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                                                              Abstract

Stress-induced martensitic transformation in single crystals and polycrystals are examined on
the basis of micromechanics.  A simple method to find a stress- and elastic energy-free
martensite plate (combined variant), which consists of  two variants, is presented.  External and
internal stresses preferentially produce a combined variant, to which the stresses supply the
largest work upon its formation.  Using the chemical energy change with temperature, the
phase boundary between the parent and martensitic phases is determined in stress-temperature
diagrams.  The method is extended to a polycrystal,  modeled as an aggregate of spherical
grains.  The grains constitute axisymmetric multiple fiber textures and a uniaxial load is
applied to the fiber axis. The occurrence and progress of transformation are followed by
examining a stress state in the grains.  The stress is the sum of the external stress and internal
stress.  The difference in the fraction of transformation and, thus, in transformation strains
between the grains causes the internal stress, which is calculated with the average field
method. After a short transition stage, all the grains start to transform, and the external uniaxial
stress to continue the transformation increases linearly thereafter.  The external stress at the
end of the transition is defined as the macroscopic yield stress due to the transformation in
polycrystals.  The yield stress tends to saturate, as the number of the textures increases.

---------------------------
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Introduction

    A traditional way to examine the mechanics of martesitic transformation is to follow the
phenomenological crystallographic theory of martensitic transformation [1, 2].  We think that
if only the shape deformation and crystallography of a martensite plate are concerned, the
theory is useful.  This is also the case when one examines the effect of an external stress on the
transformation (stress-induced transformation) in a single crystal.
    When martensitic transformation occurs in polycrystals, particularly in fine-grained samples,
a martensite plate is blocked by a grain boundary and cannot extend to sufficient length and
internal stresses accumulate and influence further transformation.  The phenomenological
theory cannot provide a method to evaluate these stresses. Thus, in order to examine the stress-
induced transformation in a polycrystal, we have to adopt another method with which we can
evaluate internal stresses.
   The final objective of the present study concerns stress-induced martensitic transformation in
a polycrystal and is also to obtain external stress-macroscopic strain relationships during
transformation-induced deformation; transformation plasticity.  In this subject, the internal
stresses caused by differences in transformation strain between differently oriented grains play
an essential role.  Therefore, we adopt a micromechanics approach, with which the internal
stresses are evaluated.  While the phenomenological theory follows a finite deformation theory,
the present study, thus, uses an infinitesimal theory, as usually adopted in micromechanics [3].
    To be consistent, we first examine the mechanics of martensite plate formation with the
infinitesimal theory (micromechanics). Next, we analyze the stress-induced martensitic
transformation in a polycrystal by evaluating the internal stresses caused by the transformation.
The amount, transformation strains and orientation of martensites and internal stress
development depend on the orientation of constituting grains.  To our best knowledge, the
latter subject has not been fully studied in detail yet, except for the work by Lue, Tomota,
Taya, Inoue and Mori [4].  The present study is an extension of this work, but also amends an
unsatisfactory approximation adopted by it.  An equi-atomic Ni-Ti alloy has been used as a
model alloy to demonstrate our method, but the method is applicable to any material which
undergoes martensitic transformation.

                                                 Combined Variant

    When a precipitate or martensite plate has a transformation strain, T
ijε , it, in general,

produces an internal stress, thus resulting in non-vanishing elastic energy.  However, a special
case of causing no internal stresses and having no elastic energy is known; an infinitely
extended flat plate. The plate must have the components of the transformation strains given as

                        0122211 === TTT εεε . (1)

(Here, the X3-axis is perpendicular to the flat plane.)  The other components can take any
values [5].  This case holds when the elastic constants of the plate differ from those of the
matrix and is valid for an anisotropic material.  Condition (1) is also written as
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when the transformation strain is referred to a general coordinate system.



