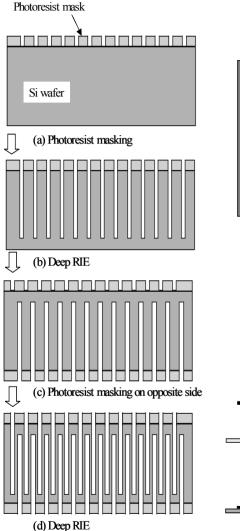
1. Develop atomic simulation tools to study the thermal conductivity, Seebeck coefficient and electrical conductivity of nanocomposites and design nanocomposites

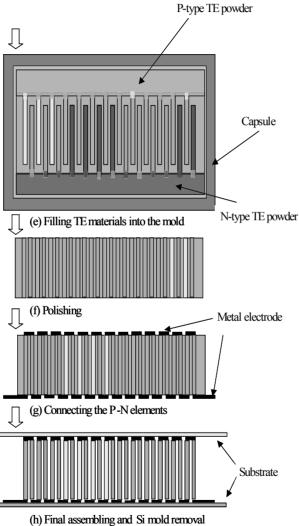
with effective ZT = 1.5-4.


2. Develop tools to measure the thermoelectric properties of nanocomposite sample made in UW.

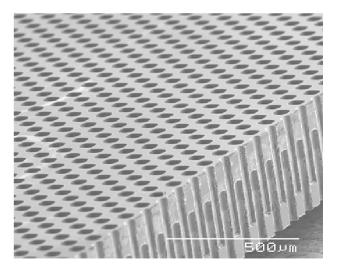
Conventional Four-Probe method Sub-ps Pump-Probe method

3. Develop tools to design thermoelectric devices and to predict the performance of TE-subsystem in AF environments

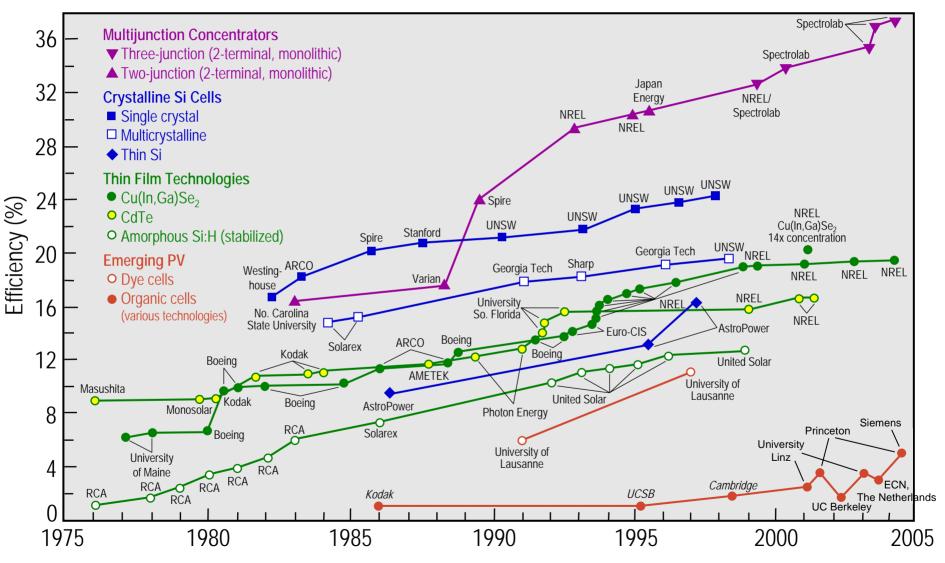

4. Assist UW to develop the fabrication process for nanocomposite TE devices and test TE devices.



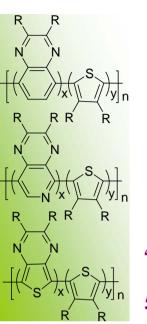
Schematic drawing of silicon-based TE device (Pick & Place process, TE legs are made of nanocomposites)


UW tasks – Nanocomposite synthesis & Device Fabrication

Fabrication process for nanocomposite TE devices



Microfabrication processes to make micro/mini TE devices with the use of mechanical alloyed nanocomposite powder


Ref. : J.F. Li et al. Sensors and Actuators A **108** (2003) 97-102.

