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Abstract

A micro-mechanic model based on Eshelby’s method and the minimization of the Gibbs free energy criterion, is proposed and
used to predict the orientation angles of martensite variants in a single crystal TiNiCu shape memory alloy, which are in a good
agreement with the observations by Saburi et al. Then, the stress–strain curve of a single crystal TiNiCu is predicted and is found
to be dependent on the mode of applied stress, i.e. tension and compression. The above model is extended to the case of
polycrystal TiNiCu system which is assumed to be composed of finite number of grains with several martensite variants being
embedded in each grain. It turns out that use of only small number of grains are needed to simulate the smooth stress–strain
curve of TiNiCu system. The stress–strain curves in both loading and unloading modes are correctly predicted at an equilibrium
temperature. Finally this polycrystal model is applied for other temperatures, indicating the correct temperature dependance of the
stress–strain curves. Published by Elsevier Science S.A.
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1. Introduction

Shape memory alloys are becoming increasingly im-
portant actuator materials that can exhibit large strains
(up to 8–10%) with corresponding large magnitude of
stress. Among many shape memory alloys (SMAs),
TiNi is the most popular and promising SMA [1] being
expected as a smart material [2]. For application of
SMAs to mechanical parts or devices of actuators,
accurate constitutive equations of a SMA are required.
Some attempts have been made by using phenomeno-
logical models [3], but a more fundamental approach
such as a micromechanic model to bridge the mi-
crostructure of a SMA to its constitutive equations is
strongly desired. As to the micromechanic modeling,
several attempts have been made to bridge crystallo-
graphic transformation behavior and an overall stress–
strain behavior of a SMA. Ono and Satoh [4] and Ono
et al. [5] attempted to describe the flow curves of SMA
polycrystals by modifying Taylor model [6], in which
they adopted a model proposed by Patel and Cohen [7]
to express stress-induced martensitic transformation.

Following their works, Buchheit and Wert [8] and their
co-workers [9,10] have proposed a generalized
Schmidt’s law using ‘plane stress transformation sur-
faces’ for NiTi, CuAlNi, and NiAl single crystal SMAs,
which are similar to so called ‘yielding surface’. On the
other hand, Patoor et al. [11,12] and Lexcellent et al.
[13] have used micromechanics-based modeling; Lexcel-
lent et al. [13] have proposed a model based on Eshelby
inclusion theory [14] to describe transformation behav-
ior of a single crystal CuZnAl. However, their deriva-
tion of flow stress from Helmholtz free energy change
and related interpretations are puzzling. We believe, a
stress–strain curve in a SMA accompanying stress-in-
duced martensitic transformation should be computed
based on Gibbs free energy change. In order to connect
transformation behavior to thermodynamic data di-
rectly, the modeling based on Gibbs free energy change
should be used.

In this study, Gibbs free energy change is used for
simulating stress–strain curves of a SMA accompany-
ing martensitic transformation in single crystals with
various orientations and those in polycrystals. That is,
by employing Gibbs free energy minimum criterion,
martensite habit planes, choice of martensite variants* Corresponding author.
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formed under external applied stress, threshold stress
for onset of stress-induced martensitic transformation
and the entire stress–strain curves including loading
and unloading will be systematically studied. The pre-
dicted results are compared with the experimental data
of TiNiCu SMA for verifying the present model be-
cause TiNiCu system involves only the phase transfor-
mation between martensite and austenite without other
phase transformation, and the crystallographic, ther-
modynamic and mechanical data for this alloy are
available from literature [15–18].

2. Single crystal

2.1. General formulation

2.1.1. Chemical free energy change for martensitic
transformation

First, we consider the case of a SMA without applied
stress, where Helmholtz free energy (F) is identical with
Gibbs free energy.

FA=HA−TSA (1a)

FM=HM−TSM (1b)

Here, H is enthalpy, T, is absolute temperature, and S
is entropy. The subscripts A and M stand for austenite
and martensite, respectively. An energy change form is
more appropriate to describe a two-phase system en-
ergy for we know only their differences (not absolute
values), i.e.

DF(A�M)=FM−FA= (HM−HA)−T(SM−SA) (2)

If Q is the only heat emitted or absorbed during
martensite or austenite transformation, the entropy dif-
ference can be expressed as

(SM−SA)=
Q
T

(3)

Using the data obtained from differential scanning
calorimeter (DSC) tests (Fig. 1), the estimation of the
equilibrium temperature (T0) [19] and entropy change
(SM−SA) during the martensitic transformation are as
follows,

T0=
Af+Ms

2
(4)

(SM−SA)=
Q(A�M)+ �Q(M�A)�

2T0

(5)

Here, MS is the start temperature of martensitic trans-
formation (A�M) and Af is the finish temperature of
austenite (or reverse) transformation (M�A). The rela-
tionship between DF(A�M) and temperature (T) is sche-
matically drawn in Fig. 1b, where linear approximation
is usually made around T0.

