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ABSTRACT 

 
A micromechanics approach is proposed to calculate the stress-strain relationship of a polycrystalline Fe-Pd 
ferromagnetic shape memory alloy.  It is modeled as consisting of spherical grains, which are grouped according to their 
orientations with respect to the loading axis.  Therefore, the internal stress and elastic energy are accumulated as 
straining proceeds due to the strain differences between differently oriented grains.  In the present study, the energy 
dissipation of the interface movement is also considered.  Furthermore, a stress-magnetic field-temperature phase 
transformation diagram is constructed.  The magnetic field induced transformation is found to be insignificant based on 
thermodynamics model.  The cases of Fe-Pd and NiMnGa systems are examined for 3D phase transformation diagram. 
 
Keywords: phase diagram, shape memory alloy, ferromagnetic, Fe-Pd, stress-strain relationship 
 

1. INTRODUCTION 
 
Fe-Pd, a ferromagnetic shape memory alloy (FSMA), has attracted a strong attention because it has a potential for use as 
a magnetic field-controlled and robust actuator material, which has fast responsive actuation with large stroke and force 
capability.  Because of its ductile property, Fe-Pd alloy can be mechanically worked into different shapes1.  It is noted 
that another FSMA, NiMnGa alloy is much more difficult in processing.  Among possible magnetic field-actuation 
mechanisms1-5, the hybrid mechanism1,2, stress-induced martensitic transformation caused by the force due to the 
magnetic field gradient, seems to be superior to other mechanisms.  Thus, the modeling of stress-strain relationship of 
polycrystalline Fe-Pd and its phase diagram become important for design of robust actuators. 
 
As reported previously, polycrystalline Fe-Pd has low stiffness in the martensite state6.  In addition to intrinsically low 
lattice stiffness, large strains are developed upon loading due to changes in martensite variant fractions.  This makes 
polycrystalline Fe-Pd softer material, suitable for certain actuator applications.  The structure of martensite in a 
polycrystal of Fe-Pd has been analyzed7.  Three Bain correspondence variants of tetragonal martensite, BCV(1), BCV(2) 
and BCV(3), exist in Fe-Pd.  When formed by cooling, a grain has a structure consisting of alternating dark and bright 
plates, as observed under optical microscopy7.  The width of the plates is a few µm.  Each plate has a fine structure 
where two twin-related BCVs are alternately stacked together.  A BCV is about 50nm thick.  The fractions of BCVs 
change by movement of the interfaces due to external loading, resulting in straining of the polycrystal.  The variant 
change depends on the orientation of a grain and the constraint imposed by the surrounding grains.  Since polycrystalline 
Fe-Pd is likely to be used for actuator applications, the determination of stress-strain relationship is a key engineering 
issue.   
 
The phase transformation temperatures of shape memory alloys (SMAs) can be changed by external loading.  The stress-
temperature phase transformation diagram is usually used to show this relationship.  This diagram is also important in 
view of designing actuators based on SMAs.  Similarly, the stress-temperature phase transformation diagram can be 
extended to a stress-magnetic field-temperature phase transformation diagram for FSMAs which have both martensitic 
transformation and ferromagnetic properties.  In the present, this phase diagram is called three dimensional phase 
transformation diagram. 
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This paper presents a method to calculate the above mentioned variant change and straining under uniaxial loading of 
polycrystalline Fe-Pd, using the mean field method8,9, and discuss the analytical model based on thermodynamics and 
ferromagnetism to construct 3D phase transformation diagram. 
 

