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Abstract

This paper proposes a method to calculate the uniaxial stress�/strain relationship of polycrystalline Fe�/Pd, which has a martensite

structure produced by cooling. Strain is caused by changes in the fractions of the three Bain corresponding variants which form the

martensite structure within each grain. Internal stress and elastic energy are accumulated as straining proceeds and are caused by

differences of eigenstrain (transformation strain) between differently oriented grains. The stress and elastic energy are evaluated on

the basis of micromechanics. The stress acting on a grain due to surrounding grains is calculated using a mean field method. In this

procedure, an averaging method is introduced, by which the mean field of grains having the same tensile direction, but having

random lateral directions, are written in a closed form. The averaging method facilitates computations. It is shown that tension and

compression differ in the stress�/strain relationship. # 2002 Elsevier B.V. All rights reserved.
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1. Introduction

As reported previously, polycrystalline Fe�/Pd has

low stiffness in the martensite state [1]. In addition to

intrinsically low lattice stiffness, large strains are devel-

oped upon loading due to changes in martensite variant

fractions. This makes polycrystalline Fe�/Pd a softer

material, suitable for certain actuator applications. The

structure of martensite in a polycrystal of Fe�/Pd has

been analyzed on the basis of elasticity [2]. Three Bain

correspondence variants of tetragonal martensite,

BCV(1), BCV(2) and BCV(3), exist in Fe�/Pd. Here,

the number in the parentheses denotes the direction of

the c-axis of a variant with respect to the parent cubic

phase. When formed by cooling alone, a grain has a

structure consisting of alternating dark and bright

plates, as observed under optical microscopy [2]. The

width of the plates is a few mm. Each plate has a fine

structure, in which two twin-related BCVs are alter-

nately stacked together. A BCV is about 50 nm thick.

Their interfaces are {110}, as observed by electron

microscopy [2]. The interfaces of the dark and bright

plates are also {110}. An example of this structure is

illustrated in Fig. 1, in which a plate (e.g. a bright plate)

consisting of BCV(1) and BCV(2) abuts on another

plate (e.g. a dark plate) consisting of BCV(3) and

BCV(2). When stressed, the fractions of BCVs change

by movement of the interfaces, resulting in straining of

the polycrystal. The variant change depends on the

orientation of a grain and the constraint imposed by the

surrounding grains.

The constraint imposed by surrounding grains makes

the stress�/strain relationship different from that of a

single crystal. Since polycrystalline Fe�/Pd is likely to be

used for actuator applications, the determination of this

relationship is a key engineering issue. This also applies

to straining due to variant changes caused by the

application of a magnetic field. James and Wuttig [3]
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and Koeda, Nakamua, Fukuda, Kakeshita, Takeuchi

and Kishio [4] have reported that when a magnetic field

is applied across a single crystal in the martensite state,

large strains are induced. The strains are in the order of

0.1%. However, when a polycrystal is used, only a strain
of 0.01% is observed, even under a field of 10 kG [5].

This small strain is partly due to the constraint

mentioned above. The origin of larger strain of the

order of 0.1% reported by Furuya et al. in polycrystal-

line Fe�/Pd, [6�/8], will be discussed later.

This paper presents a method to calculate the above

mentioned variant change and straining under uniaxial

loading of a fully martensite Fe�/Pd, using the mean
field method [9,10]. The stress state and elastic energy

are also given.

2. Analysis

From our previous paper [2], the average transforma-

tion strain (eigenstrain) in a grain that has the a
structure shown in Fig. 1 is written as:
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Here, oa� (a�a0)/a0 and oc�(c�a0)/a0. a0 is the

lattice parameter of the cubic austenite phase and a and

c are, respectively, the lattice parameters of the a-axis

and c -axis of the tetragonal martensite phase, f1�f � f0 is

the volume fraction of BCV(1), f2� (1�f0) that of

BCV(2) and f3�(1�f)f0 that of BCV(3). f and f0 refer

to Fig. 1. The eigenstrain in Eq. (1) refers to the

coordinate system (Y ) with axes parallel to the crystal-
lographic directions, [100], [010] and [001], in the

austenite. The first term in Eq. (1) is common among

all grains and causes no internal stress. Thus, it is

omitted in the following analysis. The second term is

rewritten as:
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where:

b�oa�oc (3)

and,
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3
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f1� is the deviation of the fraction of BCV(I) from the

average of 1/3. One third is the value taken by all BCVs

after transformation by cooling below Ms [2]. It is this

deviation, due to variant changes, which causes straining

during loading fi�s satisfy

f 1��f 2��f 3��0 (5)