Experimental results have shown that a thermal
martensitic transformation does not occur at T0 but for
below T0, instead. Therefore, DF(A�M) is not the only
dominant factor for the growth of martensite variants.
A resistance (friction energy) must also be considered
for the growth of martensite variants. Such a friction
energy can be obtained from some experimental work
[13,20]. The friction energy can be overcome by either
supercooling the system or applying external stresses.

At an arbitrary temperature above MS, the sum of
DF(A�M) and the friction energy, denoted by DGc ,
must be balanced mechanically for stress-induced
martensitic transformation to occur (see gray area in
Fig. 1c). DGc is a function of temperature and can be
obtained as following (refer to Fig. 1 and Section 2.2.2).

Step 1, to obtain transformation temperatures (MS

and Af) and transformation heat (Q) from DSC test.
Step 2, to obtain DF(A�M) versus T relationship by
estimating T0 and (SM−SA).
Step 3, to add friction energy to obtain DGc .
DGc so obtained will be used for the criterion of

stress-induced martensite transformation as will be dis-
cussed in Section 2.1.2.

Fig. 1. (a) DSC data to calculate T0 and slope of DF–T curve; (b)
chemical free energy change DF–T curve; (c) criterion of martensitic
transformation DGc –T curve.
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Fig. 2. Uniaxial stress applied to austenite specimen, (a) before
transformation; (b) after transformation and stress–strain curve for
(c) austenite only; (d) austenite plus a portion of martensite (EA=
EM); (e) austenite plus a portion of martensite (EA"EM).

stead of DF(A�M), should be used to describe the sys-
tem free energy. That is, the work done by the applied
stress should be added to Eq. (2) to express DG(A�M,s 0).

Gibbs free energy changes before and after stress-in-
duced martensitic transformation under applied stress
may be generally written as,

DG(A�M,s 0)=DGc +DWsurf+DGmech (6)

Here, DWsurf is the interfacial energy, which is usually
considered to be negligible in SMAs [13]. DGmech is
mechanical energy due to internal and external stresses.
Then, a criterion for the onset of stress-induced marten-
sitic transformation can be defined by:

DGc +DGmech50 (7)

When the martensite transformation occurs under ex-
ternal stress (s ij

0) as shown in Fig. 2, DGmech is written
as:

DGmech=
!1

2
&

D

(s ij
0 +sij)(ui, j

0 +ui, j−e ij
T)d6

−
&

S

Fi(ui
0+ui)ds

"
−
!1

2
&

D

s ij
0ui, j

0 d6−
&

S

Fiu i
0ds

"
(8)

where s ij
0 is external stress, ui,j

0 is displacement gradient
induced by s ij

0, sij is disturbance stress due to transfor-
mation strain e ij

T and elastic inhomogeneity effect, ui,j is
disturbance displacement gradient corresponding to sij,
Fi is applied force, D is the specimen volume and S is
the surface of the specimen. In the case of uniaxial
external stress, the first { } term of Eq. (8) is corre-
sponding to Fig. 2b while the second term to Fig. 2a.

Through some mathematical manipulations and us-
ing Gauss divergence theorem and equilibrium equa-
tion, Eq. (8) is reduced to

DGmech= −
1
2
!&

V
s ij

0e ij* d6+
&

V
s ij

0e ij
T d6+

&
V

sije ij
T d6

"
=A+B+C (9)

where V is the volume of martensite variants, e ij* is
equivalent eigenstain to be solved.

To solve e ij*, we use a micromechanic model (Fig. 3a)
in which martensite variants with e ij

T are approximated
by prolate ellipsoids expressed by,

x %12

a2 +
x %22

b2 +
x %32

c2 =1 (10)

where ‘prime’ denotes the local coordinates attached to
each martensite variant, all martensite variants are as-
sumed to be penny-shaped, i.e. a=b. The problem of
Fig. 3a is then converted to that of Fig. 3b by using
Eshelby equivalent inclusion theory [14,21];

s ij
0%+s ij%=Cijkl

M (ekl
0 %+ ē kl% +ekl% −ekl

T %)

Fig. 3. (a) Stress-induced martensite variants in austenite specimen;
(b) inclusions with eigenstrain e* in austenite specimen. A, austenite;
M, martensite.