2. ANALYSIS 
 
2.1Straining of fully martensite structure 
The average transformation strain7 (eigenstrain) in a Fe-Pd grain can be written as 
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Here, f1, f2 and f3 are the volume fraction of BCV(1), BCV(2) and BCV(3), respectively.  The eigenstrain in Eq.(1) refers 
to the coordinate system (Y) with axes parallel to the crystallographic directions, [100], [010] and [001], in the austenite.  
The first term in Eq.(1) is common among all grains and causes no internal stress.  Thus, it is omitted in the following 
analysis.  The second term is rewritten as 
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where 
 

β = εa - εc ,           (3) 
 
and 
 

f1
* = f1 - 1/3 , f2

* = f2 - 1/3 , f3
* = f3 - 1/3 .       (4) 

 
Note that fi

*s satisfy 
 

f1
* + f2

* + f3
* = 0 .          (5) 

 
Then, the task here is to evaluate the internal stresses and elastic energy in polycrystalline Fe-Pd, in which many 
differently oriented grains exist and undergo variant changes depending on their orientations.  Considering the case of 
uniaxial loading, the specimen coordinate reference frame is denoted as x, x3 being parallel to the loading direction.  To 
facilitate the calculation, the grains are grouped into N groups.  All grains belonging to the same group, say the I-th 
group, have the same crystallographic direction along the loading direction.  This direction has a unit vector l(I) with the 
assumption that grains having the same direction along the loading axis are present axisymmetrically with respect to the 
loading direction.  A polycrystal which possesses grains having many different orientations l(I) is  randomly oriented.  
The stable condition of a specimen by a uniaxial loading is found when Gibbs free energy is minimized (ignoring the 
energy dissipation) 
 

δ(W+V) = 0 ,           (6) 
 
where W is the elastic energy (per unit volume) and V is the potential energy (per unit volume) of the loading device.  W 
is calculated as10 

 

Proc. SPIE Vol. 4699 207



 

∑ +−=
I

*
ijij

*
ij (I)}εσ(I)g(I){σ

2

1
W  ,        (7) 

 
where I is the I-th group of grains.  The first term is the self-energies of all the grains and is calculated using the 
components expressed in the crystal coordinates (Y-coordinate) where the stress in a grain belonging to the I-th group is 
written as 
 

















=
(I)f00

0(I)f0

00(I)f

αβY)(I,σ
*

3

*
2

*
1

*         (8) 

 
when only this grain changes its variant fractions11.  Here, α is 
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The shape of a grain is assumed to be spherical.  µ is the shear modulus and ν the Poisson ratio of austenite.  Isotropic 
elasticity is assumed.  σ*(I,Y) is called the self -stress of a grain in the I-th group.   
 
The second term in Eq.(7) is the interaction energy between the grains calculated using the components in the specimen 
X-coordinates.  To calculate this internal stress, the following procedures are used.  Equation (2) is written in the 
specimen coordinate (X-coordinate system) as 
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and the stress field by this eigenstrain is given by11 
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Here, 
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0(I)λ(I)λ(I)λ 321 =++  .         (13) 

 
λ3 is the tensile strain along this direction.  ε12(I) etc depend on f1

*(I), f2
*(I) and f3

*(I) and the exact orientation of the 
grain with respect to the loading direction. 
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Stress in Eq.(11) is averaged over all the grains of the I-th group.  Because of the axi-symmetry around the x3-axis, the 
averages of the stresses due to the non-diagonal components in Eq.(11) vanish and the averages of the {1,1} and {2,2} 
components become the average of those components in Eq.(11).  In this way, the average stress can be calculated as 
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Here, v0 stands for the volume of one grain.  The grain in the I-th group cause average stress in the specimen given by8,9 
 

0v
* X)(I,σg(I)X)(I,σ ><−=  .        (15) 

 
Here g(I) is the volume fraction of the grains belonging to the I-th group. 
 
Similar equations are written for grains belonging to other groups.  Thus, one grain belonging to the I-th group feels its 
self-stress plus the average stress from all other grains.  The average stress is the sum of the forms given by Eq.(15) over 
all the groups.  That is, the average stress is, in total, 
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The potential energy, V, of the loading device is written as 
 

εσV 0−=  ,           (17) 

 
where σ0 is the uniaxial stress along the loading direction and the strain, ε, in the specimen X-coordinates along the 
loading direction on x3-axis is given by Eqs. (10) and (12) as 
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where only {3,3} component in Eq.(10) exists under this loading direction. 
 
