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1. Introduction

To determine flow curves of a material, whose plastic deformation is produced by martensitic
transformation, transformation strains of a martensite plate must be characterized [1–3]. Most studies
along this line adopt results obtained by the phenomenological crystallographic theory of martensitic
transformation [4,5]. The theory is based on finite deformation analysis, which needs involved
computations. Solutions with analytical forms have been obtained in a few limited cases [6]. However,
if we take an infinitesimal deformation theory, the calculation becomes simplified. Moreover, the
infinitesimal theory offers simple and clear pictures of the computations. The present study demon-
strates this point. Also, if stress analysis is involved as in polycrystal transformation plasticity [1–3],
infinitesimal theory is rather adequate, since stress analysis is usually based on infinitesimal theory.
That is, consistency with using Hooke’s law is observed.

2. Analysis

It has been shown that when an infinitely extended plate-like region, the plate plane (habit plane) being
perpendicular to the z-axis, has the eigenstrain satisfying the condition

e*xx 5 e*yy 5 e*xy 5 0, (1)

neither stress nor strain energy is produced [7]. This result is valid, whether or not anisotropy in elastic
constants exists, and regardless of the elastic constants of the martensite differing from those of the
matrix. The transformation strain of a Bain correspondence variant (BCV) cannot, in a usual case,
achieve condition (1) for any possible direction of the plate plane. Thus, a standard way is to seek the
condition, by forming a combined variant (twinned martensite in most cases), whose average trans-
formation strain is written as

e ij
T 5 ƒe ij

T~M! 1 ~1 2 ƒ!e ij
T~N!. (2)

Here,eij
T(M) stands for the transformation strain of the M-th BCV. ƒ is the fraction of this variant in the

combined variant to make condition (1) satisfied. One has also to determine the habit plane normal at
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the same time. In addition, since no clear criterion to pick up an acceptable combination of the two
BCVs to form (2) has been given yet, some trials are needed in the computation. The present study will
show how the approach using infinitesimal theory simplifies computational processes.

Condition (1) is equivalently written in terms of the principal strains,e1, e2 ande3: One of them, say
e3, is zero and the product of the other two is not positive. That is,

e3 5 0, (3)

e1e2 # 0. (4)

Condition (3) with (4) is equivalent to condition (1). Using the two conditions, we can find a combined
variant more economically than the methods used before [8,9]; the methods which examined elastic
energy of a combined variant in terms of ƒ, the orientation of the plate (habit) plane etc. That is, the
average strain is, first, more easily found without considering a possible habit plane, the orientation of
which is later determined by geometrical analysis.

Let us consider the situation that the transformation straineij
T is written in the orthogonal coordinate

system (X) in the parent phase. The determinant of the strain is invariant, so that condition (3) is
expressed as

det(eij
T) 5 0. (5)

Nothing thateii
T andeij

Teij
T are invariant, we can rewrite the condition (4) as

e ii
Te jj

T 2 e ij
Te ij

T # 0. (6)

The next task is to determine ƒ, with which a proper combination of two BCVs to form the combined
variant of (2) satisfies conditions (5) and (6). When there are many BCVs, it is better to decrease the
number of the possible combinations from the beginning. The following is one method to achieve this
process.

The presence of a stress free interface between the two possible BCVs also means that the conditions
similar to (5) and (6) must be satisfied. It is written as a function of the difference,deij

T, of the
transformation strain between the variants.

de ij
T 5 e ij

T~N! 2 e ij
T~M!. in X (7)

The condition corresponding to (5)

det~de ij
T! 5 0 (8)

must first be satisfied. Then, the condition corresponding to (6)

de ii
T de jj

T 2 de ij
T de ij

T # 0 (9)

is automatically satisfied. Note that the first term in the left hand side is zero, becausedeii
Tis the

difference of the volume strain, which is zero.deij
T deij

T is the positive definite, so that (9) is always valid,
as long as (8) is observed. These properties of the possible combination of the BCVs save some extra
computations.

Equation (5) might appear a cubic equation of ƒ. However, it is quadratic, since (8) is imposed on
eij

T(M) andeij
T(N). When (5) is expanded, the coefficient for the cubic term of ƒ becomes the determinant

of deij
T, which is set zero from the beginning. Thus, the solution of ƒ to satisfy (5) can be obtained

elementally. It appears that further simplification cannot be achieved, as we have found in an example
of the martensitic transformation in Ni-Ti.
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3. Martensite Plate in Ni-Ti