2.1.2. Micromechanical modeling for stress-induced
martensitic transformation

When an uniaxial external stress is applied to a
specimen, Gibbs free energy change (DG(A�M,s 0)), in-
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=Cijkl
A (ekl

0 %+ ē kl% +ekl% −ekl* %) (11)

where Cijkl
M and Cijkl

A refer to the elastic moduli of
martensite and austenite, respectively. Ekl

0 is the uni-
form strain, which is related to the applied stress s ij

0% by

s ij
0%=Cijkl

A ekl
0 %, (12)

ekl% is the disturbance strain related to the equivalent
eigenstrain (emn* %) through the Eshelby’s tensor as

ekl% =Sklmnemn* % (13)

Following Mori–Tanaka mean field concept [22], the
average disturbance strain (ēkl) is given by

ēkl= −%
N

I

fIT1{ekl% (I)−ekl* %(I)} (14)

where fI is the volume fraction of the Ith martensite
variant, N is the total number of variants, and TI is a
coordinate transformation matrix from the local coor-
dinates attached to each martensite to the global coor-
dinates attached to the austenite or specimen. Then, the
averaged strain in the local coordinates (ē kl% ) is related
to that in the global by

ē kl% =TI
−1ēkl (15)

where

and where su=sin u, sf=sin f, cu=cos u, cf=
cos f.

Using Eqs. (11)–(13), (15) and (16), ekl* and sij can be
obtained.

2.2. Input data for computations

2.2.1. Transformation strains
In this paper, a Ti–40at.%Ni–10at.%Cu SMA

sample is chosen. The sample’s parent phase (austenite)
with B2 structure transforms to the martensite
phase with orthorhombic structure, as shown in
Fig. 4. The changes in the lattice parameters are
0.3030 nm�0.2881 nm in [100], 0.4284 nm�
0.4279 nm in [010], and 0.4284 nm�0.4284 nm in [001]
upon martensite transformation [15]. Both on these
data e ij

T% is calculated in the martensite (local) coordi-
nate:

e ij
T%=

Æ
Ã
Ã
Ã
È

−0.0492 0 0
0 −0.0012 0
0 0 0.0537

Ç
Ã
Ã
Ã
É

(17)

The phenomenological study for this alloy indicates
that lattice invariant shear is not needed [15]. Table 1

shows the corresponding orientations between six vari-
ants possibly formed in this alloy and the austenite. Six
transformation strains (e ij

T) described in the austenite
(global coordinates are)

TI=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

c2uc2f s2f s2uc2f −2susfcf 2sucuc2f −2cusfcf

c2us2f c2f s2us2f 2susfcf 2sucus2f 2cusfcf

s2u 0 c2u 0 −2sucu 0

−sucusf 0 sucusf cucf sf(c2u−s2u) −sucf

−sucucf 0 sucucf −cusf cf(c2u−s2u) susf

c2usfcf −sfcf s2usfcf su(c2f−s2f) 2sucusfcf cu(c2f−s2f)

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(16)

Fig. 4. Lattice distance of austenite and martensite of a Ti–
40at.%Ni–10at.%Cu sample.

Table 1
Comparison between predicted and observed orientations of habit
planes of six variants

f (pred.)u (pred.) f (obsv.)Variant u (obsv.)

−36/−144V1 5960 −37/−143
60 59V2 36/−144 37/−143

V3 60 59 126/−126 127/−127
53/−5354/−5459V4 60

46 47V5 135/−45 135/−45
46V6 47 45/−135 45/−135
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e ij
T=

Æ
Ã
Ã
Ã
È

−p 0 0
0 q −r
0 −r q

Ç
Ã
Ã
Ã
É

,

Æ
Ã
Ã
Ã
È

−p 0 0
0 q r
0 r q

Ç
Ã
Ã
Ã
É

,

Æ
Ã
Ã
Ã
È

q 0 −r
0 −p 0

−r 0 q

Ç
Ã
Ã
Ã
É

,

Æ
Ã
Ã
Ã
È

q 0 r
0 −p 0
r 0 q

Ç
Ã
Ã
Ã
É

,

Æ
Ã
Ã
Ã
È

q −r 0
−r q 0
0 0 −p

Ç
Ã
Ã
Ã
É

,

Æ
Ã
Ã
Ã
È

q r 0
r q 0
0 0 −p

Ç
Ã
Ã
Ã
É

,

(18)

respectively, where p=0.0492, q=0.0263 and r=
0.0275.

In this study, the Young’s moduli and Poisson’s
ratios of the austenite and martensite are, respectively,
taken to be 67.0 GPa and 0.43 and 26.3 GPa and 0.43.

2.2.2. Temperature dependence of free energy
DGc in Eq. (7) is estimated from the DSC data,

Ms=345 K, Af=378 K and Q=400 cal mol−1 (=237
MJm−3) [16]. Thus, T0 (Eq. (4)) becomes 361 K. Free
energy curves in Fig. 1b is then described as,

DF=0.657(T-361) MJm−3 (19)

Some experiment is needed to determine precise friction
energy as described in Section 2.1.1. However, here, for
simplicity, neglecting its temperature dependence, the
friction energy (Gf) is estimated from energy change
(DF) at MS by Gf=10 MJm−3. Then, adding Gf to
DGc given by

DGc =0.657(T-345) MJm−3 (20)

2.3. Results and discussions

2.3.1. Habit plane
First, we calculated DGmech and then minimized it

with respect to spherical orientation angles (u, f) and
aspect ratio of martensite variant, i.e. c/a in Eq. (10)
with and without applied stress at various volume
fractions of Ith martensite variant ( fI), i.e.