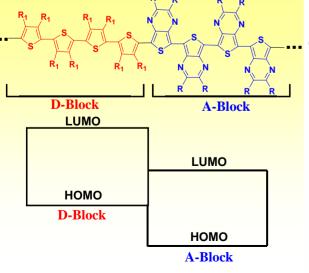
Best Research-Cell Efficiencies

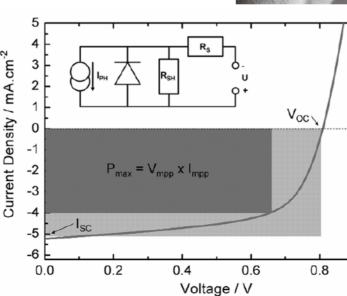
Taken from a presentation by Baldwin "Energy Efficiency and Renewable Energy; Energy: A 21st Century Perspective; National Academy of Engineering; June 2, 2005"

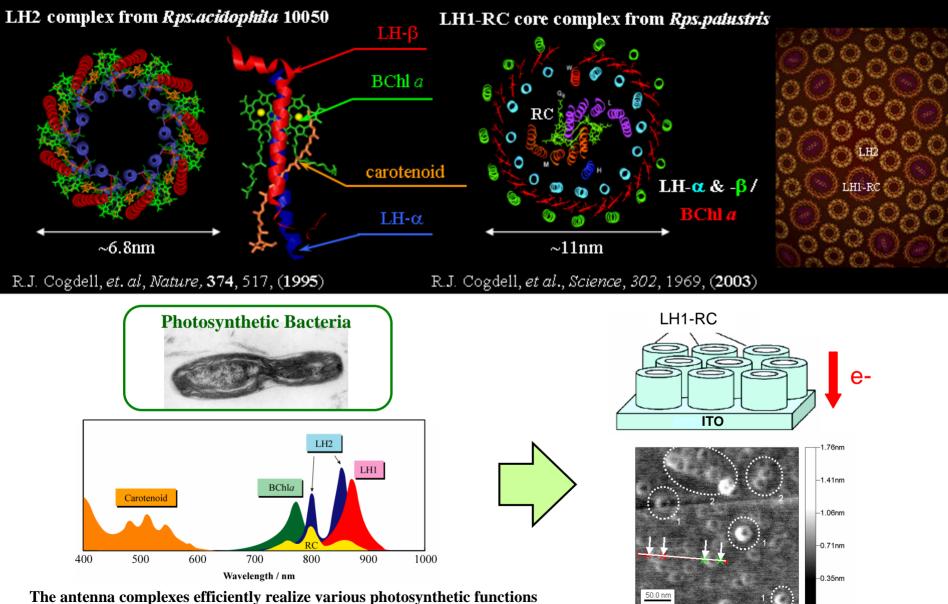
Task on Energy Harvesters Based on Polymer Solar Cells



- Band structure engineering by DFT
- Visible-NIR absorption to match solar spectrum
- High carrier mobilities
- 2. Fabrication and Evaluation of Solar Cells
 - Layered Heterojuction (LH)
 - Bulk Heterojuction (BH)

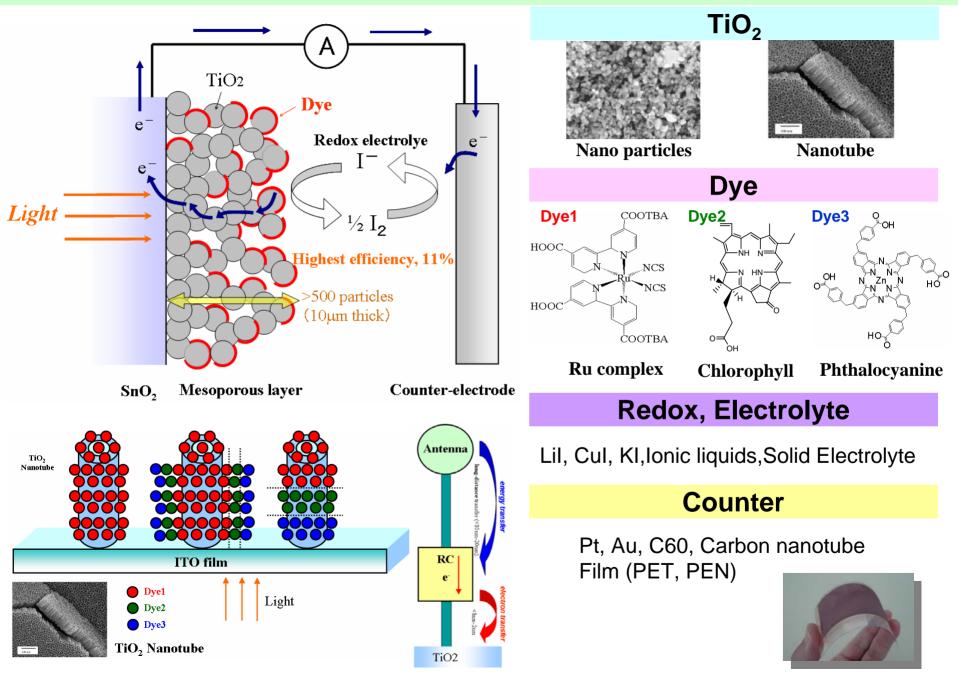



- 4. Fabrication and Evaluation of Hybrid Organic / Inorganic Solar Cells
- 5. Integration of Polymer Solar Cells with Other EHSS Components

