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Martensite structure in polycrystalline Fe–Pd
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Abstract

The martensite structure in polycrystalline Fe–Pd has been examined from a mechanics and a crystallographic point of view.
The structure consists of dark and bright plates, parallel to {110}, which, under no stress, exist in an equal amount. A plate has
a fine structure, in which a set of twin-related variants adjoining on {110} interfaces is stacked together. That is, the dark plate
contains two twin-related variants as does the bright plate. One variant in the bright plate is the same as one in the dark. The
others are twin-related. In total, a grain is covered by equal amounts of three variants when transformation is completed.
Straining caused by uniaxial loading is evaluated. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Martensitic transformation, from fcc to fct, in Fe–Pd
was extensively studied by an Osaka University group
in the past [1–7]. There has been a revival in interest
recently as, from a practical point of view, Fe–Pd has
potential to be used as a magnetic field controlled
actuator [8,9]. Actuation is produced by the formation
of certain variants by martensitic transformation or a
change in the fraction of variants in the martensite
state. The deformation caused by these changes should
be understood in terms of micrcostructure and changes
in microstructure. Oshima et al. have examined the
structure of martensite [1–4]. Martensite consists of
alternating lamellar plates. Each plate further consists
of two types of twin domains stacked on each other on
{110}, twin interfaces in fct. The lamellar interface is
also {110}. Apparently such an interface is not a habit
plane of a twinned martensite plate (TWP). Despite
temperature dependence of lattice parameters in the
martensite phase [1–3], such a simple lamellar interface

is always observed regardless of temperature. This pa-
per presents a reason for this observation. A polycrystal
material is most likely to be used in application. There-
fore, the present study examines the detailed martensite
structure characteristic of a polycrystal. However, part
of the study of course applies to a single crystal state.
Further, a change in structure in a stressed polycrystal
is discussed.

2. Analysis

2.1. Martensite plates

Three Bain correspondent variants (BCVs) exist for
the fcc to fct transformation in Fe–Pd. Their transfor-
mation strains are written as
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in BCV(3). (1)

Here, the coordinate system is taken as the austenite
orthogonal system.

�a= (a−a0)/a0 and �c= (c−a0)/a0. a0 is the lattice
parameter of austenite and a is the lattice parameter of
the two a-axes and c that of the c-axis in martensite.
Throughout this paper, we will use an infinitesimal
deformation approach to analyze the geometry and
structure of martensite [10]. A single BCV cannot form

a stress free martensite plate [10]. Thus, we must exam-
ine a combined variant that has an invariant plane
interface with the matrix. Any combination of two
BCVs can form a combined variant plate, in which two
BCVs stack together on undistorted planes. For exam-
ple, consider BCV(1) and BCV(2). The difference of the
transformation strain between these BCVs is written as

��T=�T(2)−�T(1)=

�
�
�
�
�

�a−�c 0 0
0 �c−�a 0
0 0 0

�
�
�
�
�

. (2)

Eq. (2) satisfies the condition that two variants can
meet on an undistorted plane [10]. Further, Eq. (2)
means that the undistorted interface of these BCVs is
(110) or (1� 10) [10]. These two planes coincide with a
twinning plane for these BCVs, as reported by
Sugiyama, Oshima and Fujita [3,4]. The undistorted
plane of the combination of BCV(2) and BCV(3) is
(011) or (01� 1) and that of BCV(3) and BCV(1) is (101)
or (101� ).

A combined variant can form a plate, which does not
cause (long range) stress, as discussed before [10] and
will be examined later in the present specific problem.
As seen in Fig. 1, when a grain transforms into a fully
martensitic state, a martensite colony which consists of
two sets of parallel plates (e.g. dark and bright plates)
stacked alternatively is formed. These plates have fine
structures, as shown in the electron micrograph of Fig.
2. Two adjoining domains in a zone, which appears as
a plate under optical microscopy, are twin-related with
a twinning plane of {110}. This agrees with the above
crystallographic examination and with the observation
of Sugiyama, Ohshima and Fujita [3]. Apparently, the
parallel plates seen in optical microscopy constitute an
ensemble of compound twins. We will examine the
geometry of such an ensemble in the following manner.

First, the average transformation strain of a TWP in
a compound twin ensemble is examined. For example,
consider again a combined martensite plate, TWP(1, 2),
consisting of BCV(1) and BCV(2). Its average transfor-
mation strain is written as

�T(1, 2)=

�
�
�
�
�

�a− f0(�a−�c) 0 0
0 �c+ f0(�a−�c) 0
0 0 �a

�
�
�
�
�

in TWP(1, 2). (3)

Here, f0 is the fraction of BCV(1) in this plate of
TWP(1, 2). Suppose that another TWP(2, 3) is formed
by the combination of BCV(2) and BCV(3). The aver-
age transformation strain of TWP(2, 3) is written as

Fig. 1. Optical micrograph of martensite in an Fe–30.5% alloy cooled
to 14 °C. Three austenite twin boundaries in the central grain can
index the interfaces of bright and dark martensite plates with the
matrix. It is seen that the two alternately stacked plates have equal
fractions.

