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Abstract

This paper discusses a summary of analytical modeling as applied to selected smart composites which include piezoelectric composites,
shape memory alloy (SMA) fiber composites, and piezoresistive composites. First we discuss the definition of ‘smart materials’ which exhibit
coupling among mechanical, thermal and electromagnetic behavior, then the Eshelby’s formulations based on a simple algebraic method for
predictions of two types of smart composites properties are stated; piezoelectric and SMA composites, followed by the percolation model
which is applied to obtain the strain–electric conductivity relations of elastomer composites. The predictions based on these models are
shown to be in good agreement with limited experimental results.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

‘Smart composites’ should be distinguished from ordin-
ary composites that are for primary use as structural materi-
als with high specific mechanical properties. A smart
composite can exhibit a desired function in a given environ-
ment, such as control of a desired shape, or induction of
desired internal stress and strain. The key element for
designing a smart composite is to use as the reinforcement
a ‘smart material’ that exhibits coupled behavior, where the
coupling takes place between any combination of mechan-
ical, thermal and electromagnetic behavior. In this paper the
coupled behavior of various smart materials will be
discussed, followed by micromechanics modeling of several
smart composites that consist of smart materials as the key
constituents.

2. Coupled behavior

Table 1 summarizes various types of coupled behavior
between mechanical, thermal and electromagnetic phenom-
ena [1–5]. The first five rows denote linear coupling beha-
vior between flux vector~S and field vector~Z or scalaru,
while the last four are for non-linear or non-colinear
coupling behavior. Here we shall discuss only linear
coupling, although the case of the shape-memory effect
will be discussed briefly within the framework of Eshelby’s
model in a later section. The constitutive equations for

materials with linear coupling are written in algebraic
form for simplicity:
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where ~T, ~D and ~B are the flux vectors of stress, electric
displacement and magnetic flux;~S, ~E and ~H are the field
vectors of strain, electric field and magnetic field; and~l , ~P
andu are the thermal stress vector, the pyroelectric vector
and temperature change, respectively. Eq. (1) can be rewrit-
ten as

~S � ~E·~Z 1 ~pu �2�
where ~S, ~Z andu are the flux vector of the 12× 1 matrix, the
field vector of the 12 × 1 matrix and the scalar
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(temperature);~C and ~p are the stiffness property tensor of
the 12× 12 matrix and the thermal coupling vector of the
12 × 1 matrix, respectively. Eq. (2) can be inverted to

~Z � ~F·~S 1 ~L·u �3�
where ~F and ~L are the compliance property tensor of the
12 × 12 matrix and the compliance thermal vector of the
12 × 1 matrix, respectively, and are given by
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From Eqs. (2) and (3) one can obtain the following relation-
ships:

~E·~F � ~I �5�

~E·~L 1 ~p � ~0 �6�

where~I is a 12× 12 identity matrix. From Eqs. (5) and (6),
the submatrices in the compliance tensor are interrelated
with those in the stiffness tensor matrix. Similarly,~L is
related to ~p .

3. Micromechanics modeling of a smart composite with
linear coupling behavior

Consider a composite which contains numerous fillers
made of smart material with linear coupling behavior and
is subjected to an applied field vector on the boundary~Zo,
where temperature is assumed to be constant (Fig. 1(a)). The
volume average of the flux and field vectors in each phase
are related by

~Sc � �1 2 f � ~Sm 1 f ~Sf �7�

~Zc � �1 2 f � ~Zm 1 f ~Zf �8�
where subscripts c, m and f refer to the composite, matrix
and fiber phases, respectively, andf is the volume fraction of
fillers. The following constitutive equations are valid:

~Si � ~Ei· ~Zi

i � c; m and f
�9�

The averaged field vector in the composite,~Zc, is equal to
the applied field owing to the fact that the disturbance~Z field
vanishes after integration over the composite domain:

~Zc � 1
Vc

Z
c

~Zo 1 ~Z
ÿ �

dv� ~Zo �10�

where Vc and dv are the volume of the composite and
volume element.

From Eqs. (7)–(10), one arrives at

~Ec � ~Em 1 f ~Ef 2 ~Em

ÿ �
· ~A �11�

where ~A is the constraint tensor relating the average field in
the filler domain to the applied field by

~Zf � ~A·~Zc � ~A·~Zo �12�
~A can be obtained by using Eshelby’s model, which is given
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Table 1
Coupling behavior

Coupled behavior Flux vector or field vector,~S Field vector or scalar,~Z or u Coupling coefficient,E

Piezoelectric Stress,~T Electric field, ~E e
Thermoelastic Strain,~S Temperature change,u a
Pyroelectric Electric displacement,~D Temperature change,u p
Piezomagnetic Stress,~T Magnetic field, ~H a
Magnetoelectric Electric displacement,~D Magnetic field, ~H x
Magnetostrictive Strain,~S Magnetization, ~M Non-linear
Electrostrictive Strain,~S Electric field, ~E Non-linear
Piezoresistivity Electric current density,~j Electric field, ~E s (non-linear in ~S)
Shape-memory effect Stress,~T Temperature change,u T � f( ~S, u)