Then, Eq.(6) results in a set of simultaneous linear equations in terms of f1

*(I), f2
*(I) and f3

*(I).  Thus, all of f1
*(I), f2

*(I) 
and f3

*(I) are, in principle, solved analytically as a function of the uniaxial stress σ0 under the constraint of Eq.(5).  
Furthermore, f1

*(I), f2
*(I) and f3

*(I) must satisfy 
 

-1/3 ≤ f1
*, f2

* , f3
* ≤ 2/3 .          (19) 

 
Using Eq.(18), the strain ε along the loading direction attained under a uniaxial stress σ0 is also obtained.  Thus, the σ0 
vs ε relationship is computed.  Since energy dissipation is ignored, the variant change and the accompanied deformation 
proceed from σ0 = 0.  This is unrealistic, thus, the energy dissipation is now taken into account in the next section 
 
2.2 Effect of Energy Dissipation on the Movement of Interfaces 
Changes in the fractions of the martensite variants are produced by the movement of interfaces between them.  
Movement of the interfaces dissipates energy.  Thus, extra work is supplied for straining. The energy dissipation will be 
approximately evaluated and incorporated into the stress-strain relationship.  The present study proposes that the energy 
dissipation is calculated approximately as 
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per unit volume.  k is the energy dissipation when a unit area of interface moves by a unit distance.  The factor 2 is 
introduced to account for the fact that the movement of an interface changes the volumes of both variants which meet at 
the interface.  Since this process is irreversible, the energy minimization procedure can not be used to obtain the σ0 vs ε 
relationship as adopted for the case of no energy dissipation.  Thus, we can simply add 

 
σD = δWD/δε           (21) 

 
to σ0 which was determined without considering the energy dissipation.  Here, δε is the increment of ε for the same 
change in the variant fractions.  Since there is no unique way to determine k, the value, which gives the initial stress for 
variant change observed in the previous study, is adopted.  The following will show using a dislocation approach that the 
order of magnitude is correct. 
 
Since two adjoining BCVs match perfectly on their interface, the movement is caused by the nucleation of a dislocation 
loop on the interface and its subsequent spreading-out.  Apparently, the nucleation is the rate controlling process.  The 
energy change when a dislocation loop is formed (Gibbs free energy assigned for the loop), is approximately written as 
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where b is the Burgers vector of the dislocation and r the radius of the loop.  The condition for the maximum of G 
(activation energy) is calculated as 
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Therefore, the maximum G, G* is obtained as 
 

)σ4/(G 0
32* bπµ=  .          (24) 

 
As often used in dislocation dynamics, such a process occurs with an observable rate, when 
 

TKG B26* =  ,           (25) 
 
where kB is the Boltzmann constant and T the absolute temperature12.  b in this case is in the order of a0(εa-εc) (a0 is taken 
as the lattice parameter of the austenite).  Using T = 300K, µ = 15GPa6 and (εa-εc) = 2.54×10-2 (based on the lattice 
parameters reported by Oshima13: a0 = 0.3750nm, a = 0.3790nm and c = 0.3695nm), Eqs. (24) and (25) give 
 

σ0 = 1.4 MPa           (26) 
 
as the stress for the interface movement. 
 
