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Abstract

If the electrical resistance of a material depends upon external straining, the material exhibits ‘piezoresistivity’. The
piezoresistive behavior has been realized in an electrically conductive elastomer composite where the microstructure of
conductive fillers can be changed under finite deformation of elastomer, resulting in the change of the composite resistivity.
In this paper, we analyze the piezoresistive behavior of a conductive short fiberrelastomer matrix composite by applying a
percolation model. Fiber reorientation model is applied to the composite system with the aim of predicting the relation
between the applied finite strain and the reorientation of conductive short fibers. It is found that the piezoresistive behavior
of a conductive short fiberrelastomer composite is attributed to the degeneration of initially percolating network under the
finite strain. Some numerical results are then compared with our previous experimental data, showing a reasonably good
agreement. q 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Electrically conductive polymer matrix compos-
ites have attracted a great deal of scientific and
commercial interests during the last few decades
because these materials provide unique electrical and
mechanical properties as well as many excellent
properties of polymeric materials, such as light
weight, low cost, ease of processing and corrosion
resistance, compared with metals. The mechanism of
electrical conduction in an electronic composite is
the formation of a continuous network of conductive
fillers throughout the insulating polymer matrix.
These conductive composites have been widely used
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in the areas of electromagneticrradio-frequency in-
Ž .terference EMIrRFI shielding, electrostatic dis-

Ž .charge ESD , and conductive adhesives for die at-
tach in electronic packaging applications.

It has been observed that in a conductor–insulator
Ž .composite, as the volume fraction of conductor f

increases gradually, a sharp upturn in the electrical
conductivity occurs when the volume fraction reaches
a certain critical value, the threshold volume fraction

Ž ) . )of filler f . In order to obtain the minimum f in
conductive composites, a knowledge of factors con-
trolling the formation of conductive networks is pre-
requisite. The threshold phenomena can be well de-
scribed by a percolation theory. Broadbent and Ham-

Ž .mersley 1957 first introduced the term ‘percola-
tion’, and explained it with geometrical and proba-
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Žbilistic concepts. Subsequent studies Gurland, 1966;
.Kirkpatrick, 1973; Cohen et al., 1978 showed that

the percolation concept can be applied to many
physical processes in disordered systems, especially
various transport processes in composite materials.

Ž .Based on the studies of Pike and Seager 1974
Ž .and Balberg and Binenbaum 1983 , Ueda and Taya

Ž . Ž .1986 proposed a fiber percolation model FPM
which can predict the electrical conductivity of a
two-dimensionally misoriented short fiber composite.
Subsequently, the FPM was extended to the three-di-

Žmensional short fiber composite Taya and Ueda,
.1987 . It was found in the FPM analysis that the key

microstructural factors on the composite conductivity
Ž .are fiber volume fraction f , fiber aspect ratio

Ž .LrD and fiber orientation distribution: a short
fiber composite with larger fiber aspect ratio and
more randomly distributed fibers becomes conduc-
tive at smaller volume fraction of fiber, resulting in
smaller threshold volume fraction.

It has been known that the electrical conductivity
of a conductive polymer composite depends markedly
on external loading, showing the piezoresistive ef-

Ž .fects; see Lundberg and Sundqvist 1986 , Carmona
Ž . Ž .et al. 1987 , Pramanik et al. 1990 , Yoshikawa et

Ž . Ž . Ž .al. 1990 , McLachlan et al. 1990 , Narita 1990 ,
Ž .Carmona and El Amarti 1992 , and Taya et al.

Ž .1994 . While the piezoresistive effects of conduc-
tive polymer composites have been mainly studied
experimentally, there exist very few theoretical stud-
ies on piezoresistive behavior of the conductive com-

Ž .posites. Carmona et al. 1987 proposed an extended
percolation theory involving an appropriate function
that describes the changes in filler volume fraction
due to external loading. They showed that the sensi-
tivity of piezoresistive effect of the composite de-
pends on the elastic properties of the matrix material
and on the mode of applied loading, hydrostatic or

Ž .uniaxial. McLachlan et al. 1990 pointed out that
Ž .the approach of Carmona et al. 1987 may not work

because the expansion or movement of one phase
with respect to the other is not equivalent to chang-
ing the volume fraction by varying the volume ratio
of the two phases, and proposed a simple equation
which describes threshold f ) in terms of external
loading, assuming a linear dependence of the contact

Ždensity of particle average contact number per parti-
.cle on external loading.