Strain, ~S Non-linear

Fig. 1. (a) A composite is subjected to applied field vector~Zo; (b) converted
to Eshelby’s equivalent inclusion problem.



by

~So 1 ~S � ~Ef · ~Zo 1 ~Z
ÿ � � ~Em· ~Zo 1 ~Z 2 ~Zp

ÿ � �13�
where uniform flux and field vectors are related by

~So � ~Em· ~Zo �14�
In the above equations,~S and ~Z are the disturbance of flux
and field vectors owing to the existence of the fillers. In Eq.
(13) the problem of Fig. 1(a) is converted to the equivalent
inclusion problem of Fig. 1(b), where the filler domain is
replaced by the equivalent inclusion with eigenfield vector
~Zp, which is the right-hand side equation in Eq. (13).

The disturbance field vector~Z is linearly related to the
eigenfield vector~Zp by

~Z � ~S·~Zp �15�
where ~S is the Eshelby tensor for the coupling problem and
can be expressed in 12× 12 matrix form; it is a function of
the constituent properties and shape of an ellipsoidal inclu-
sion. It should be noted here that the components of the flux
and field vectors in the filler domain become uniform if the
shape of the filler is ellipsoidal, facilitating the computation
significantly. For non-ellipsoidal fillers, one can still define
the averaged Eshelby’s tensors within the non-ellipsoidal
filler. We examined recently the case of a continuous fiber
of n-polygon shaped cross-section and defined the average
Eshelby’s tensor [6]. The field vector in the filler is given by

~Zf � ~Zo 1 ~S·~Zp �16�
Rewriting Eq. (13) in terms of~Zf we have

~Rf · ~Zf � ~Rm
~Zf 2 ~Zp
ÿ � �17�

Eliminating ~Zf in Eqs. (16) and (17), one can obtain

~I 1 ~S·~R21
m · ~Rf 2 ~Rm

ÿ �h i
· ~Zf � ~Zo �18�

Comparing Eq. (12) with Eq. (18), the constraint tensor~A is
obtained as

~Adil � ~I 1 ~S·~R21· ~Rf 2 ~Rm

ÿ �h i21 �19�
In the above equations, ‘2 1’ superscript is the inverse of a
matrix and ‘dil’ denotes the solutions for a dilute case of
fillers where the interactions among fillers are ignored.
When the interactions are considered by the Mori–Tanaka
theory [7], the corresponding constraint tensor~AMT can be
obtained as

~AMT � �1 2 f �1 f ~Adil
h i21

· ~Adil �20�
Thus, the composite stiffness property tensor,~Ec, can be
computed by Eq. (11).

If the flux vector boundary conditions are given, one can
similarly arrive at the composite compliance property
tensor, ~Fc, which is related to~Ec by

~Ec· ~Fc � ~I �21�

Eq. (21) is called the ‘self-consistency’ requirement. Benve-
niste proved self-consistency for uncoupled behavior of a
composite [8].

4. Micromechanics modeling of a smart composite with
non-linear coupling

As examples, we shall state below briefly the cases of a
composite with shape-memory-alloy fibers and a piezoresis-
tive composite.

4.1. Composite with shape-memory-alloy (SMA) fibers

As far as the macroscopic stresses in a composite with
SMA fibers are concerned, we can use Eshelby’s model. We
have predicted the compressive stress in the matrix material
of an SMA composite that was given an initial prestraineT at
room temperature and then subjected to temperature
increase beyond the austenitic finish temperature (Af).
This compressive stress was a dominant contributor to
enhancement of the tensile properties of a TiNi SMA
fiber/Al matrix composite (stress–strain curve and fatigue
resistance) and of a TiNi SMA fiber/epoxy matrix compo-
site (KIC) [9,10]. The compressive stress in the matrix at
temperatureu $ Af can be computed by using Eshelby’s
model for elasto-plastic deformation of a composite. The
stress in the TiNi fiber,~s f , is given by

~s f � ~Cf · ~e2 ~eT 2 ~ep

� �
� ~Cm· ~e2 ~ep

ÿ � �22�
where ~Cf and ~Cm are the stiffness tensors of the fiber and
matrix materials;~e, ~eT, ~ep and ~ep are the strain disturbance,
transformation strain, plastic strain of the fiber and eigen-
strain, which has a non-zero value in the fiber domain and
vanishes in the matrix, respectively, and where