(DGmech

(uI

=0 (21a)

(DGmech

(fI

=0 (21b)

It is found that the values of u and f are almost
independent of fI and applied stress. Habit planes are
experimentally defined from a very early stage of
martensite variant formation [15] and are not consid-
ered to differ by changing fI or applying external stress.
Following the experiment by Saburi et al. [15], we set

fI=0.001 (0.1%) and obtained the minimum DGmech at
c/a�0, u=46 and f=45 or −135 for variant V6.
Saburi et al. [15] have reported that very thin plate
martensite with the habit plane between {334} (u=47
for V6) and {223} (u=43) is observed in the TiNiCu
SMA. Therefore, the present predictions are very close
to the observations. Such minimization conditions are
applied for other variants only by consideration of
geometrical rotation.

Next, we shall take a reasonable approximation for
e ij

T so that more clear understanding of the martensite
transformation can be obtained. By ignoring e22

T % com-
ponent in Eq. (17) due to its smallness e ij

T% can be
approximated as

e ij
T%=

Æ
Ã
Ã
Ã
È

−0.0492 0 0
0 0 0
0 0 0.0537

Ç
Ã
Ã
Ã
É

(22)

If a martensite variant with c/a�0 and o22
T %=0 is

rotated by an angle u % around the x2% axis (martensite
coordinates), e ij

T% is transformed to e ij
T¦ expressed in

double prime coordinate as:

e ij
T%%=

Æ
Ã
Ã
Ã
È

o11
T % cos2 u %+o33

T % sin2 u % 0 (o33
T %−o11

T %) sin u % cos u %

0 0 0
(o33

T %−o11
T %) sin u % cos u % 0 o11

T % sin2 u %+o33
T % cos2 u %

Ç
Ã
Ã
Ã
É

(23)

When, o11
T ¦=o11

T% cos2 u %+o33
T % sin2 u %=0 is imposed, i.e.

2u %=cos−1!(o33
T %+o11

T %)
(o33

T %−o11
T %)

"
or u= tan−1�−

o11
T %

o33
T %

�
(24)

there is no elastic interaction between the martensite
variant and the matrix, i.e. elastic strain energy is zero
as shown in Appendix A. Therefore, the strain energy
of a SMA containing such martensite transformation
strain becomes zero by taking extreme variant shape
(c/a�0) and the habit plane orientation (u %) defined by
Eq. (24). Substituting Eq. (22) into Eq. (24), we obtain
u %=943.8. Converting u % to the austenite (global)
coordinates under the lattice correspondence (Table 1),
we obtain u=46, f=45 or −135 for V6 which are in
good agreements with the observations [15].

Elastic strain energy of inclusions with various
shapes and various eigenstrains have been studied so
far [23–26]. In such studies, one inclusion is embedded
in the infinite matrix. Effects of shape, types of eigen-
strains and elastic moduli difference have been made
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Table 2
Example calculation of Eq. (9) for V2. EA=67 GPa, EM=26.3 GPa,
s33

0 =187 MPa, [hkl]= [011], and volume fraction f2=0.1 (unit:10−5

GJ/m3)

B CA

EA=EM −37.66 −37.66 0.02
−37.66EA"EM −3.15−40.16

Fig. 5. Martensite variant choice for a given tension in specified
direction (stereographic plotting).

clear. In the case of penny-shaped plate inclusion (a=
b, c/a�0) with transformation strains of o11

T B−
no22

T Bo33
T , the elastic strain energy (W) becomes

minimum when the normal direction of the plate, i.e.
habit plane, is given by�!− (o11

T +no22
T )

(o33
T −o11

T )
"1/2

,0,
!(o33

T +no22
T )

(o33
T −o11

T )
"1/2n

(25)

Then, at u %= tan−1(−o11
T /o33

T ), the minimum elastic
strain energy becomes a function of only o22

T and elastic
moduli of the inclusion, i.e.

W={m(1+n)}(o22
T )2 (26)

Therefore, W becomes zero if o22
T =0. The results are

consistent with the above simple discussion.
Hereafter, we adopt u=46, f=45 or −135 and

c/a�0 for variant V6 in the following computations.
The angles and c/a for other variants are also set
similarly by geometrical rotation.