Fig. 2. Two adjoining martensite plates (TWPs) have smaller twins,
each of which is a BCV, inside the plates (transmission electron
micrograph).
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Fig. 3. Part of two adjoining plates in a martensite ensemble, consist-
ing of two parallel TWPs and having BCVs in them, is schematically
drawn. BCV(1) is twin-related to BCV(2) and BCV(3), and BCV(2) to
BCV(3).

A set of TWPs which is produced, for example, by
replacing TWP(2, 3) by TWP(2, 1) in Fig. 3 cannot
form. In this configuration, BCV(2) replaces BCV(3)
and BCV(1) BCV(2) in Fig. 3. If this were so, the twin
interface in TWP(1, 2) would be (110), while that in
TWP(2, 1) would be (110). The interface between
TWP(1, 2) and TWP(2, 1) would then become (010) or
(100). These are neither undistorted twin interfaces
between BCV(1) and BCV(2) nor the observed interface
of two TWPs in an ensemble. That is, a BCV in
TWP(1, 2) cannot adjoin another BCV in TWP(2, 1), to
which the former BCV is twin-related.

The remaining task is to determine the fraction of
constituent TWPs in an ensemble and that of a certain
BCV in a TWP, e.g. BCV(1) in TWP(1, 2). If an
ensemble of compound twins covers a whole single
crystal, these fractions can take any value, as far as
geometry is concerned. This is clear from Fig. 3. How-
ever, if it is formed in a grain surrounded or con-
strained by other grains as in a polycrystal, a particular
set of the fractions make elastic energy minimum. The
analysis given assumes a spherical grain and isotropic
elasticity.

2.2. Martensite in a polycrystal

Suppose that a grain is completely covered by an
ensemble (the influence of other transformed grains will
be discussed later). The average transformation strain
for a grain in the above example is written as

�*= f�T(1, 2)+ (1− f )�T(2, 3). (6)

Here, f is the fraction of TWP(1, 2) in the ensemble.
For convenience, Eq. (6) is explicitly written as

�*=
2�a+�c
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�

. (7)

Here, Eq. (5) is used. The first term causes hydro-
static stress in the grain and does not interact with the
second term, the deviatoric part of the average transfor-
mation strain, in terms of energy. Further, the first term
is independent of f and f0 and only the second term
depends on these f-parameters describing the structure
of the ensemble. Thus, we seek the combination of f
and f0 which minimizes the elastic energy due to the
second term of Eq. (7) to determine the structure of a
martensite ensemble in a polycrystal.

Using Eshelby [11] and Mura [12], the stress in a
spherical inclusion is calculated as

�T(2, 3)=

�
�
�
�
�

�a 0 0
0 �a− f0� (�a−�c) 0
0 0 �c+ f0� (�a−�c)

�
�
�
�
�

in TWP(2, 3). (4)

Here, f0� is the fraction of BCV(2) in this combined
martensite plate. Using a previous result [10], it can be
shown that TWP(1, 2) and TWP(2, 3) can have an
undistorted interface of (101) or (1� 01), if

f0+ f0� =1. (5)

That is, TWP(1, 2) and TWP(2, 3) can join together
on (101) or (1� 01) without causing elastic strain. This
geometry is shown in Fig. 3. As seen here, BCV(1) in
TWP(1, 2) and BCV(3) in TWP(2, 3) also join on their
undistorted twin plane, (101). There is, in reality, no
boundary between BCV(2) in TWP(1, 2) and BCV(2) in
TWP(2, 3). By further stacking the identical set of two
TWPs, a martensite ensemble consisting of the two
TWPs is formed. In this ensemble, there are three
BCVs. There are two other equivalent combinations of
TWPs to form an ensemble of compound twins.

Briefly stated, the {110} interface of two TWPs, as
reported by Sugiyama, Oshima and Fujita [3,4], can be
understood in two ways. One is crystallography and the
other mechanics and geometrical analysis facilitated by
an infinitesimal deformation approach [10].