    The transformation strain in Ni-Ti calculated from a0=0.3015nm (parent phase, B2) and
a=0.2889nm, b=0.4120nm, c=0.4622nm and β=96.8o (martensite phase), as usually adopted by
studies using the phenomenological theory [6,7], does not satisfy condition (2).    Thus, we
seek combinations of two variants ( ( )MT

ijε and ( )NT
ijε ) among 12 variants, so that the average

transformation strain
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satisfies condition (2).  Here, ( )MT
ijε  refers to the transformation strain of the M-th variant

(M=1-12).  The possible combinations are classified into group A and group B.  Group A has
Mf =0.277, while group B has Mf =0.311.   Each group has 24 crystallographically equivalent

combinations.  Thus, in total, there are 48 combinations, called combined variants.  A
combined variant in group A has the average transformation strains of
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The corresponding strains of a variant in group B are
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The average transformation strains of the other variants are given by the symmetric operation
of (4a) and (4b).
    Also, the good (stress free) matching on the interface of the M-th and N-th variants requires
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among 12 variants; practical advantage.  Since T
iiδε =0, such an inequality as that in (2) is not

required in (5).
    Equations (4a) and (4b) refer to the crystallographic axes of the parent phase, [100], [010]
and [001].  Because of the uncertainty in the last digit of the lattice parameters in the parent
and martensite phases, we should be aware that the last digit in the transformation strains has
some ambiguity.

                   Transformation in a Single Crystal under External Stress

    If a martensite plate of a combined variant extends all across the section of a single crystal,
no internal stress is induced.  Accordingly, no increase in elastic energy occurs.  Thus, the
occurrence and continuation of stress-induced martensite follows the criterion

                           ADM FWFV =++ . (6)



Here, V is the change in the potential energy of an external loading device by transformation
and is given by
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A
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where A
ijσ  is the external stress. FM is the chemical free energy of the martensite phase and FA

that of the parent phase. WD is the energy dissipation accompanied by the progress of the
transformation.  (Its presence causes temperature hysteresis in the transformation.)  All the
quantities in (6) refer to a unit volume of the parent phase.
    If the left hand side in (6) is larger than the right hand side, the transformation does not
proceed.  Thus, the combined variant, most favored by the external stress, is the one which
makes V lowest.  For uniaxial loading along a unit vector il , (7) is equivalent to
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Here Aσ  is a uniaxial stress; Aσ >0 for tension and Aσ <0 for compression.  Thus, the most

favored combined variant is the one which makes T
ijji εll  maximum in tension and minimum

in compression.

                                   MAC FFF −=∆ , (9)

is a decreasing function of temperature.  WD is not so sensitive to temperature.  For lack of
reliable data, we will use the values used by [4] ---Ni-Ti-Cu---for these quantities.  However,
the possible error caused by this tentative assignment of ∆FC and WD can be easily fixed and is
a secondary concern in the present study.  For example, the lines in Fig. 1 would be shifted to a
higher or lower temperature side, when different functional forms of ∆FC and WD are assigned.

        Figure 1: Stress-temperature relationship to induce martensitic transformation in a
single crystal loaded along [001]: A is the parent phase domain, and B the
martensite domain.
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    Figure 1 shows the magnitude of stress to induce the transformation as a function of
temperature under uniaxial loading along [001], using the criterion given by (6). The
magnitude of the tensile stress is larger than that of the compressive stress. This result is
understood by considering the smallest and largest principal strains ( 1λ , 3λ ) and their
directions of the average transformation strains of the combined variants.  Group A has the
principal direction of <0.427, 0.076, 0.901> for 1λ  =-0.0634 and that of <0.581, 0.388, 0.715>
for 3λ  =0.0640.  In group B, these directions are <0.621, 0.080, 0.780> for 1λ  =-0.0545 and
<0.625, 0.445, 0.641> for 3λ  =0.0552.  Thus, the magnitude of a compressive stress becomes
smaller than that of a tensile stress, when the same amount of martensite is formed under [001]
loading. There are, of course, other directions where this observation is reversed.  For example,
when loading is along [111], tension induces the transformation at a lower stress than
compression.
    It is clear that the magnitude of a stress to induce the transformation becomes smallest when
uniaxial loading is directed to the principal direction of the average transformation strains.  In
this conjunction, a variant belonging to group A plays a more important role.  This is because
the magnitude of the non-zero principal strains in the group A combined variants is larger than
that of those in the group B combined variants.  Also, the difference in the smallest stress
between simple tension and simple compression is small, since the transformation accompanies
a small volume change, less than 0.0007.