2.3.2. Variant choice under applied stress
When elastic moduli of austenite and martensite are

assumed to be identical (Cijkl
A =Cijkl

M , E=67 GPa), e ij* is
equal to e ij

T. The sum of (A+B) in Eq. (9) becomes
−	Vs ij

0e ij
Tdn which is the potential change (V) corre-

sponding to an area OQRS in Fig. 2d. The term C in
Eq. (9) is found to be almost zero. Examples of calcu-
lated A, B and C terms are shown in Table 2. As we
have found in the previous section that the elastic strain
energy of the present martensite variant embedded in
the infinite matrix is zero, then, the interaction energy
among various variant is also zero. As a result, DGmech

is found to be equal to the potential change. Therefore,
the energy which we should calculate for Gibbs free
energy change under the applied stress becomes only
−s33

0 o33
T , where s33

0 and o33
T refer to the applied stress

and transformation strain along [hkl ] in the austenite
coordinates.

The transformation strains for six variants along
[hkl ] (o33

T [hkl ]) can be evaluated simply by

o33
T (I)[hkl ]=

! 1
(h2+k2+ l2)

"
[h,k,l ]to ij

T(I)[h,k,l ] (27)

Then, the variant with the largest o33
T [hkl ] is expected to

give the lowest Gibbs free energy change. Table 3 lists
variant’s o33

T [hkl ] in [001], [011], [111], and [123]. The
preferred variant choice for a given tensile stress in the
specified direction (based on the austenite coordinates)
are calculated and summarized in Fig. 5.

When Young’s moduli are different (EA"EM or
equivalently Cijkl

A "Cijkl
M ), elastic inhomogeneity effect

must be taken into consideration. As shown in Fig. 2b,
the average stiffness of a specimen (ES) changes with
increasing martensite volume fraction. The equivalent
eigenstrain (e ij*(I)) should be used instead of e ij

T(I). As a
result, the Gibbs free energy change is decreased by an
area DSRR’ in Fig. 2e. This is analogical to the case of
Griffth crack growth [27]. It can be summarized that
stress induced transformation is enhanced when EA]
EM but suppressed when EA5EM. However, as seen in
Table 2, the term C is found much smaller than (A+B)
in Eq. (9), so that the influence of elastic inhomogeneity
effect on variant choice under applied stress can be
neglected in the TiNiCu SMA.

Table 3
Calculated transformation straino 33

T [hkl] in austenite coordinates [hkl] (T: variant appears in tension; C: variant appears in compression)

v1[hkl] v2 v5v3 v4 v6

+0.0269 T −0.0492 C[001] −0.0492 C+0.0269 T+0.0269 T+0.0269 T
+0.0000 +0.0537 T −0.0112 C[011] −0.0112 C −0.0112 C −0.0112 C

+0.0195 T +0.0195 T −0.0164 C +0.0195 T[1( 11] −0.0164 C−0.0164 C
+0.0445 T +0.0164 −0.0064[1( 23] −0.0143−0.0016 −0.0297 C
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2.3.3. Stress–strain cur6es accompanying stress-induced
martensitic transformation

In the case of Cijkl
A =Cijkl

M , mechanical energy change
DGmech can be evaluated by only potential energy
change, V, as discussed above,

DGmech=V= −s33
0 o33

T [hkl ] (28)

From Eq. (7), i.e. DGmech= −DGc , and Eq. (28), s33
0

can be found from

s33
0 [hkl ]=

DGc
o33

T [hkl ]
(29)

The predicted flow stresses are illustrated in Fig. 6.
They are found to be direction dependent, i.e. tension
or compression along [hkl ].

The onset stress of stress-induced martensite trans-
formation (sM) can be roughly discussed from the
values of o33

T [hkl ] in Table 3. For example, the lowest
yield strength of V2 under tension is in [011] direction
followed by [123], [001], and [111] for their o33

T [hkl ] are
in the reverse order. On the other hand, the lowest sM

of V6 under compression is in [001] direction followed
by [123], [111] and [011]. These predictions are qualita-
tively in good agreements with the experimental results
[17].

In Fig. 6, the flow curves are drawn up to the fully
martensitic transformation. However, the following
three points are worth mentioning when compared with
real deformation. The first is the assumption of variant
shape (c/a�0). During transformation, c/a increases
with fI. The internal strain energy corresponding to the
term C of Eq. (9) becomes larger and is no longer
negligible. Such an increase in the internal strain energy
gives rise to work hardening. This is true with a real
SMA as the experimental flow curves usually exhibit
some positive slope unlike those seen in this study. This
crystal rotation is considered to contribute work hard-
ening, too. The third point is the assumption of Cijkl

A =
Cijkl

M . It is discussed as the following.
If we approximate the elastic energy due to the

transformation to be vanishingly small. Thus, the me-
chanical energy change DGmech due to the transforma-
tion is roughly calculated as

DGmech= −s ij
0o ij

T−
1
2

s ij
0�s ij

0

EM

−
s ij

0

EA

�
(30)

per unit volume transformed. As will be seen in Fig. 9,
o ij

T is in the order of 0.04, s ij
0 in the order of 0.25 GPa,

EM=26.3 GPa and EA=67 GPa. Thus, the second
term in Eq. (30) is less than 10% of the first term in Eq.
(30). That is, the inhomogeneity effect on the energy
can be ignored for all practical purposes, when the
mechanical effect on the transformation is examined.