An interface which is not perfectly flat in the beginning contains steps.  The steps are dislocations as discussed here.  
When they move, they eventually disappear at a specimen surface or a grain boundary or annihilate each other.  This 
process leads to micro-straining.  After this process, an interface becomes flat. Long distance movement of a variant 
interface, leading to large strain, requires the process discussed in the above paragraph.  Since flat interfaces are 
crystallographically fixed, one cannot control the mobility of the interfaces for long distance movement as one wishes.  
Usual grain boundaries do not play any role in this movement. 
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The stress-strain diagrams with and without the energy dissipation are compared as shown in Fig.1.  The diagram shows 
the case of four types of grains, the tensile directions of which are shown on the standard stereographic triangle in the 
insert.  Each group of grains has volume fraction proportional to the solid angle indicated by its small triangle. In the 
computation, µ =15GPa6, ν = 0.33 and k = 2MPa are assumed.  Also, β = εa - εc = 2.54×10-2 is used13.  As expected, the 
energy dissipation just simply increases the stress level.  Except for this change, no significant effect of the dissipation is 
seen in the σ0 vs ε curve.  After an initial low gradient stage, the stress increases sharply as the strain approaches a 
limiting value.  For reference, largest stress attained can be estimated as 8×103MPa in the 4 grain problem.  The limiting 
(maximum) strain is about 0.27β in tension and about -0.37β in compression for Fe-Pd system. 

 
Figure 1 Stress-strain curves of a polycrystalline Fe-Pd having 4 types of grains with (closed triangle) and without (closed circle) 

energy dissipation (k = 2MPa). 

 
2.3 Discussion 
The stress in the last stage becomes larger because grains having the orientation near <111> are introduced.  However, 
the large stress region near the end of complete variant change should not be emphasized so strongly.  In reality, such 
large stress induces plastic deformation by dislocation movement, prior to the completion of the variant change.  The 
plastic deformation obscures the sharp rise in stress predicted theoretically in the present study. 
 
Next, it should be mentioned why the elastic energy is concisely described by Eq.(7) including the interaction energy 
term.  This is simply due to the assumption that grains having the same direction along the loading axis are present 
axisymmetrically with respect to the loading direction.  Otherwise, such a simple expression of Eq.(14) cannot be 
obtained for calculating the interaction energy in Eq.(7).  An example of non-axisymmetric texture is a material having a 
sheet or plate texture.  If a material has a fiber texture (axisymmetric texture), the present method results in an equally 
simple formulation of energy and the pre-determination of l(I) and g(I) in the fiber textures is all that is required to find 
the σ0 vs ε relationship. 
 
The structure of martensite formed by stressing is different from that formed by cooling.  By cooling, dark and bright 
plates coexist in a grain in equal amounts.  By stressing, only one type of plates appears6.  As stress is increased, this one 
type of plates increases in number and width and eventually a whole grain becomes monotoned.  From this observation, 
a model can be made.  (1) in the first stage, identical twin plates (TWP) consisting of two BCVs are formed in a grain.  
(2) In the second stage, the fractions of the two BCVs in grain change, until a whole grain is covered by a single BCV.  
The present study is working well for strain limited to a small value but not for larger strain.  The elastic energy (W) and 
the potential energy (V) of a loading device are continuous at the strain where f becomes one and f1 and f2 start to change 
from the prefixed value, f1 = εa/(εa - εc).  However, their derivatives, for example, ε is not.  This is seen easily by 
checking the derivative of V.  When f ≤ 1, V is proportional to f, while f ≥ 1, V does not depend on f.  This is the origin 
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of the discontinuity.  Of course, this is caused by the approximation: the fractions of constituting twins are constant until 
f becomes one.  Strictly speaking, this constant structure is not assured where the fractions of BCVs would presumably 
change during loading or loading1.  Therefore, the change of BCV fractions should be taken into account. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 The stress-magnetic field – temperature phase diagram of Fe-Pd FSMA 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 (a) The stress- temperature phase diagram of Fe-Pd FSMA, (b) the stress-magnetic field phase diagram under several 