      Figure 2: Phase boundary separating the parent and martensite phases in a single crystal
biaxially loaded along [100] (tension, σ1) and [010] (compression, σ2).

    The two lines in Fig.1 are the phase boundaries separating the parent and martensite phases
during forward transformation.  In the most general loading, the phases are separated by a
boundary in a multi-dimensional space.  As another simple example, the boundary is shown in
Fig. 2 under biaxial loading; tension along [100] and compression along [010].  In this case, an
identical combined variant is formed by those stresses.  However, the combined variant formed
by loading changes, in general, from a stress state to another on the boundary, on which the
transformation occurs.

                       Transformation in a Polycrystal under Loading

    A martensite plate cannot extend to sufficient length in a polycrystal. A plate is blocked by
the boundary of a grain, where the plate is formed.  Thus, the internal stress  develops.  The
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internal stress not only retards its growth but also influences the occurrence and progress of
other martensite plates in the same and other grains.  Since the elastic energy is induced by
transformation in a polycrystal by transformation, the criterion for the occurrence and progress
of the transformation is now written as

                            ( ) ADM FWFEV δδ =+++ , (10)

instead of (6).  Here, E is the elastic energy increase due to the transformation caused by the
occurrence of the internal stresses. Equation (10) is written in a variational form for the
variation, δf, (increase) in the faction of the martensite formed in a grain.  To facilitate the
involved computation, we adopt two approximations.  First, a grain is assumed spherical.
Second, the uniform eigenstrain,

                              T
ijij f εε =∗ , (11)

is assigned to a grain where the martensite with the transformation strain, T
ijε , occurs to the

fraction of  f ( 10 ≤≤ f ).  With these approximations, the increase in the elastic energy in a
particular grain is written as

                             ( ) fE T
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S
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when the amount of the martensite increases by the fraction δf. S
ijσ is the stress in the grain

(self-stress),  when only it transforms to f and other grains are hypothetically untransformed.
ijσ  is the stress caused by the transformation in the other grains. S

ijσ  is calculated by
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S
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where Cijkl is the elastic constant and Sklmn the Eshelby tensor. ijσ  is calculated by
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using the average filed method [8,9].  Here, g(I) is the volume fraction of the I-th grain, which
have an identical orientation and  )(IS

ijσ   is the self-stress of these grains. δV  is given as
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    Thus, (10) is rewritten as
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for the J-th grain which has the combined variant with the transformation strain, )(JT
ijε .   The

macroscopic strain, ijγ , due to the transformation is simply given as
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where f(I) is the fraction of the transformation in the I-th grains.  For a given set of differently
oriented grains with respective g(I), we can obtain f(I) as a function of  A

ijσ  from (16).  In turn,

we can calculate the macroscopic strain as a function of A
ijσ  with (17).  For example, we can

construct a stress-strain curve in a simple tension.  However, we have to find a combined
variant which is formed in a group of grains with the same orientation with respect to the
tensile axis.  This procedure is rather involved.  Thus, we have adopted a practical method, as
will be demonstrated in the following sub-section.