3. Polycrystal

3.1. Model

In chapter 2, the internal stress within a martensite
plate can be approximated to be zero in a single crystal,
so that neither the elastic strain energy due to transfor-
mation strain nor the interaction of internal stresses
among many martensite plates need to be considered.
On the other hand, a polycrystal contains variously
oriented austenite grains with different stress-induced
martensites. The different transformation strains within
austenite grains result in misfit strains among the
grains.

In order to compute a flow (or stress–strain) curve of
a polycrystal TiNiCu, a model shown in Fig. 7 is
employed, where an austenite grain is approximated by
a sphere. The transformation strain of Ith variant
(I=1, 6) in Jth grain, o ij

T(J, I), can be calculated by
using transformation strain listed in Eq. (22) if its
orientation relationships with respect to austenite
(grain) coordinates as well as specimen coordinates are
given. The grains with the same orientation angle u and
various fs (refer to Fig. 3) can be converted to a single
group of grain with u, i.e. independent of f. Therefore,
the transformation strain for the Ith variant in the Jth

Fig. 6. Predicted flow stresses for the stresses applied in the direction
of [001], [011], [1( 11], and [1( 23].

Fig. 7. Polycrystal model. Spherical austenite grains are assumed.
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Fig. 8. Mesh in standard stereographic triangle. The centers of
smaller triangles are shown by the circles.

Thus, the elastic strain energy per unit volume (W) is
given by:

W= −
1
2

%
N

J

FJsij(J)oG ij
T(J)

= −
1
2

%
N

J

FJsij(J) %
6

I

fI(J)o ij
T(J, I) (36)

The potential energy change is expressed by

V= −%
N

J

FJs ij
0(J)oGij

T(J)

= −%
N

J

FJs ij
0(J) %

6

I

FI(J)oGij
T(J, I) (37)

Mechanical energy change for a polycrystal specimen is
described by

DGmech=W+V (38)

Here, DGmech is a function of only unknown fI(J) for a
given s ij

0. In the computation, s ij
0 is increased incremen-

tally and for each incremental applied stress fI(J)
should be solved to minimize the DGmech of specimen
(Eq. (38)) and satisfy the transformation criterion of
variants (Eq. (28)). The potential energy of the Ith
variant in the Jth grain is (s ij

0 +sij(J))o ij
T(J, I). There-

fore, the criterion for martensite transformation
becomes:

{(s ij
0 +sij(J))o ij

T(J, I)}+DGc50 (39)

In the case of uniaxial loading the total strain of the
specimen is given by:

oS33=
s33

0

EA

+oS 33
T (40)

3.2. Result of calculations and discussion

3.2.1. Stress–strain cur6e under applied tensile stress
For examining the case of three-dimensional random

distribution of grain orientation, the representative
[hkl ]s as shown in Fig. 8 is considered. That is, the
standard [001]–[011]–[111] triangle is divided into 4, 9,
or 16 regions with approximately the same area on the
surface of original crystallographic globe (before stereo-
graphic projection) and [hkl ] is determined as the center
of each region.

The onset of stress-induced martensite transforma-
tion is determined by the start of transformation in a
variant with the largest o33

T (J, I). The DGmech of the
overall specimen with such a transformation strain
becomes the minimum under the applied stress. With
increasing fI(J), sij(J) is generated so as to suppress the
transformation in the grain, and thus s ij

0 has to be
increased for further transformation. At the same time,
such internal stress promotes the transformation of
other variable in other grains. Therefore, we check Eq.
(39) for all variants in all grains, seeking the optimum

grain must be averaged with respect to this rotation
(f). For instance, the averaged transformation strain of
variant V2 in the Jth grain loaded in the [011] tensile
direction can be written as follows.

o ij
T(J,2)=

Æ
Ã
Ã
Ã
È

−0.0246 0 0
0 −0.0246 0
0 0 0.0537

Ç
Ã
Ã
Ã
É

(31)

o ij
T(J, I) is expressed by such a diagonal matrix for any

[hkl ]. Then, the average transformation strain of the
Jth grain, oGij

T (J), is written as

oG ij
T(J)=%

6

I

fI(J)o ij
T(J,I) (32)

where fI(J) refers to the unknown volume fraction of
the Ith variant in the Jth grain.

The averaged transformation strain in the specimen
(os ij

T) is the sum of oGij
T (J) of all grains, i.e.

os ij
T=%

N

J

FJoG ij
T(J) (33)

where N is the total number of austenite grains in a
specimen. FJ is the grain volume fraction of the Jth
grain group. Then eigenstrain for the Jth grain is given
by

oG ij*(J)=oG ij
T(J)−oS ij

T (34)

The internal stress within the Jth grain is computed by
Eshelby’s method [14] by

sij(J)=C4 (S4 · I4 ){oG ij
T(J)−oS ij

T} (35)

If we take EA"EM into account, the elastic moduli of
not only each grain but also overall specimen have to
be computed step by step with transformation. This is
extremely troublesome. Therefore, to simplify the com-
putation, the difference in elastic moduli between
austenite and martensite is neglected as discussed in
chapter 2.
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volume fractions of fI(J) for minimizing DGmech of Eq.
(38).