temperatures 

 
3. PHASE DIAGRAM 

 
Figure 2 shows the over view of the stress-magnetic field-temperature phase transformation diagram for polycrystalline 
Fe-Pd.  To construct the stress-temperature phase transformation diagram, the Fe-Pd specimen is loaded uniaxially by an 
Instron machine and it is insulated by a quartz tube for ensuring uniform temperature.  Figure 3(a) shows the stress-
temperature phase transformation diagram measured experimentally.  The curve clearly show that the larger stress 
applied, the higher transformation temperature is.  The slop of the curve is similar to the previous result6 which was also 
confirmed by the Clapeyron-Clausius relationship.  During the loading, a magnetic field can be applied simultaneously 
to the specimen in the transverse direction.  Therefore, the effect of both stress and magnetic field on the transformation 
is present by the stress-magnetic field diagram as shown in Fig.3(b).  It clearly shows that the curves almost parallel to 
the magnetic field axes.  This implies that the shift of the transformation temperature by magnetic field is very small 
while the temperature shifted by stress is very significant.  Therefore, the small magnetic field effect on the phase 
transformation is evidenced in the three dimensional phase transformation diagram as the H-T phase boundary surface is 
nearly parallel to the magnetic field axis as shown in Fig.4.  This is conducted  by an examination of the martensitic 
transformation based on the differential thermal analysis (DTA) measurement under a given magnetic field.  The curve 
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slightly inclines to the magnet field axis.  This means the magnetic field has a small negative effect on the martensitic 
transformation which is also conformed by microscopic observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 The magnetic fields-temperature phase diagram of Fe-Pd FSMA 

 
Figure 5 The magnetization curves of Fe-Pd FSMA in austenite phase and martensite phase 

 
The freshly formed martensite plates by cooling disappear upon the application of 8×105A/m field.  Immediately upon 
the removal of the field, the identical martensite plates reappear.  This means that the transformation temperature of 
those martensite plates is lowered by a magnetic field.  The Clapeyron-Clausius equation gives a change of the 
transformation temperature in this case as 
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where T is the transformation temperature under no magnetic field, L the enthalpy change in the transformation from 
austenite to martensite, ∆M the magnetization change in the transformation and HM the maximum magnetic field 
applied.  Graphically integrating Fig. 5. with HM = 8×105A/m and using6 L = 0.42×107J/m3, ∆T = -1.3°C can be obtained 
from Eq.(27).  This is an overestimate, as will be discussed below, but can explain the disappearance of freshly formed 
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martensite plates by the application of a magnetic field.  As seen from Fig. 5, the contribution of ∆M to the integral in 
Eq.(27) is most significant when H is small, where a difference in the magnetization between austenite and martensite is 
large.  In this case, a difference in the magnetization is smaller and, thus, the magnitude of ∆T must become smaller than 
1.3°C which is calculated, using the magnetization at –23°C, Fig. 5.  This temperature is significantly lower than the 
transformation temperature, 0°C, and a difference in the magnetization between austenite and martensite is larger than 
that near 0°C.  Thus, the calculation based on Fig. 5 and use of -23°C overestimates the magnitude of ∆T.  This explains 
that only some freshly formed martensite plates are affected by the magnetic field.  The fact of negative temperature 
change (∆T < 0) in the above is consistent with the DTA measurement and the experimental observation of 
disappearance in some of the martensite plates in Fe-Pd subjected to applied magnetic field. 
 
Note that the direct effect of magnetic field on the transformation of Fe-Pd alloy is to promote the reverse transformation 
(martensite → austenite).  However, for the case of NiMnGa, it is opposite.  This difference is shown in Fig. 6 and can 
be explained based on the magnetization.  Since the saturated magnetization (Ms) of Fe-Pd austenite phase is similar to 
that of martensite phase, the applied magnetic filed tends to retard the forward transformation.  However, the Ms of 
NiMnGa martensite phase has been reported larger than that of austenite phase14,15.  Therefore, the applied magnetic 
field tends to promote the forward transformation in NiMnGa.  Of course, the direct magnetic field effect for both cases 
are very small: less than 1°C change of transformation temperature under 8×105A/m.  The transformation changed by 
applied magnetic field can be described by thermal dynamics analysis.  In Eq.(27), ∆M = MM - MA means the 
magnetization difference between martensite and austenite.  In the case of NiMnGa, ∆M is positive under magnetic field 
of 8×105A/m.  This means applied magnetic field could promote the forward phase transformation, while in the case of 
Fe-Pd whose ∆M is negative.  That is why the magnetic field will retard the forward transformation in Fe-Pd.  It should 
be emphasized that the magnetic field effect on the phase transformation is very small in both NiMnGa and Fe-Pd alloys 
because of small magnetization difference between martensite and austenite phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6 Schematic phase transformation diagram of a FSMA under stress (σ), temperature (T) and magnetic field (H); (a) Fe-Pd and 