Our task here is to evaluate the internal stresses and

elastic energy in polycrystalline Fe�/Pd, in which many
differently oriented grains exist and undergo variant

changes depending on their orientations. We consider

uniaxial loading. The specimen coordinate reference

frame is denoted as X , x3 being parallel to the loading

direction. To facilitate the calculation, the grains are

grouped into N groups. All grains belonging to the same

group, say the I-th group, have the same crystal-

lographic direction along the loading direction. This
direction has a unit vector l(1). The lateral directions of

these grains are random and axisymmetrically distrib-

uted around the loading direction. A polycrystal which

possesses grains having many different orientations l(1)

is randomly oriented.

2.1. Stress due to grains in the I-th group

In the Y -coordinate (crystal axis coordinate) system,

the stress in a grain belonging to the I -th group is
written as:

s�(1; Y )�ab

f 1�(I) 0 0

0 f 2�(I) 0

0 0 f 3�(I)

0
@

1
A; (6)

when only this grain changes its variant fractions [11].

Here, a is:

a�2m
(7 � 5n)

15(1 � n)
(7)

The shape of a grain is assumed to be spherical, m , is
the shear modulus and n the Poisson ratio. Isotropic

elasticity is assumed. s*(I ,Y ) is called the self -stress of

a grain in the I -th group.

Fig. 1. Martensite structure in Fe�/Pd. BCV(l), BCV(2) and BCV(3)

are the variants having the c -axis parallel to the austenite [100], [010]

and [001], respectively.
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All the grains belonging to the same group should

have identical f*s and exert internal stress upon all other

grains in the specimen. To calculate this internal stress,

we proceeds as follows. Eqs. (2) and (6) are written in
the specimen coordinate (X -coordinate system) as:

o�(I ; X )��b

l1(I) o12� (I) o13� (I)

o21� (I) l2(I) o23� (I)

o31� (I) o32� (I) l3(I)

0
@

1
A (8)

and,
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[11]. Here,

l3(I)�f 1�(I)(l1(I))2�f 2�(I)(l2(I))2�f 3�(I)(l3(I))2 (10)

l1(I)�l2(I)�l3(I)�0 (11)

l3 is the tensile strain along this direction. o12� etc.

depend on f1�(I), f2�(I) and f3�(I ) and the exact orientation

of the grain with respect to the loading direction.
Stress Eq. (9) is averaged over all the grains of the I-th

group. As of the axi-symmetry around the x3-axis, the

averages of the stresses due to the non-diagonal

components in Eq. (9) vanish and the averages of the

{1,1} and {2,2} components become the average of

those components in Eq. (9), as will be shown in

Appendix A. In this way, the average stress is written as:

�s�(I ; X )�V0

�ab

(l1(I)�l2(I))=2 0 0

0 (l1(I)�l2(I))=2 0
0 0 l3(I)

0
@

1
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Here, V0 stands for the volume of one grain. Eq. (12)

is rewritten as:

�s�(I ; X )�V0
�ab

�l3(I)=2 0 0

0 �l3(I)=2 0

0 0 l3(I)

0
@

1
A (13)

using Eq. (11). The grains in the I-th group cause

average stress in the specimen given by [9,10]:

s̄(1; X )��g(I)�s�(I ; X )�V0
(14)

Here g (I ) is the volume fraction of the grains

belonging to the I-th group.

Similar equations are written for grains belonging to

other groups. Thus, one grain belonging to the I-th

group feels its self-stress plus the average stress from all

other grains. The average stress is the sum of the forms
given by Eq. (14) over all the groups. That is, the

average stress is, in total,

s̄(X )��g(J)�s�(J; X )�V0
(15)

2.2. Elastic energy and total stress

Using the stress computed in the previous section, the

elastic energy W per unit volume is calculated as:

W ��
1

2

X
I

g(I)fsij� (I)�s̄ijgoij� (I)

��
1

2

X
I

g(I)sij� (I)oij� (I)�
1

2

X
I

g(I)oij� (I ; X )

�
X

J

(�g(J))�sij� (J; X )�V0

(16)

The first term is the self-energies, WS, of all the grains

and is calculated using the components expressed in the

crystal coordinates. It is given by:

WS�
1

2
ab2

X
I

g(I)f(f 1�(I))2�(f 2�(I))�(f 3�(I))g; (17)

using Eqs. (2) and (6). The second term in Eq. (16) is the

interaction energy between the grains:

WI �
1

2

X
I

g(I)oij� (I ; X )
X

J

(�g(J))�sij� (J; X )�V0
(18)

and is calculated using the components in the specimen

coordinates. First, we obtain:

oij� (I ; X )
X

J

(�g(J))�sij� (J; X )�V0

�
X

J

�g(J)ab(�b)

�f�l3(J)l1(I)

2
�

l3(J)l2(I)

2
�l3(J)l3(I)g (19)

from Eqs. (8) and (13). This is simplified to:

oij� (I ; X )
X

J

(�g(J))�sij� (J; X )�V0

�
3

2
ab2l3(I)

X
J

g(J)l3(J); (20)

using Eq. (11). Thus, WI is given by:

WI ��
3

4
ab2[

X
I

g(I)

�ff 1�(I)(l1(I))2�f 2�(I)(l2(I))2�f 3�(I)

� (l3(I))2g]2 (21)

using Eq. (10). The total elastic energy per unit volume

is obtained from Eqs. (17) and (21) as:

W �
1

2
ab2

X
g(I)f(f 1�(I))2�(f 2�(I))2�(f 3�(I))2g

�
3

4
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The strain along the loading direction (x3-axis) is

given by Eq. (10) as:

o��b
X

I

g(I)

�ff 1�(I)(l1(I))2�f 2�(I)(l2(I))2�f 3�(I)(l3(I))2g (23)

Thus, the potential energy, per unit volume, of the

loading device is written as:

V �s0b
X

I

g(I)

�ff 1�(I)(l1(I))2�f 2�(I)(l2(I))2�f 3�(I)(l3(I))2g (24)

where s0 is the uniaxial stress along the loading

direction.

2.3. Stress�/strain relationship

By ignoring the energy dissipation (friction), the

stable condition of a specimen is found when W�V

(Gibbs free energy) is minimized:

d(W �V )�0 (25)

Eq. (25) results in a set of simultaneous linear equations
in terms of f1�(I ), f2�(I), and f3�(I). Thus, all of f1�(I), f2�(I),

and f3�(I) are, in principle, obtained analytically as a

function of the uniaxial stress s0 under the constraint of

Eq. (5). Furthermore, f1�(I), f2�(I ), and f3�(I ) must satisfy:

�
1

3
5 f 1�5

2

3
(26)

�
1

3
5 f 2�5

2

3
(27)

�
1

3
5 f 3�5

2

3
(28)

Using Eq. (23), the strain o along the loading

direction attained under a uniaxial stress s0 is also

obtained. Thus, the s0 versus o relationship is com-

puted. Fig. 2 shows the case of four types of grains, the

tensile directions of which are shown on the standard

stereographic triangle in the insert. Each group of grains

has volume fraction proportional to the solid angle
indicated by its small triangle. Since energy dissipation is

ignored, the variant change and the accompanied

deformation proceed from s0�0. This is unrealistic

and, thus, we will now take into account the energy

dissipation.

2.4. Effect of energy dissipation on the movement of

interfaces

Changes in the fractions of the martensite variants are

produced by the movement of interfaces between them

as seen in Fig. 1. Movement of the interfaces dissipates
energy. Thus, extra work is supplied for straining. We

will approximately evaluate the energy dissipation and

incorporate it into the stress�/strain relationship. We

propose that the energy dissipation is calculated ap-

proximately as:

dWD�
k(jdf 1�j�jdf 2�j�jdf 3�j

2
(29)

per unit volume. k is the energy dissipation when a unit

area of interface moves by a unit distance. The factor 2

is introduced to account for the fact that the movement

of an interface changes the volumes of both variants

which meet at the interface. Since this process is

irreversible, we cannot use the energy minimization
procedure to obtain the s0 versus o relationship as

adopted for the case of no energy dissipation. Thus, we

simply add:

sD�
dWD

do
; (30)

to s0 determined without considering the energy dis-

sipation. Here, do is the increment of o for the same

change in the variant fractions. Since there is no unique

way to determine k , we adopt the value which gives the

initial stress for variant change, observed in our previous

study [1,12]. One might argue that the adopted value,

k �10�4 m, is too small, since two variants match

perfectly on their interface. However, Appendix B will
show using a dislocation approach that the order of

magnitude is correct.