As shown in Fig. 9, the results of such calculation for
the nine-grain model (Fig. 8) show a flow curve of a
polycrystal specimen, which can be divided, into five
stages:

Stage 1, elastic deformation of austenite.
Stage 2, martensite transformation occurs in some
grains in the specimen while the other grains still
experience the elastic deformation of austenite phase.
Stage 3, martensitic transformation occurs in all
grains, so that the microstructure is a mixture of
austenite and martensite in all grains.
Stage 4, some grains are now fully martensite, then
deform only elastically, while stress-induced marten-
sitic transformation continues to occur in the other
grains.
Stage 5, martensite transformation is completed in all
grains then only the elastic deformation of martensite
is observed.
Stage 1 of the curve behaves like any homogeneous

elastic material. In stage 2, some grains undergo more
transformation than other grains. In fact, the transfor-
mation strain along the tensile direction varied from 0
to 0.037, depending on the orientations of the grains, at
the end of stage 2. Thus, the internal stresses are
accumulated, as stage 2 progresses.

Eventually, the sum of the external and internal
stresses results in the same amount of the energy
change of the occurrence of the transformation of the
most favored variant in all the grains. This is the end of
stage 2 and the onset of stage 3.

Because of the criterion adopted in this study, Eq.
(7), only a single variant is present in every grain
(examined in Fig. 8b–d and Fig. 9). Of course, this is
also caused by the present meshing method: a grain is
assigned the orientation in the center of a mesh, as
shown in Fig. 8b–d. Thus except for the case of Fig.
8a, no grain has a crystallographically highly symmetri-
cal orientation.

As seen in Fig. 9, stage 3 covers the widest range of
strain and has an almost constant stress. That is, it has
extremely small strain hardening. The state of no strain
hardening or, equivalently, no additional accumulation
of the internal stresses is achieved when all grains have
the same plastic strains (produced by the transforma-
tion), see Eqs. (34) and (35). This point is checked
numerically. The incremental strains are 0.030 along
the tensile direction and −0.013 to −0.014 along the
transverse directions in all the grains.

The above discussion on what end stage 2 and occurs
in stage 3 also indicates the reason for the end of stage
3. At the end, the grains of one particular orientation,
grain 9 in Fig. 8, are all covered by a single martensite
variant. To continue further transformation, possible
only in the other grains, the external stress must be
raised at the end of stage 3 and the onset of stage 4.
Since at least one group of grains, already covered by
the martensite, can deform only elastically, the internal
stress is always accumulated after stage 3. Because
some other grains gradually become fully covered by
the martensite during stage 4, an accelerated increase in
the external stress is required in stage 4.

The numerical calculation has also shown that grain
5 starts to transform at the onset of stage 2. As seen in
Fig. 6, the [011]-oriented grains have the lowest external
stress to induce the transformation in tension. Thus, it
is natural that grain 5, near [011], is the first grain to
start the transformation. However, the internal stresses
caused by the differences in the amount of transforma-
tion and the crystallographic orientation between the
grains plays an observable role later. For example, at
the end of stage 3, grain 9 is all covered by the
martensite, while the others are not. The calculation
has also indicated that grain 9 has no martensite at the
end of stage 2.

Next, we examined the effect of the grain number
(Fig. 8) on the shape of stress–strain curve. As shown
in Fig. 10, the onset stress of martensitic transforma-
tion (sM) is reduced to that of [011] single crystal and
the length of stage 3 is decreased with the increase of
the grain number. It can be concluded from Fig. 10 that
the convergence of the stress–strain curve is rapid as
the number of grains increases, indicating that use of
not so large number of grains may be adequate in the
present model. The stress–strain curve predicted by the
present model shows the same shape as that observed
by Strnadel et al. [18]. The total transformation strain,
i.e. recoverable strain of approximately 4% is in a good
agreement with their measured strains. They have also
reported that sM is proportional to a temperature
difference, (T−Ms), exhibiting Clausius–Clapeyron re-
lationship. This is easily predictable by the present
method from Eq. (20) which shows the linear relation-
ship between DGc and (T−Ms).Fig. 9. Tension stress–strain curve of TiNiCu polycrystal.
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Fig. 10. Tension stress–strain curve of SMA polycrystal.