~eT � nfeT; nfeT; 2eT; 0; 0; 0
ÿ �

~ep � 2
1
2

ep; 2
1
2

ep; ep; 0; 0; 0
� � �23�

and

~e� ~S·~ep �24�
In the above,nf, eT, ep and ~S are the Poisson’s ratio of the
fiber, the prestrain given to the fiber at room temperature,
the plastic strain of the fiber axis and Eshelby’s tensor,
respectively (do not confuse this with strain~S used in the
previous section). From Eqs. (23) and (24), one can solve for
~ep as

~ep � ~Cf 2 ~Cm

ÿ �
·~S1 ~Cm

� �21
· ~Cf ·~ep �25�

Substituting Eq. (25) into Eq. (22), the fiber stress is
computed as

~s f � ~Cm· ~S2 ~I
ÿ �

· ~Cf 2 ~Cm

ÿ �
·~S1 ~Cm

� �21
· ~Cf ·~ep �26�

The plastic strain in the fiber,~ep, can be obtained by
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satisfying the yield condition for the fiber:

sfh i332 sfh i11� syf �27�
wheresyf is the yield stress of the fiber. Note thatsyf can be
interpreted as the stress in the martensitic plateau in the
stress–strain curve of the TiNi fiber or any yield stress
point beyond the end of the plateau.

Fig. 2 shows the composite yield stress as a function of
prestraineT for two fiber volume fractions of TiNi shape-
memory alloy:vf � 0.053 and 0.027. The predictions (solid
lines) based on the present model explain the experimental
results [11] reasonably well.

A more complete modeling of one-dimensional SMA
behavior has been attempted from the thermodynamic view-
point by several researchers [12,13].

4.2. Piezoresistive composite

Piezoresistivity can be observed in any conductive or
semi-conductive material that can undergo large elongation.
Let us consider a circular cylinder rod of lengthL and cross-
sectional areaS, with resistivityr. The resistance of the rod,
R, is given by

R� rG �28�

G� L=S �29�
whereG is a geometrical parameter. Under applied stresss,
R can be changed by dR [14]

dR
R
� 1

r

dr
ds

1
1
G

dG
ds

� �
ds �30�

where the first and second terms denote the effect of piezo-
resistivity and the geometrical factor, respectively, on the
overall resistanceR. There has been little work on analysis
of the piezoresistivity effect in the literature [14]. Recently
we examined the piezoresistivity of a conductive short fiber/
elastomeric matrix composite [15] both experimentally and
theoretically. A brief statement of our analytical model is
made in the following.

Let us consider a composite that contains numerous
conductive short fibers embedded in an insulating matrix
and subjected to applied straine, see Fig. 3, where (a) and
(b) denote the case of formation of a percolation network of
conductive short fibers and the degeneration of such a
network respectively. The analytical model consists of
two parts: (1) a finite deformation model and (2) a fiber
percolation model. Fig. 4(a) and (b) illustrate the case of a
three-dimensional (3D) affine deformation model before
and after a uniaxial strain incrementDe is applied, respec-
tively. Assuming that the initial distribution of fiber orienta-
tion angle is random in-plane, it becomes narrower with
increasing straine, which in turn changes the microstructure
of the short-fiber network. The electrical conductivity of the
ith percolating network along thex axis can then be
computed by the following power law:

sxi � sf p 2 pc

ÿ �t �31�
wherep is the probability of bonds and given by [16]

p� Nf 1 2Ni

4Nf 1 2Ni
�32�

Heresf is the conductivity of the fiber;t is a critical expo-
nent dependent only on dimensionality and type of micro-
structure; pc is the critical probability of bonds at the
percolation threshold, at and above which the composite
becomes conductive; andNf andNi are the number of fibers
and number of intersecting points. The effective electrical
conductivity of the composite along thex axis,s x, is then
computed from

sx �
Xm
i�1

byibzisxi �33�

wherem is the number of percolating clusters, andbyi (bzi) is
the width of theith percolating network along they (z) axis.
On the basis of these models and the input data of Table 2
for Ni-coated short graphite fiber/natural rubber composite,
we computed the composite conductivitysx. The results are
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Fig. 2. Composite yield stress dependence on prestrain.

Fig. 3. Expected microstructure change under straining: (a) percolation before straining; (b) no percolating after straining.



plotted as a solid line in Fig. 5 as a function of applied in-
plane strain. The experimental data are also shown in Fig. 5,
and a good agreement can be seen between them.

5. Conclusion

Micromechanics modeling for designing a smart compo-
site, where smart materials with coupling behavior are used
as reinforcement, is reviewed briefly with the following
conclusions.

1. Eshelby’s model can be extended to all cases of smart
composite design for linear coupling reinforcement.

2. Eshelby’s model can still be applicable to the case of
non-linear coupling on a limited basis.

3. The problem of electrical conduction in a piezoresistive

composite must be solved by using a fiber percolation
model.

4. There exists a need to develop new models for the analy-
sis of other non-linear coupling behavior.
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