It has been shown that an initially electrically
conductive short fiber composite becomes less-con-
ductive as straining increases, and suddenly non-con-
ductive at and beyond a critical strain, exhibiting

Ž .switching behavior Narita, 1990; Taya et al., 1994 .
This is mainly due to the reorientation of conductive
short fibers upon straining, as shown in Fig. 1, where
initially electrically percolating network is degener-
ated to non-percolating network. When the insulator
matrix is soft, such as elastomer, external loading
causes the microstructural change of the composite,
resulting in the change in the overall mechanical

Žproperties and electrical properties Taya et al., 1994;
.Aspden, 1986 . Electrically conductive elastomer

composites, which exhibit variable conductivity in
response to varying external loading, are widely used
for various electronic applications, touch control
switches and strain and pressure sensors for applica-

Žtions such as robot hands or artificial limbs Pramanik
.et al., 1990 . However, no quantitative analysis of

these switchable composites has been conducted.
The aim of this paper is to predict the effective

Ž .electrical conductivity of a three-dimensional 3D
misoriented conductive short fiberrelastomer matrix
composite under finite strains. In order to account for
the piezoresistive effects of the composite, we pro-
pose to use the percolation theory involving the
microstructure change of the composite under finite
strains. The relation between the applied finite strain
and the consequent change in the microstructure of
short fiber network is predicted by using fiber reori-
entation model, and the threshold volume fraction of
fiber is computed for a given microstructure by
applying the fiber percolation model. The effective
conductivity of a composite is then calculated by
using a power-law-type conductivity equation.

Fig. 1. The expected microstructure change of a composite under
Ž . Ž .straining; a percolating before straining electrically conductive

Ž . Ž .and b non-percolating after straining non-conductive .
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2. Analytical formulation

2.1. Percolation model

The fiber percolation model, based on the bond
Žpercolation and Monte Carlo method Ueda and Taya,

.1986; Taya and Ueda, 1987 , is used for computation
of the threshold volume fraction of fiber. In Monte

Ž .Carlo simulation, the center coordinates x , y , zi i i
Ž .of the i-th fiber is1, . . . , N and its orientations

Ž .u , f are homogeneously and randomly generatedi i

within a rectangular specimen with a dimension of
L =L =L by using a pseudo-random numberx y z

Ž .generator RNUNF , where RNUNF produces a se-
quence of pseudo-random numbers uniformly dis-

w xtributed on the interval 0,1 . The initial 3D fiber
Ž .misorientation before straining can be simplified as

Ž .uniform distribution with the in-plane a and the
Ž . < <out-of-plane b limit angles where uF a and

90-bFfF90qb , Fig. 2. The short fiber used in
this study is cylinder with length L and radius Dr2
which is capped at the two ends by semi-sphere of
radius Dr2. It is assumed that short fibers are not

Ž .allowed to be overlapped or penetrated . As shown
Ž .in Fig. 3, the actual short fiber solid line is simu-

lated as non-penetrable portion and the penetrable
shell of thickness d indicates the range acrossc

which electric charge transfer can take place between
Žfibers, showing tunneling effect Balberg and Binen-

.baum, 1987; Wang and Ogale, 1993 . Thus, the
Žtunneling distance or twice the penetrable shell

. Žthickness between fibers ranges from zero touching
.fibers to 2 d . Two fillers are said to be connected ifc

their shells penetrate each other without overlapping
actual filler. The tunneling distance distribution of
conducting fillers has an important effect on the

Želectrical conductivity in the percolation theory Bal-

Fig. 2. A capped cylindrical fiber in a 3D space.

ŽFig. 3. The simulation of non-penetrable model Dsactual fiber
.diameter, d s tunneling distance .c

.berg, 1987 . For simplicity, we assume a constant
conductance between fibers within the tunneling dis-
tance 2 d and focus on the computation of thec

threshold volume fraction of fiber.
If two fibers were found to be connected, they are

Ž .assigned a cluster identification number CIDN . All
fibers within the same cluster have the same CIDN.
The CIDN is updated as each pair of fibers is being
checked so that if a fiber in a cluster is found to
contact a new fiber which previously belonged to a
different cluster, two clusters will be assigned the

Ž .same CIDN the smaller one of two CIDNs . If in a
cluster there are fibers which intersect the opposite
boundaries of the rectangular composite specimen
along a particular axis, it is said that a percolating
cluster is established along the axis.

In the percolation model of a conductor–insulator
composite with conductor volume fraction f , there is
a critical conductor volume fraction f ) , above which
a percolating network of conductors is just estab-
lished through the composite. Then, the effective
conductivity of a composite can be expressed as
Ž .Cohen et al., 1978 ;

t
) )s ss fy f for f) f , 1Ž . Ž .c f

where s is the conductivity of fiber and t is af

conductivity exponent. Due to the power-law-type
conductive behavior, small changes in f or f ) can
lead to large changes in the composite conductivity,
especially close to the threshold. The effective elec-
trical conductivity of a composite is computed by
predicting the threshold volume fraction of fiber of a
given composite system.