Double fiber textured specimen.
    We will show how to use the above method in a simple problem as uniaxial loading.  A
tensile stress is applied to a specimen which has double fiber textures, axisymmetric with
respect to the tensile axis. The grains in texture 1 have the tensile direction of <0.5836, 0.3370,
0.7388>, while the grains in texture 2 have that of <0.3948, 0.1058, 0.9127>.  g(1)=0.492 and
g(2)=0.508. For simplicity, the specimen is assumed elastically isotropic; the shear modulus =
23GPa and the Poisson ratio = 0.43.   Deformation temperature is 361 K.
(1) Start of transformation
    The grains in texture 1 start to transform at a lower stress than those in texture 2.  This initial
stress, 0σ , is found, by using criterion (6) and (7) with ijσ  = 0 and giving ji

A
ij ll0σσ = .

After these grains transform to the fraction of f, a grain in texture 1 has the self-stress of
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Here, each component is proportional to f and referred to the coordinate in which the X3-axis is
along the tensile direction.  Because of the rotational symmetry of the grains, belonging to one
type of texture, the average of  (18) over all the grains is calculated as
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when referred to the above coordinate system.  Thus, when only texture 1 transforms, the
average stress is written as

                                 )1()1( S
ijij g σσ −= . (20)

The transformation in the grains in texture 1 proceeds, as long as
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is satisfied.
(2) Start of transformation in texture 2
    As the fraction of transformation in texture 1 increases, the stress in the grains in texture 2
increases, partly due to an increase in the external stress and partly due to the internal stress
from the transformed grains in texture 1.  Eventually, the transformation in texture 1 is
initiated.
    The condition for the grains in texture 2 to start transformation is given by solving
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Equation (22) must hold together with (21).  The combined variant for the grains in texture 2
is the one which minimizes the first term of the left-hand side of (22).
(3) Progress of transformation in textures 1 and 2
The two conditions must be satisfied.  These are
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for texture 1 and
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for texture 2.
        )1(S

ijσ  and )1(S
ijσ  are linearly related to f(1), and )2(S

ijσ  and )2(S
ijσ  to f(2).  By solving

these linear equations, f(1) and f(2) are obtained as a linear function of Aσ . The macroscopic
strain along the tensile direction is easily obtained as a function of Aσ .
(4) Completion of transformation in texture1 and progress in transformation in texture 2
    The tensile stress for texture 1 to completely transform is obtained as the stress at which f(1)
reaches 1. After this stage, only texture 2 proceeds to transform. The stress reaches a maximum
when f(2) becomes 1.

Figure 3: Stress σA-strain γ curves of a double textured specimen at 361K.
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    In Fig. 3, the tensile stress Aσ -tensile strain γ diagram, obtained by the above method, is
drawn.  The similar curve for compression is also given.  As will be discussed below, the very
beginning of the curves is not linear in a strict sense.  However, we can clearly pin down the
stress which is needed for transformation in all grains to undergo, as will be discussed below.
This stress can be defined as the macroscopic yield stress, Mσ , due to transformation.

Initial part of transformation
    In Fig. 4, the initial parts of flow curves in Fig.3 are enlarged.  For example, let us examine
the tensile loading.  Until f(1)  reaches 0.015 when Aσ becomes 189MPa and γ= 0.0005, only
the grains in texture 1 transform. Below this stress, the flow curve is linear.  After this stage,
both textures transform, resulting in another linear hardening. Since the strain at the start of the
latter linear hardening is so small that this point can be taken as the macroscopic yield stress,

Mσ , due to transformation (transformation plasticity).
     Even when a multiple textured specimen is examined, Mσ  is clearly defined in a similar
manner.  For example, when the grains in a specimen with 16 textures all start to transform, the
macroscopic strain is only 0.0016.  (The fiber axis directions are approximately evenly
distributed in the standard triangle; [001]-[101]-[111].)  The fraction of transformation in the
grains which have transformed most is only 0.042. The tensile stress in this point is Mσ .
Before this stage is reached, the flow curve consists of piecewise linear curves, which covers
strain negligibly smaller than the strain when all the grains complete transformation.

                                Figure 4: Enlargement of the initial part of the curves in Fig. 3.