In Fig. 3, the stress�/strain diagrams with and without

the energy dissipation are compared. In the computa-

tion, m�15 GPa [1], n�0.33 and k�2 MPa are

assumed. Also, b�oa�oc�2.54�10�2 is used. This

is based on the lattice parameters reported by Oshima

[13]: a0�0.3750nm, a�0.3790 nm and a�0.3695 nm.
As we expected, the energy dissipation just simply the

stress level. Except for this change, no significant effect

of the dissipation is seen in the s0 versus o curve.

Fig. 2. Uniaxial stress�/strain curve in a polycrystal having four types

of grains. The directions of the grains are given in the insert. No energy

dissipation for variant interface movement is taken into account.
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Figs. 4 and 5 are for the cases of nine and 16 groups of

grains, the cases including energy dissipation. From

these results, we observe:

1) the increase in the number of grain groups from

four to 16 does not significantly change the s0

versus o relationship, except near the largest strain

attained.
2) After an initial low gradient stage, the stress

increases sharply as the strain approaches a limiting

value. The largest strain regions are not fully shown

in Figs. 3�/5, because the effect of energy dissipation

cannot be seen in the low strain regime, if the largest

strain is plotted. For reference, we will simply

quantify the largest stress attained: It is approxi-

mately 8�103 MPa in the four grain problem,
1.5�104 MPa in the nine grain problem and

2.7�104 MPa in the 16 grain problem.

3) The limiting (maximum) strain is about 0.27b in

tension and about 0.37b in compression, regardless

of the number of grain groups examined. These

observations will be discussed in the next section.

3. Discussion

Observation (1) implies that four grain types are

enough to estimate the s0 versus o relationship in

polycrystalline Fe�/Pd. Even a model polycrystal having

two types of grain groups has a very similar s0 versus o

relationship to those in Figs. 3�/5, except in the large

strain region.

In more detailed examination, observation (2) is

better stated in the following manner. More stages exist
after the first low slope regime. The origin of the

existence of many stages having different slopes is

most clearly demonstrated by examining an artificial

polycrystal consisting of only one type of grain group,

the problem which results in two stages. In the standard

stereographic triangle:

l 2
25 l 2

15 l2
3 (31)

In this case, f3� monotonically decreases from 0 to �1/

3 in the first stage, when the uniaxial stress is tensile.

That is, in this stage BCV(3) disappears as strain

increases. In the second stage having larger slope, f2�

increases to 2/3, while f1� decreases to �1/3. In this one

type of grain problem, the elastic energy is written as:

W �
1

2
ab2(f 1�

2�f 2�
2�f 3�

2)

�
3

4
ab2ff 1�l

2
1�f 2�l

2
2�f 3�l

2
3g

2
; (32)

per unit volume, by putting g (1)�1 in Eq. (22). The

strain along the loading direction is given by Eq. (10). In

the very beginning of the first stage,

dW �0; (33)

because f1�� f2��f3��0. Thus, in the absence of energy

Fig. 3. Stress�/strain curves of a polycrystal having four types of

grains with (closed triangle) and without (closed circle) energy

dissipation (k�2 MPa).

Fig. 4. Stress�/strain curves of a polycrystal having nine types of grains

with (closed triangle) and without (closed circle) energy dissipation

(k�2 MPa).

Fig. 5. Stress�/strain curves of a polycrystal having 16 types of grains

with (closed triangle) and without (closed circle) energy dissipation

(k�2 MPa).
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dissipation, the stress s0 needed to initiate straining at

the start of the first regime becomes zero.

In the second stage, W is written as:

W �
1

2
ab2

�
f 1�

2�f 2�
2�

1

9

�

�
3

4
ab2

�
f 1�l

2
1�f 2�l

2
2�

1

3
l 2

3

	2

; (34)

because,

f 3���
1

3
(35)

In this stage,

df 1���df 2� (36)

Thus,

dW �ab2(f 2��f 1�)df2+�
3

2

�
f 1�l

2
1�f 2�l

2
2�

1

3
l 2

3

�

� (l 2
2� l 2

1)df 2� (37)

which is approximated to:

dW �ab2df 2��
3

2

�
l 2

2 � l 2
3

3
�

l2
2 � l2

1

3

�
(l 2

2� l 2
1)df 2� (38)

since

f 2�:
2

3
; f 1�:�

1

3
(39)

at the very end of the second stage. The stress s0needed

to supply this energy, Eq. (38), is calculated by s0do . do
is given as:

do��(l 2
2� l 2

1)df 2� (40)

from Eq. (10). Thus, we obtain:

s0�ab
1

l 2
1 � l2

2

�ab((l2
1 � l2

2 )�(l2
3 � l2

2 )) (41)

from Eqs. (38) and (40). This is significantly large. Note

that l1
2�l2

2 and l3
2�l2

2 are positive in the standard

triangle examined.