3.1. Combined Variant and Average Transformation Strain

The lattice parameter of the cubic parent phase is 0.3015nm and those of the monoclinic martensite
phase are aM 5 0.2889nm, bM 5 0.4120nm, cM 5 0.4622nm andb 5 96.8° [10]. The Bain
correspondence gives a BCV the transformation strain of

e ij
T~3 2 1! 5 S a c 2d

c a 2d
2d 2d b

D in X (10a)

wherea 5 0.02132,b 5 20.04179,c 5 0.05505 andd 5 0.04216. Here, the coordinate axes are
parallel to [001], [010] and [001] in the parent phase, bases of the X system. We are aware that only
three digits in (10a) are meaningful. However, for computational purposes, we will use four digits. This
applies to all the following calculations. Three more similar and equivalent variants exist and their
transformation strains are

e ij
T~3 2 2! 5 S a c d

c a d
d d b

D in X (10b)

e ij
T~3 2 3! 5 S a 2c d

2c a 2d
d 2d b

D in X (10c)

e ij
T~3 2 4! 5 S a 2c 2d

2c a d
2d d b

D . in X (10d)

Here, the first number in the parenthesis denotes the BCV, whose cM-axis corresponds to [001] of the
parent phase. By cyclic changes of the direction, the transformation strain of the other eight BCVs are
similarly written. That is, there are 12 BCVs in total. Among the 66 combinations of these BCVs, 42
combinations satisfy condition (8).

Also, out of the above 42 combinations, 18 combinations are unsatisfactory, since the root for ƒ of
(5) does not become real. The remaining 24 are classified into two groups, A and B. A combined variant
in group A is, for example, formed by (32 1) with (3 2 3) or (3 2 4). The symmetry gives total of
12 possible combinations belonging to this group. ƒ is written as

f 5
1

2
6

1

2 Î a~ab2 d2!

bc2 2 d2~2a1 2c!
5 0.2764 or 0.7236. (11A)

A combined variant in group B is, for example, formed by the combination of (3–1) with (1–1) or (2–1).
There are, in total, 12 such combinations. The analytical form of ƒ for this group is so lengthy that only
the numerical result is given below.

ƒ 5 0.3102 or 0.6898. (11B)

Since the two roots of (11A) and (11B) produce equivalent but different average transformation strains
expressed in the identical coordinate systems, each group has 24 equivalent combined variants.

The average transformation strain of a variant in group A is written as
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e ij
T 5 S 0.02132 0.01885 0.02462

0.01885 20.04179 0.04216
0.02462 0.04216 0.02132

D , in X (12A)

and that for a variant in group B is

e ij
T 5 S 0.02132 0.01200 0.02490

0.01200 20.02221 0.04216
0.02490 0.04216 0.001738

D . in X (12B)

These are, of course, expressed in analytical form in terms of a, b, c and d, but becomes too lengthy.
Thus, (12A) and (12B) are written numerically.

3.2. Habit Plane, Normal Strain and Shear Direction of a Combined Variant

After finding the principal strains and corresponding principal directions of a combined variant, it is
straightforward to determine the habit plane normal and shear direction.

(The normal strain is equal to the volume strain, which is equal to that of a BCV.) For example,
(12A) is converted to

e ij
T~diag! 5 ~e1, e2, 0! (13A)

wheree1 5 0.06419,e2 5 20.06335. The principal direction fore1 is [0.5813, 0.3879, 0.7153] and that
for e2 is [0.0769,20.9012, 0.4265]. The other direction is [0.8101,20.1931,20.5536]. From these
results, we can find two possible habit planes. The tensile strain along the last direction is zero. The
other direction, along which the tensile strain is also zero, can be found using the property of the
representative quadratic [7]. These two directions correspond to the X1- and X2- directions defined in
(1). The direction, normal to the two directions, is the habit plane normal,n. When expressed in the
orthogonal system defined by the three principal directions, the normal can have two directions written,
respectively, as

n 5 Îe1/~e1 2 e2!, Î2e2/~e1 2 e2!, 0 (14)

and

n 5 Îe1/~e1 2 e2!, 2 Î2e2/~e1 2 e2!, 0 (15)

These are easily expressed in the X system. That is, the normal direction corresponding to (14) is
[0.3584,20.2069, 0.9104] in the orthogonal system defined in the parent phase. That corresponding to
(15) is [-0.4664, 0.8080, 0.3600].

The corresponding parameters for (11B) are listed below.e1 5 0.05534 with the principal direction
of [0.6257, 0.4451, 0.6406] ande2 5 20.05450 with that of [0.0802, 0.7802, -0.6203]. The principal
direction for the zero principal strain is [0.7759,20.4396,20.4525]. Of course, the normal of the habit
plane has the same form as (14) and (15). One is expressed in the orthogonal system in the parent phase
as [0.2336, 0.3876, 0.8917] and the other [-0.8654, 0.5006, 0.0178].