2.2. Fiber reorientation model

Reorientation and relocation of fibers in an elas-
tomer composite are expected to take place under
large straining. If the microstructure of conductive
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Fig. 4. The 3D fiber reorientation model where only angle u is
Ž . Ž .shown for illustrative purpose; a before straining and b after

straining.

short fibers was initially percolating, then the perco-
lating microstructure is degenerated to less- or non-
percolation network as the applied strain ´ in-
creases.

It is assumed that upon incremental uniaxial
straining D´ along the x axis, the changes in the
orientation and location of a short fiber are taken
into account by following affine transformation, as

Ž . Ž .pictured in Fig. 4, where a and b denote, respec-
tively, the configuration before and after the incre-
mental straining D´ . Affine transformation assumes
that under the external loading the length compo-
nents of a fiber change by the same ratio as the
corresponding dimensions of the matrix. Under the
assumption of incompressibility of an elastomer
composite and incremental strain along the x-axis
Ž . ŽD´ , the dimensions of a rectangular specimen L ,x

. Ž .L , and L and the center coordinates x , y , z ofy z i i i

the i-th fiber are changed to

LX sL 1qD´ , LX sL 1yn D´ ,Ž . Ž .x x y y x y

LX sL 1yn D´ 2-aŽ . Ž .z z x z

xX sx 1qD´ , yX sy 1yn D´ ,Ž . Ž .i i i i x y

zX sz 1yn D´ 2-bŽ . Ž .i i x z

where the prime indicates the current variables after
straining by D´ , and y is Poisson’s ratio of ai j

< <composite, defined as ´ r´ . The length compo-j i

nents in Cartesian coordinates of the i-th fiber before
and after uniaxial straining are expressed as

u su sinf cosu , u su sinf sinu ,x i i i y i i i

u su cosf before straining, 3-aŽ .z i i

uX suX sinf
Xcosu

X , uX suX sinf
Xsinu

X ,x i i i y i i i

uX suX cosf
X after straining, 3-bŽ .z i i

Ž X. Ž .where u u is the length of fiber before after
straining. Applying affine transformation with Eqs.
Ž . Ž . Ž . Ž .2-a , 2-b , 3-a and 3-b , the following relations
are obtained

uXsinf
Xcosu

X uXsinf
Xsinu

X
i i i i

1qD´s , 1q´ s ,yusinf cosu usinf sinui i i i

uXcosf
X
i

1q´ s . 4Ž .z ucosfi

Ž .By using Eq. 4 , the reorientation angles of a fiber
after straining are derived as

1yn D´Ž .x yX y1u s tan tanu andi i1qD´Ž .

1yn D´ sinuŽ .x y iX y1f s tan tanf . 5Ž .Xi 1yn D´ sinfŽ .x z i

Ž . Ž . Ž .Following Eqs. 2-a , 2-b and 5 , the dimensions
of a rectangular composite specimen and the center
coordinates and orientation of the i-th fiber are
changed under the incremental straining.

3. Results and discussion

It is expected that in a 3D short fiber composite
electric current flows by a tunneling mechanism. The

Ž .overall including tunneling shell d and actualc

fiber volume fractions at the percolation threshold
for a 3D random system are plotted in Fig. 5 as a
function of ratio of tunneling distance to actual fiber

ŽFig. 5. The threshold volume fractions of actual circles with solid
. Ž .line and overall triangles with dotted line fibers as a function of

Ž . Ž .the ratio of tunneling distance d to actual fiber diameter D .c
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Ž .diameter d rD , where fiber length and diameterc
Ž .are fixed and fiber aspect ratio LrD is 5. The 3D

fiber orientation is simulated as a uniform random
distribution. The circles with solid line and triangles
with dotted line represent the volume fractions of
actual and overall fiber, respectively. It is depicted
from Fig. 5 that as the ratio d rD decreases, thec

volume fraction of fiber increases. When d rD ap-c

proaches zero, these two curves should converge to a
single value. Thus the d rD ratio in a non-penetra-c

ble model is an important parameter on the threshold
volume fraction and the electrical conductivity. The
tunneling distance is a characteristic electrical prop-
erty of the matrix polymer. However, since electrical
transport process consists of several different mecha-
nisms, determination of the tunneling distance in a
given system is difficult. Thus the tunneling distance
will be approximated by matching the experimental
value of threshold volume fraction f ) to the predic-
tions by the present model.

Next the change in the microstructure of a short
fiberrelastomer composite under straining is exam-
ined. Fig. 6 illustrates the orientation distributions of

Ž . Ž . Ž .in-plane fiber angles u where a and b denote,
respectively, the initial orientation of a 3D randomly

Fig. 6. The reorientation of fibers under straining of an isotropic
Ž . Ž .composite total number of fiberss25,000 ; a before straining

Ž . Ž . Ž .´ s0 and b after straining ´ s0.5 ; LrDs55.