The stress in the last stage becomes larger as the
number of grains increases; Eq. (2). This is also

consistent with the above reasoning. As seen in Figs.

3�/5, as the number of grain groups increases, more

grains having the orientation near �111� are introduced.

At the exact �111� orientation, l2
2 becomes equal to l1

2.

This means that the first term in Eq. (41) increases

rapidly as the number of grain groups examined in the

calculation increases. However, the large stress region
near the end of complete variant change should not be

emphasized so strongly. In reality, such large stress

induces plastic deformation by dislocation movement,

prior to the completion of the variant change. The

plastic deformation obscures the sharp rise in stress

predicted theoretically in the present study.

Observation (3) shows that the present method to

assign the volume fraction to each grain group is
adequate to model a polycrystal consisting of grains

having completely random orientations. Without elastic

stress consideration, we can calculate the largest elonga-

tion as the average of the maximum strain achieved by

all the grains. The strain of a grain is given by Eq. (10).

In the standard stereographic triangle, l2
2 is the smallest

among all l i
2. This means that the maximum strain

attained by the variant change occurs when f2� becomes
2/3 and f1� and f3� become �1/3 (b is positive). Thus, the

maximum strain of a grain is given by:

omax�b

�
1

3
� l 2

2

�
(42)

The average of Eq. (42) over the standard triangle is

calculated as (2/p )(1�1/�3)b�0.2694b , which agrees

with the maximum strain observed by the calculation

shown in Figs. 2�/5. For compression, the corresponding

expression is given by:

omax�b

�
1

3
� l 2

3

�
(43)

The average of Eq. (43) over the standard triangle is

�2/(�3p)b��0.368b , which also agrees with the

largest strain seen in Figs. 2�/5.
Next, we would like to mention why the elastic energy

is concisely written as in Eqs. (21) and (22). This is

simply due to the assumption that grains having the

same direction along the loading axis are present

axisymmetrically with respect to the loading direction.

Otherwise, such a simple expression as Eq. (12) cannot

be obtained: i.e. the interaction energy WI cannot be

written as simply as in Eq. (21). This case of non-
axisymmetric texture applies to a material having a sheet

or plate texture. If a material has a fiber texture

(axisymmetric texture), the present method results in

an equally simple formulation of energy and the pre-

determination of l (I ) and g(I) in the fiber textures is all

that is required to find the s0 versus o relationship.

Some papers postulate that the direction of the

magnetization vector of a magnetic domain in Fe�/Pd
martensite is determined by the type of BCVs [3,4,6�/8].

Thus, they advocate that a magnetic field favors a

certain variant over others and can control straining. If

this is the case, straining in polycrystalline Fe�/Pd by

magnetic field should also be examined along the same

lines as in the present study. However, a recent work by

Yamamoto, Wang and Hirayama indicates that mag-

netic domains in Fe�/Pd have no one-to-one correspon-
dence to martensite variants [14]. Thus, we must

examine magnetic field induced straining in more detail,

as will be fully discussed in a separate paper.
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Furuya et al. [6�/8] have observed strain of the order

of 0.1% by the application of a magnetic field to

polycrystalline Fe�/Pd, which is clamped at one end

and loaded parallel to its length at the other end [6,7].

An Fe�/Pd specimen is in a fully martensite state. Even

though they have claimed that the strain is due to a

direct effect of the magnetic field alone, we rather think

that the strain is caused by force produced by a

heterogeneous distribution of magnetic field, which

induces the magnetic force. The force exerts bending

moment to a specimen clamped at one end [15,16]. The

moment results in stress, which, in turn, causes straining

by variant change. One of their papers [7] has indicated

that the sign of the strain changes, when an identical

sheet specimen is rotated by about 1808. A sheet

specimen is placed between two poles of an electro-

magnet. The direction of the field is normal to the

surface of the specimen, upon which is mounted one

strain gage. As reported previously [16], this geometry

most likely induces force on a specimen, unless the

specimen is exactly in the center of the field, where there

is absolutely no gradient of the field. (Slight deviation in

position causes force, which moves a magnetic material

to the nearer pole and induces more force.) Thus, the

1808 rotation changes the sign of strain measured on one

surface. This reasoning indicates that 0.1% strain

claimed by Furuya et al. to be pure magnetostriction

is most likely rather due to stressing. When their

specimen is rotated by 908, the strain becomes much

smaller. In this geometry, the specimen has the largest

rigidity against bending caused by a heterogeneous

magnetic field, resulting in small strain measured on a

surface. We may further add that if the strains before

and after the 1808 rotation, observed by Furuya et al [7],

are averaged, the averaged strain becomes 0.01%, which

agrees with our own measurement [5]. The average for

1808 rotation is equivalent to that of strains measured

on two surfaces of the specimen, which is apt to bending

by moment, to get tensile strain.