As can be understood from Fig. 6, the upper limit for
the flow stress is given by that of [1( 11] single crystal,
while the lower flow is limited by that of [011]. These
flow curves relevant to [1( 11] and [011] single crystal
specimens are also shown by dashed lines in Fig. 10. If
we have information about the texture of a polycrystal
specimen, its flow curve can easily be computed by the
present method by introducing the distribution weight
for FI. For instance, the flow curve of a specimen
showing a texture with [011] along tensile direction
must locate near the lower limit in Fig. 10. The higher
flow stress in two-grain model (Fig. 10) is an example
of a specimen with a texture of {011} and {011}.

3.2.2. Stress–strain cur6e under loading and unloading
tensile stress

From the discussion given in Section 2.1.1, we have
examined that a kind of friction stress hinders the
martensitic transformation. Similarly, in the case of
reverse-transformation (martensite to austenite), there
also exists a friction stress which is against the reverse
transformation. At the same temperature, due to the
nature of the transformations, these friction stresses
should be the same in magnitude while opposite in
direction.

In this study, Eq. (7) has been used as a criterion for
transformation to occur. Where DGc is the sum of the
chemical free energy change and the friction energy.
For stress-induced martensitic transformation, the on-
set applied stress is needed to overcome the chemical
free energy difference and the friction energy. At a
constant temperature, if we reduce the applied stress
(unloading) during the martensitic transformation, the
direction of the friction stress is reverse, resulting in a

smaller DGc . Therefore, a smaller applied stress can
provide enough DGmech to balance DGc and start
martensitic transformation. In other words, the reverse
transformation can be triggered if the applied stress is
less than this smaller stress.

As is shown in Fig. 1c, chemical free energy change
and therefore, DGc increases with temperature. As a
result, a higher applied stress is required at higher
temperature in order to provide a larger DGmech for the
martensite transformation. When the applied stress is
reduced after the onset of the martensite transforma-
tion, the reverse transformation can occur at a higher
applied stress. On the other hand, at lower temperature,
DGc can be negative while unloading, which means
the specimen still undergoes martensite transformation
even DGmech=0 (or without applied stress).

The numerical results based on the above discussion
are shown in Fig. 11. In these calculations, two particu-
lar temperatures are chosen — the equilibrium temper-

Fig. 11. Temperature effect on loading–unloading curve.
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ature T0 and austenite finish temperature Af. At T0, the
chemical free energy change is equal to zero so that
DGc is equal to −Gf while unloading. When the
applied stress is reduced to zero, most of the grains
remain in martensite structure, i.e. the SMA has a
residual strain due to the friction stress. At temperature
Af, DGc is equal to zero while unloading. A complete
strain recovery occurs when the applied stress is re-
moved. This agrees with the phenomenon of SMA at
austenite finish temperature.

4. Concluding remarks

A micromechanical model to predict stress–strain
behavior for shape memory alloys (SMAs) is presented,
where Gibbs free energy minimum condition is em-
ployed. As examples, flow curves of TiNiCu SMA
single- and poly-crystals are computed and good agree-
ments are obtained between the predictions and experi-
mental data from literature. This model is also
applicable to multi-axial stress loading and to a speci-
men with texture by inputting appropriate loading con-
ditions into s ij

0.
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Appendix A

Internal stresses within an ellipsoid with a=b, c/a�
0 subjected by particular eigenstrains.

Internal stresses inside an ellipsoid with a=b�c and
with misfit strains are expressed as [21]

s11

2m
=

−n

I−n
(o11

T +o22
T )−o11

T +
13

32(1−n)
pc
a

o22
T

+
16n−1

32(1−n)
pc
a

o22
T −

2n+1
8(1−n)

pc
a

o33
T

s22

2m
=

−n

I−n
(o11

T +o22
T )−o22

T +
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a

o11
T
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32(1−n)
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a

o22
T −

2n+1
8(1−n)
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a
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T
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2m
= −
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o22
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−
1
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=
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o23
T (A-1)

s31

2m
=

n−2
4(1−n)

pc
a

o31
T

s12

2m
= −o12

T +
7−8n

16(1−n)
pc
a

o12
T

If c/a�0, the internal stresses become:

s11= −2m
! n

1−n
(o11

T +o22
T )+o11

T "
s22= −2m

! n

1−n
(o11

T +o22
T )+o22

T " (A-2)

s12= −2mo12
T

s33=s23=s31=0

A misfit strains (eigenstrains) given by

Æ
Ã
Ã
Ã
È

o11
T 0 0
0 0 0
0 0 o33

T

Ç
Ã
Ã
Ã
É

can be transformed to

Æ
Ã
Ã
Ã
È

0 0 o31
T %

0 0 0
o31

T % 0 o33
T %

Ç
Ã
Ã
Ã
É

by rotation as

discussed in the steps of Eqs. (22)–(24). Then, by using
Eq. (A-2) which contains only non-zero components
(o11

T , o22
T and o33

T ) and the o ij
T% so transformed, we can

prove that all s ij%=0.
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