Fig. 7. The computation procedure of the present model.

isotropic composite with LrDs55 before straining
Ž .and the reorientation after the final strain ´ of 0.5

is reached. The reason for using LrDs55 is to
compare the predictions with the experimental data

Ž .where LrDs55 was used Narita, 1990 . The final
strain of 0.5 is reached by incremental strain D´ of
0.05. It is found in Fig. 6 that the initially uniform
distribution is changed to non-uniform type distribu-
tion, becoming narrower distribution as straining in-

Ž .creases. For out-of-plane angles f , although it is
not shown here, similar trends of fiber reorientation
distribution are observed. It is also found that the

Ž .change in volume fraction of fiber f is negligibly
Žsmall since the matrix is elastomer Poisson’s ratio

.n(0.5 .
On the basis of the analytical formulation in

Section 2, the computational process of the piezore-
sistive behavior is illustrated in Fig. 7. First initial
input data, including of seed number, fiber length
and diameter, fiber orientations and tunneling dis-
tance are assigned, and for a given microstructure of
a composite system, the threshold volume fraction of
fiber is computed by applying the fiber percolation
model. Subsequently, incremental strain along the
x-axis is applied and new microstructure of the com-
posite with relocation and reorientation of conduc-
tive fibers is established by applying the fiber reori-
entation model. The microstructure is examined to
see if it forms a percolation network, and new
threshold fiber volume fraction is then computed.
Finally the effective electrical conductivity is calcu-
lated for the composite with the changed microstruc-

Ž .ture by using Eq. 1 .
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Fig. 8. The electrical conductivity of a composite and threshold
volume fraction of conductive fiber as a function of the applied
strain.

The numerical results of the present model are
compared with the previous experimental data of a
Ni-coated graphite fiberrnatural rubber composite

Ž .with fiber volume fraction f of 0.05 and average
Ž .fiber aspect ratio LrD of 55, i.e., Ls421.2 mm
Ž .and Ds7.8 mm Narita, 1990 . The specimen di-

mension is 1=1=1 mm3. It is assumed that fiber
Žorientations of the composite consist of initially ´s

.0 uniform fiber distributions with in-plane limit
angle as308 and out-of-plane limit angle bs308,
and fiber length is composed of a normal distribution
with standard deviation of 0.1. The ratio of tunneling

Ž .distance to fiber diameter d rDs0.05 was ap-c

proximately determined by matching the threshold
volume fractions predicted by the present model with
the experimental value of f ) , 0.035. The predicted

Žeffective electrical conductivities triangles with solid
. Ž .line along the x-axis see Fig. 4 are plotted as a

Ž .function of applied uniaxial strain ´ in Fig. 8,
where the experimental data are also shown as cir-
cles. Fig. 8 also illustrates the change in the thresh-

Ž .old volume fraction squares with dotted line under
the applied strain. The threshold fiber volume frac-
tion is seen to increase with the applied strain. This
explains that the initially percolating fiber network is
degenerated by separation of the previously existing
contacts between fibers due to reorientation of con-
ductive fibers. This result is also supported by the
fact that the fiber orientation distribution becomes

Ž .narrower more aligned toward the x-direction due

Ž .to straining in the x-axis see Fig. 6 and the nar-
rower distribution gives rise to higher threshold vol-

Žume fraction of conductive fiber Taya and Ueda,
.1987 . The electrical conductivity of the composite is

Ž .calculated by using Eq. 1 with an experimentally
Žobtained conductivity exponent t of 2.0 Narita,

.1990 , which is known as a universal value for a 3D
Ž . )system Stauffer, 1985 , and the computed f by

the fiber percolation model, where conductivities of
coated fiber and matrix are 4.89=103 Srcm and
1.0=10y15 Srcm, respectively, and the Poissons’
ratio of the composite is 0.5. Fig. 8 clearly demon-
strates a piezoresistive behavior of the composite
where the composite becomes less-conductive as the
applied strain increases and non-conductive at and
beyond a critical strain of 0.2, exhibiting a switching
behavior. As seen in Fig. 8, the numerical data have
a reasonably good agreement with the experimental
data.

4. Conclusion

A new analytical modeling was developed to
study a piezoresistive behavior of a conductive short
fiber reinforced elastomer composite. The analytical
prediction was deduced from a fiber percolation
model when the change in the threshold volume

Ž ) .fraction f of fiber under straining is taken into
account. The change in the threshold volume fraction
of fiber is mainly attributed to the change in mi-
crostructure of a composite under straining. The
reorientation distributions of fibers due to straining
were computed by using a fiber reorientation model.
It was found that the threshold fiber volume fraction
increases as the applied strain increases. It was also
found in this study that an initially conductive com-
posite becomes non-conductive around the critical
strain, exhibiting a switching behavior.
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