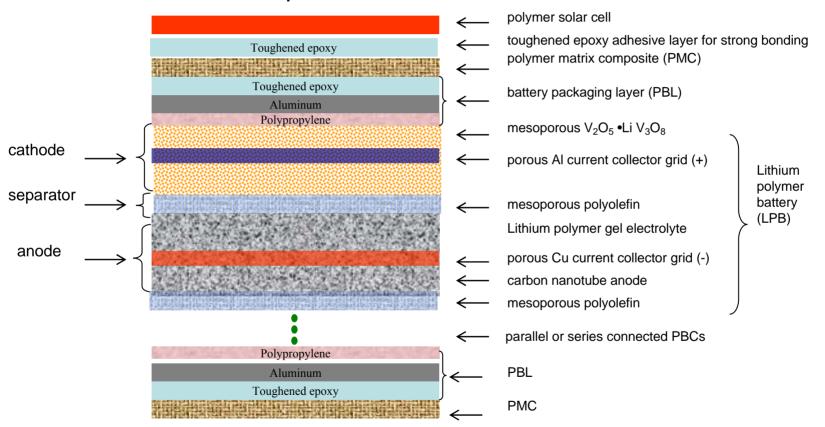


Wavelength (nm)

Nature: Purple Photosynthetic Bacteria



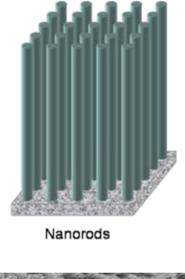
due to the presence of cofactors (BChl *a* and carotenoid) assembled into the apoproteins.

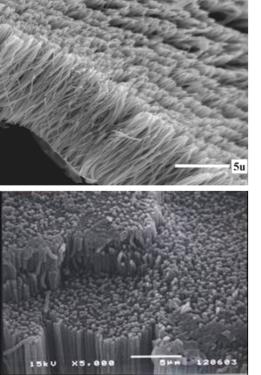

AFM image of the LH1 complex on mica.

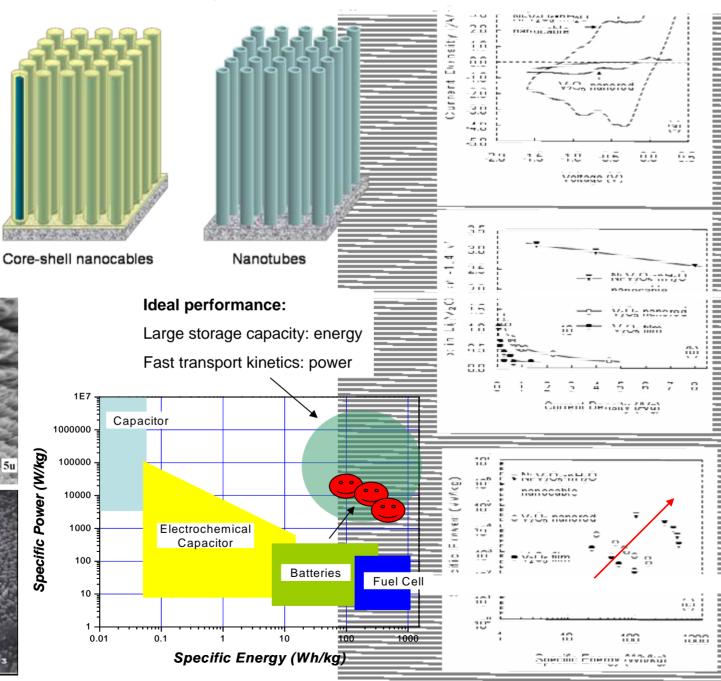
0.00nm

Bio-inspired Design of Dye-sensitized Solar Cell (DSSC)

Energy harvesting and storage system -Development of efficient electrode and electrolyte for battery, supercapacitor and dye-sensitized solar cells