The present study has also confirmed {110} interfaces
of TWPs in a martensite ensemble by using, for exam-
ple, Fig. 1. The central grain, as schematically drawn
below, has three different austenite twin boundaries,
{111}. Thus, the orientation of the grain can be indexed
and its normal is (0.390 0.558 0.732). Similarly, the
traces of the three austenite twin planes are indexed.
The grain also has three different martensite ensembles.
All the traces of the TWP interfaces of these ensembles
on the surface of the grain can be consistently ac-
counted for, if the TWP interface is indexed as {110}.
Also, by analyzing traces of TWP interfaces in some
more grains having two different austenite boundaries,
the {110} TWP interfaces have been further confirmed.
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�ij= −2�
(1+5�)
15(1−�)

�kk* �ij−2�
(7−5�)
15(1−�)

� ij*. (8)

Here, � is the shear modulus, � the Poisson ratio and �ij

the Kronecker delta. Thus, the stress due to the second
term in Eq. (7) is written as

�= −2�
(7−5�)
15(1−�)

(�a−�c)

×
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�
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1/3− ff0 0 0
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0 0 1/3− f0(1− f )

�
�
�
�
�

. (9)

The elastic energy due to this term is calculated by a
standard formula of − (V/2)�ij� ij* [11,12] (V is the
volume of the inclusion). Thus, the elastic energy due to
the second term of Eq. (7) is given by

E=
2�(7−5�)
15(1−�)

V
�

f 2f0
2− ff0

2+ f0
2− f0+

1
3
�

. (10)

It is clear that the elastic energy is minimized, when

f=
1
2

and f0=
2
3

. (11)

are satisfied. That is, a single grain has a structure in
which the fractions of two TWPs are equal and the
fraction of a BCV, common to two TWPs forming an
ensemble, is 1/3. This means that three BCVs exist in an
equal amount in an ensemble. The above analysis,
which led to 1/3 is different from that for a single
crystal assuming that the transformation involves no
volume change [13]. This point will further be discussed
later. The equal fraction of two TWPs is always ob-
served in our metallographic observations. An example
is seen in Fig. 1.

The above solution of Eq. (11) makes the configura-
tional ectropy maximum. Let the fractions of BCV(1),
BCV(2) and BCV(3) be f1, f2 and f3, respectively. The
configurational entropy per unit volume is calculated as
− (k/�) ( f1 log f1+ f2 log f2+ f3 log f3), using Boltz-
mann’s standard expression. Here, k is the Boltzmann

constant and � is the atomic volume. When f1= f2=
f3=1/3, the configurational entropy becomes maxi-
mum. This condition coincides with Eq. (11), as
mentioned in the previous paragraph. In total, the
Helmholtz free energy, the sum of elastic energy and
the negative of entropy times temperature, becomes
minimum when Eq. (11) is satisfied.

The effects of surrounding grains on the transforma-
tion of a grain is briefly discussed. When the f-parame-
ters take the values given by Eq. (11), the deviatoric
part in Eq. (7) vanishes. That is, the average transfor-
mation strain of the grain becomes uniform expansion
or contraction. This applies to other grains. Thus, the
relative misfit between a particular grain and its sur-
rounding vanishes. This result occurs only when Eq.
(11) is satisfied. This result is valid even though the
orientations of martensite variants differ from grain-to-
grain, depending partly on the orientations of original
austenite grains.

We also note that the above conclusion is valid as
long as a material has elastic constants with cubic
symmetry. Firstly, this is because the second term in
Eq. (7) vanishes in the energy minimum condition.
Secondly, the first term causes hydrostatic stress in a
grain having cubic symmetry, even when a single grain
transforms, while other grains are in the austenite
phase. The martensite of Fe–Pd is almost cubic in
structure and for all practical purposes can be analyzed
by the present method.

We have noticed that in the very beginning of trans-
formation in Fe–Pd, long before a whole grain is
covered by a martensite ensemble, an isolated wedge
shaped martensite plate appears; an example is shown
in Fig. 4. A complete experimental analysis could not
be performed for this type of wedge shaped and iso-
lated plate. This is because a wedge shaped martensite
grows rapidly. Once it hits a grain boundary, other
martensite plates are formed in contact with the first
one (the interfaces of these plates are the same as that
of a martensite ensemble). However, we believe that an
isolated wedge shaped martensite is a combination of
two TWPs. The central plane is the undistorted match-
ing plane examined for the interface of two TWPs and
the outer interfaces with the matrix is undistorted
planes of TWPs to the matrix. An undistorted plane of
one TWP can be analyzed using a previously reported
method [10]. Consider a single TWP consisting of
BCV(1) and BCV(2). Using the previous study [10], it
can be shown that if f0 in Eq. (3) is given by

f0=
�a

�a−�c

, (12)

or

f0= −
�c

�a−�c

, (13)Fig. 4. A freshly formed martensite on cooling. This type of isolated
martensite has a wedge shape.
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this TWP (combined martensite variant) can contact
the matrix on an undistorted plane (habit plane). The
orientation of the undistorted plane is given by�

0
�(�a+�c)

�c

�
�−�a

�c

�
, (14)

for Eq. (12) and��(�a+�c)
�c

0�
�−�a

�c

�
. (15)

for Eq. (13). Of course, these planes are different from
the undistorted plane of two TWPs in a compound twin
ensemble. Using the lattice parameters reported by
Oshima [2], the undistorted plane is calculated to be (0
0.557 �0.830) or (0.557 0 �0.830) just below the Ms
temperature (�20 °C). We would also like to mention
that the fraction of one BCV in a TWP is, in general,
not a simple fraction. If 2�a+�c=0 holds, as assumed
in a study of In–Tl [13], the fraction of a BCV in an
isolated TWP becomes 1/3 or 2/3. The condition of
2�a+�c=0 is coincidental. Thus, the condition for the
fraction of one BCV in a martensite plate to be 1/3 or
2/3 must not be taken for granted, as sometimes as-
sumed [4,8,13]. On the contrary, equal fractions of
three BCVs in a martensite ensemble in grains in a
polycrystal hold, as long as transformation is from
cubic to tetragonal. It is independent of such parame-
ters as the axial ratio of martensite or the absolute
values of the lattice parameters. Thus, even if the lattice
parameters of martensite sensitively depend on temper-
ature, as reported in Fe–Pd [1–3], f=1/2 and f0=2/3
must be observed. Similarly, the interfaces of two adja-
cent TWPs are also {110} under the same situation.

2.3. Straining by transformation or �ariant change

When martensite is stress induced or a transformed
specimen is additionally stressed, the fraction of TWPs
constituting a compound twin ensemble (e.g. dark and
bright bands in Fig. 1) changes. Also, the fractions of
two BCVs in a TWP changes. When stress becomes
extremely large, a grain becomes mono-toned and
shows no contrast under optical microscopy, as will be
reported in a separate paper. We can estimate the
maximum strain attained by changes in the fractions of
constituting BCVs in grains of a polycrystal. These
fractions satisfy

f1+ f2+ f3=1. (16)

The grain has the average uniaxial transformation
strain given by

�=�a− (�a−�c)( f1l1
2+ f2l2

2+ f3l3
2) (17)

Here, l1 is the direction cosine of [100] of the grain to
the loading (tensile or compression) axis. Similar defini-
tions are given to l2 and l3. Since Eq. (17) is a linear

function of f1, f2 and f3 and these are bound by Eq.
(16), the maximum �T or minimum �C of Eq. (17) can be
easily found. That is, �T and �C are, respectively, equal
to the smallest and largest of fili

2, i=1 to 3 (in Fe–Pd,
�a−�c�0). This means that the maximum tensile strain
or compressive strain is attained by grains having the
tensile direction of �100�, while such strains are the
smallest in grains having the tensile direction of �111�.

This conclusion holds for the strain in a grain of a
polycrystal, whether it is strained before or after ther-
mal transformation. The former applies to stress-in-
duced transformation and the latter to straining due to
a change in the variant fraction by loading of a trans-
formed polycrystal. We are currently studying uniaxial
stress–strain curves of a polycrystal in the above cases.
In these cases we have to calculate elastic energy in a
polycrystal, the elastic energy which is caused by differ-
ences in transformation strain between differently ori-
ented grains. The calculation is straightforward and will
be reported in separate papers. The maximum (for
tension) and minimum (for compression) strains at-
tained by a ploycrystal having randomly oriented grains
can be calculated without the above procedure. For
example, when straining occurs by the variant change
in a fully martenstis state, the maximum strain attained
by a polycrystal is (2/�)(1−1/�3)(�a−�c) and the
minimum strain 2/(�3�)(�a−�c).

3. Summary

The structure of fct martensite formed from fcc
austenite of Fe–Pd is studied from a micromechanics
point of view on the basis of an infinitesimal deforma-
tion approach. The structure is also examined in terms
of crystallography. When fully developed, martensite
takes the form of an ensemble, in which a TWP adjoins
another TWP. In this ensemble, all three BCV are
twin-related. The interface between two plates as well
as that between two BCVs in a plate is {110}. The
elastic energy caused by martensitic transformation in a
polycrystal is formulated. It becomes minimum, when
the fractions of adjoining martensite plates are equal
and the ratio of one BCV to the other BCV in a plate
is 2 to 1. That is, when the elastic energy is minimized,
all three BCVs are equally present in a grain by forming
a martensite ensemble. Straining by variant change
under uniaxial loading is briefly discussed.
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