4. Summary

The change in the variants of martensite in an Fe�/Pd

polycrystal under uniaxial loading is formulated by

evaluating the associated changes in elastic energy and

potential energy of a loading device. The change in the

variant fractions leads to straining and, thus, a uniaxial

stress�/strain relationship is computed. The energy

dissipation needed for the movement of variant inter-

faces is also taken into account. The dissipation energy

is estimated using a dislocation theory. Implications of

the results are also discussed in relation to straining by

the application of magnetic field.
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Appendix A

Consider a grain, the orientation of which is produced

by the rotation of 1808 around the loading direction of

the grain whose eigenstrain is written in Eq. (8). The

eigenstrain of the former grain is written as:

o�(I ; x)��b

l1(I) o12� (I) �o13� (I)

�o21� (I) l2(I) �o23� (I)
�o31� (I) �o32� (I) l3(I)

2
4

3
5 (A:44)

That is, the {13} and {23} components in Eqs. (8) and

(A.44) cancel out. This cancellation applies to those

other grains belonging to the I -th group, since all these

grains are axisymmetrically present with respect to the

loading direction.
Instead of 1808, consider rotation of 908. A grain in

this new orientation has the eigenstrain of:

o�(I ; x)��b

l2(I) �o12� (I) �o23� (I)

�o21� (I) l1(I) o13� (I)

�o23� (I) �o31� (I) l3(I)

2
4

3
5 (A:45)

Thus, the {1,2} component of eigenstrain in a grain

having Eq. (8) and in that having Eq. (A.45) cancel out.

By any rotation around the loading direction, the sum

of the {1,1} and {2,2} components are constant and the

{3,3} component does not change. In this way, the

average eigenstrain of the grains belonging to the I-th

group is obtained as:

�o�(I ; x)�V0

��b

(l1(I)�l2(I))=2 0 0

0 (l1(I)�l2(I))=2 0
0 0 l3(I)

2
4

3
5

(A:46)

From this, we obtain (Eq. (12)), using ([11]).

Appendix B

Here, we discuss the stress needed for an interface

between two BCVs to move. Since two adjoining BCVs

match perfectly on their interface, the movement is

caused by the nucleation of a dislocation loop on the
interface and its subsequent spreading-out. Apparently,

nucleation is the rate controlling process. The energy

change when a dislocation loop is formed (Gibbs free
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energy assigned for the loop) is approximately written

as:

G�2pr
1

2
mb2�s0pr2b; (A:47)

where b is the Burgers vector of the dislocation and r the

radius of the loop. The maximum of G (activation

energy) is calculated as:

G��
pm2b3

(4s0)
: (A:48)

As often used in dislocation dynamics, such a process

occurs with an observable rate, when:

G��26kBT ; (A:49)

where kB is the Boltzmann constant and T the tempera-

ture [17]; b in this case is in the order of a0(oa�oc ; a0 is

taken as the lattice parameter of the austenite). Using

T�300 K, a0�0.375 nm, (oa�oc)�2.54�10�2 and

m�15 GPa, Eqs. (A.48) and (A.49) give:

s0�1:4 MPa (A:50)

as the stress for the interface movement. Note that s0

has the same meaning as k in Eq. (29). Thus, the

magnitude of the adopted value of k�10�4 m has been

successfully explained.

An interface which is not perfectly flat in the

beginning contains steps. The steps are dislocations as

discussed here. When they move, they eventually

disappear at a specimen surface or a grain boundary

or annihilate each other. This process leads to micro-
straining. After this process, an interface becomes flat.

Long distance movement of a variant interface, leading

to large strain, requires the process discussed in the

above paragraph. Since flat interfaces are crystallogra-

phically fixed, one cannot control the mobility of the

interfaces for long distance movement as one wishes.

Usual grain boundaries do not play any role in this

movement. This means that such a proposal as advo-

cated by [7] to modify boundaries and interfaces to get

larger straining makes no sense in the actual straining of
Fe�/Pd by variant change.
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