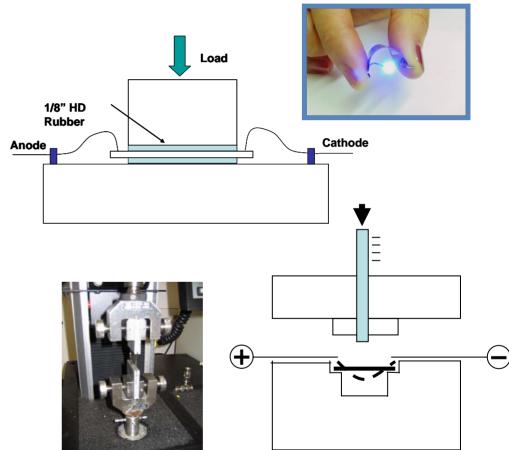

Тор


Development of thin film lithium battery for energy storage from polymer solar cell

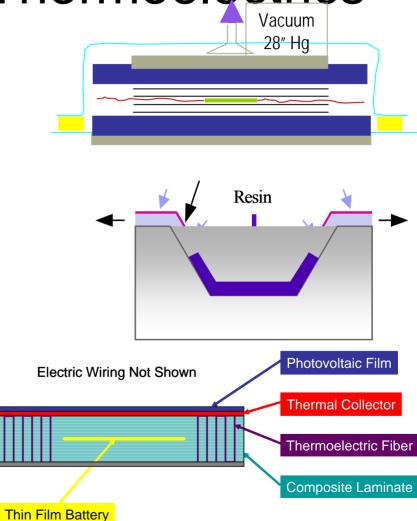
	PET				
	ITO nanorod D-A copolymer	solar cell	nicron	External Quantum Efficiency of Solar Cell	5-10%
		Al current coll mesoporous V	ector(+) ${}_{2}O_{5}$	Wing area of UAV	10.9 m ²
I		or MnO ₂ , etc. mesoporous		Solar Energy at 50000 ft	~20 kWhm²/day
		Insulator layer electrolyte mesoporous Carbon anode	ctrolyte esoporous	PSV harvested Electrical Energy	21.8 kWh/day
	Battery goal: 600	Cu current coll	lector (-)	Battery Weight to store 2/3 of the energy for night fly	23.8 kg

Cao's research 1: Nanostructured Li battery electrodes

UCLA Task

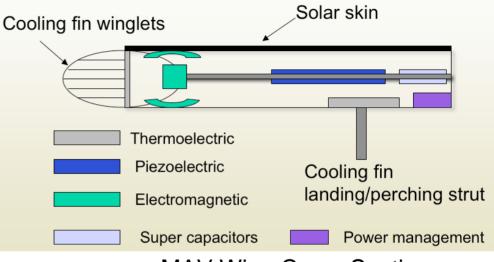

- Goal
 - Develop multifunctional design and manufacturing methodologies for energy harvesting and storage structures.

AC Propulsion's SoLong UAV


Multifunctional Characterization of Batteries and Thermoelectrics

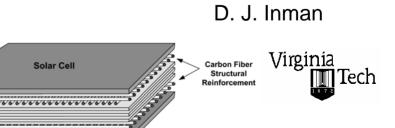
- Mechanical Properties
 - Modulus, strength
 - Stress-strain relations
 - Failure mechanisms
- Interaction Between Performance and:
 - Deformation
 - Pressure
 - Temperature

Structural Integration of Batteries and Thermoelectrics


- Structural integration methods
 - Prepreg lay-up
 - Resin transfer molding
- Performance of integrated structures
 - Performance under loading
 - Microstructure analysis

Design Rules for Multimode Harvesting

Layering of electrochemical and electrostatic storage

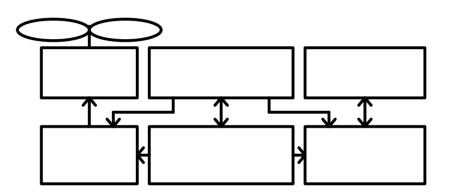

- Tasks included
 determining:
 - Available sources
 - Placement criteria
 - Key parameters
 - Design rules
 - Storage and power management
 - Experimental verification
 - Transitions to DOD

MAV Wing Cross Section

Formulate analysis tools for hybrid harvesting and storage

Piezoelectric Material

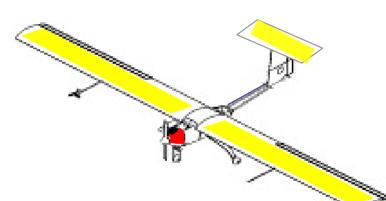
H A Sodano


Electric System Design Using Supercapacitors and Battery

Goals

-Integration of energy harvesting devices into electrical system.

-Study of energy efficiency and how to improve it.


-Initial design will be conducted with currently available energy harvesting devices including thermoelectric devices, photo-cells and super-capacitors.

Simplified diagram of the electrical system