The directionli of the total deformation, corresponding to the displacement vector in the shape
deformation examined in the phenomenological theory, is now determined. Consider a tensile stress
with a unit strength along a unit vector mi. The work supplied to the formation of a martensite plate (per
unit volume) is

W 5 mimje ij
T. (16)
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Whenmi is equal toli, W becomes maximum. That is, the direction to calculate is to maximize (18)
under the condition of

mimi 5 1. (17)

The process is exactly the same as that to obtain one of the principal directions ofeij
T, the direction

corresponding to the largest principal strain. This has already been obtained.
Since the normal direction of the plate and the normal strain have already been determined, the

magnitude of shear and its direction are determined in a straight forward manner. For example, the shear
direction examined in (13A) is [-0.4641, 0.8067, 0.3660] and the magnitude of the shear is 0.126.

3.3. Interface Plane between Two BCVs to Form a Combined Variant

The method to determine the interface between two BCVs is the same as that used for the habit plane
determination, except that (7) is used instead of (2). The combination of (3–1) and (3–3) (ƒ5 0.2764)
can have two interface planes. The normal vector of one is written as

n 5 @1, 0, 0# in X (18)

and that of the other is

n 5 @0, 1, 2d/c# 5 @0, 1, 20.8221# . in X (19)

Using the lattice correspondence for the BCV of (10a),

~h k l!M 5 ~h k l!PS 1 1 0
21 1 0
0 0 1

D (20)

for the planes, the interface given by (18) is found to correspond to (1,1,0) of the martensite. (Here, (h
k l)M is the index of a plane in the martensite and (h k l)P is that in the parent phase.) The interface
given by (19) is irrational, (1,21, 0.7657) in the martensite.

The combination by (3–1) and (1–1) (ƒ5 0.3102) can have an interface normal to

n 5 @1, 0, 21# in X (21)

or

n 5 @1, 3.081, 1# in X (22)

in the parent phase. These are, respectively, expressed in the martensite lattice as (1, 1,21) and (0.5098,
1, 0.2450) plane. The interfaces of (18) and (21) are twinned planes in the martensite lattice.

3.4. Comparison with Phenomenological Theory Calculations

Here, the paper by Knowles and Smith [11] and that by Matsumoto, Miyazaki, Otsuka and Tamura [12],
the calculations based on the phenomenological theory, are referred to. The former reported two values,
0.2710 and 0.3201, corresponding to our ƒ5 0.2764 and ƒ5 0.3102. The difference is not much. The
latter dismissed the case corresponding to 0.3201.

The habit plane reported by Matsumoto et al in ƒ5 0.2710 is (0.8889, 0.4044, 0.2152). Our value
is (0.9104, 0.3584, 0.2069). The difference is only 3°. The habit plane corresponding to our (0.8080,
0.4664, 0.3600), ƒ5 0.3102, is possibly that for the (-) solution by Matsumoto et al for ƒ5 0.2710;
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(0.7712, 0.5136, 0.3762). These directions differ by 4°. The amount of the shear, 0.126, calculated in
our approach, compares well with that given by Matsumoto et al, 0.131.

The rational interface plane, (1, 1, 0) for ƒ5 0.2710 and (1, 1,21) for ƒ 5 0.3102, were also
reported by both groups. The former is the type II twin plane and the latter the type I twin plane.
However, it appears that neither of the two groups examined the other two possible interfaces,
(1,1,0.7657) for ƒ5 0.2764 and (0.5099, 1, 0.2450) for ƒ5 0.3102. Since these are irrational, the
dismissal of these planes might be justified.

4. Concluding Remarks

One advantage of using the infinitesimal approach is easily to find a possible combination of two BCVs.
When the number of BCVs is small as in the case of Fe-based alloys, one can choose the combinations
readily. However, when the number is large, the determination of the possible combinations is not
straightforward. We have not seen an easy and logical method to apply to this subject yet. The present
method offers one easy method.

In many respects, the analysis based on infinitesimal theory is simple. We have demonstrated this
point by analyzing the fraction of a BCV and the habit plane of a Ni-Ti martensite plate. Also, note that
the interface plane between two BCVs forming a combined variant is automatically found. Further, the
calculations certainly indicate that the infinitesimal analysis gives almost the same results as the
phenomenological theory.

The present study has also completed the analysis of the deformation of a group B combined variant
(ƒ 5 0.3012), which neither Knowles and Smith nor Matsumoto, Miyazaki, Otsuka and Tamura
reported. By taking into account the average transformation strains of both groups A and B, we have
found that group B cannot be ignored, when the preferential formation of a particular variant is
examined under stress. For example, if a single crystal is compressed, group B variants are formed with
less stress than group A variants, when the loading axis is near the [101]-[111] boundary of the standard
triangle. Since there is no decisive factor to dismiss group B, the transformation under stress must be
examined, by counting the roles of the variants in this group together with those in group A.
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