Macroscopic yield stress, Mσ
   We have examined similar flow curves in multiple textured specimens.  We expect that as
the number of textures increases, grains in a specimen becomes more randomly distributed. In
Fig. 5, the macroscopic yield stress is plotted against the number of textures, thus examined.
As the number increases, the yield stress increases, but certainly tends to saturate.  It is
necessary to determine the saturation stress, by increasing the number of textures.
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                     Figure 5: Macroscopic yield stress σM due to transformation against the number of
textures.

                                                                Discussion

    First, we will compare the present method with that using the phenomenological theory.  In
the analysis of single crystal deformation, the two treatments are similar, except for difference
caused by that between finite and infinitesimal deformation theories.  If only the shape
deformation and crystallography are concerned, the phenomenological theory gives more
accurate prediction.  However, the calculation involved in infinitesimal theory is much easier
and less time-consuming. This is one reason why the present method adopted the latter.
Another reason is that internal stress which develops in polycrystals and influences concurrent
and subsequent transformation is neatly assessed in the present method.  It must be noticed that
the present method does not require the detailed information on the habit plane and shear strain
direction.  These are needed to determine the stress to induce transformation and a particular
combined variant under loading in the phenomenological theory, as seen in a recent paper by
Gall, Sehitoglu, Chumlyakov and Kireeva [10].  On the contrary, the present method only
requires the magnitude of T

ijji εll  under uniaxial loading. This is invariant, so that the most
favored combined variant and the stress to induce this variant are very easily determined under
uniaxial loading.  Of course, the habit plane normal and shear deformation direction are easily
found in the present method, using the geometrical property of the representative quadratic of

T
ijε  [11].  Further, finding two variants to from a stress-free combined variant is

straightforward, using (2) - (4).
    Next, we would like to mention that the deficiency in the previous work [4] has been
remedied by the present study.  The deficiency is demonstrated in a single textured specimen
under uniaxial loading. Because of a crude approximation, the previous work could not take
into account the internal stress in this case, while the present study has duly calculated the
internal stress.  Roughly speaking, the internal stress in this case is caused by difference in the
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transformation strain along lateral directions between grains belonging to the same texture,
even though the tensile component is all identical.  Because of the development of the internal
stress, the flow curve of a single textured specimen should develop linear hardening, while the
previous study predicts the constant flow stress during the progress in transformation.
    Finally, our examination of all 48 combined variants (groups A and B) will be discussed in
conjunction with past studies.  The finding of these variants is not new.  In a phenomenological
theory analysis, Matsumoto, Miyazaki, Otsuka and Tamura found two values of x  [6], which
plays the same role as Mf  in (3).  One is 0.271, which apparently corresponds to Mf =0.277.
The other value was discarded as a result of experiments.  Other papers investigating
mechanics of transformation in Ni-Ti just employed the shape deformation for the case of
x =0.271 [10, 12,13].  However, we have examined all the combined variants in the present
study, Mf =0.277 and Mf =0.311.  This is because we cannot see any reason to rule out the role
played by the combined variants with Mf =0.311.

Summary

    The structure of a twinned martensite plate in Ni-Ti is examined on the basis of
micromechanics. Combined with thermodynamics and energy dissipation accompanied by the
movement of martensite/parent phase interfaces, the stress to induce martensitic transformation
is determined as a function of temperature in single crystals. The progress of the
transformation is also studied in polycrystals. A grain is modeled as a spherical inclusion and a
specimen is assumed to have fiber textures. Further, a grain is assumed to have a uniform
eigenstrain, which is the fraction of the transformation times the transformation strain of the
plate like martensite, most favored by stresses. The stresses are the sum of external uniaxial
stress, parallel to the fiber axis, and internal stress, which is evaluated with the Eshelby theory
and the average field method. The external uniaxial stress, which is required to initiate the
transformation in all the grains, is identified as the macroscopic yield stress due to the
transformation. The macroscopic yield stress increases, as the number of the texture increases,
but tends to saturate. The compressive yield stress is smaller than the tensile yield stress.
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