(b) NiMnGa 

 
The smaller susceptibility in the martensite phase (as shown in Fig. 5) reflects a possibility that the magnetic domain 
wall movement is not so easy as that in the austenite state.  The domain wall movement requires a large energy 
dissipation.  The magnetization in a small field appears rather to be achieved by the rotation of magnetization vectors.  
This corresponds to the difficulty of domain wall movement, which is inherent in the martensite structure consisting of 
small BCVs.  In order to move, a magnetic domain wall must sweep the interfaces between BCVs.  Rotation of the 
magnetization vector is more easily achieved.  Since this process involves practically no energy dissipation, the 
magnetization curve should have small hysteresis, in accordance with the present experiment.  
 
As shown in the previous, the movement of interfaces between BCVs involves large energy dissipation: When a unit 
area of an interface moves by unit distance, k = 2MPa = 2×106J/m3 is dissipated.  The magnetic hysteresis is small in Fe-
Pd and, thus, only a small fraction of magnetic work is dissipated.  However, even under the unrealistic assumption that 
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all the work is used to move the interfaces of BCVs, it can be shown that changes in variant fractions and resulting strain 
are negligibly small.  WM, supplied by the magnetic field (H) can be calculated when Fe-Pd is magnetized to saturation 
(MS), 
 

∫=
sM

0

M HdMW  ,          (28) 

 
where M is the magnetization. Reading MS (= 1.25×106A/m) in Fig. 5 and integrating the above expression graphically 
using Fig. 5, WM = 6.6×104J/m3 can be obtained.   
 
The analytical study in Section 2 shows that when the fractions of three BCVs change, the strain is produced.  This work 
implies that when the magnitude of fi

*s describing changes in the fractions of BCVs is small, the energy given by Eq 
(20) is dissipated.  For a rough estimate, f2

* = 0 was used.  Then, 
 

( )*
1D δfkδW =   .          (29) 

 
Equating WD with WM (= 6.6×104J/m3) and using the frictional stress of k = 2×106J/m3, we obtain 
 

=*
1f  3.3×10-2 .          (30) 

 
This means that changes in the fractions of BCVs are extremely small when a magnetic field is applied. 
 
The energy dissipation plays an essential role in the above discussion.  Only the difference of input energy (such as a 
magnetic field) and the energy dissipated can be utilized to supply the work for an Fe-Pd based actuator.  This means 
that Fe-Pd cannot be used as an effective actuator, if a pure and direct effect of a magnetic field (i.e. applying uniform 
field) on variant changes or on the transformation temperature is to be utilized.  However, if a large force, produced by a 
non-uniform distribution of a magnetic field, is used, we may attain sufficient energy for actuation.  For example, 
consider an Fe-Pd sheet in austenite martensite state, clamped at one end and hanging a weight downwards at the other 
end.  If a magnetic field, which becomes stronger upwards, is applied to the Fe-Pd sheet, a magnetic force acts on the 
sheet upwards, resulting in a bending moment, which causes stress in the sheet.  As a result, the sheet will bend up and 
raise the weight.  The sheet is strained by martensite variant changes.  Similar deformation is obtained for Fe-Pd in an 
austenite state and stress-induced transformation attains the deformation1.  In these cases, the designing geometry of a 
Fe-Pd actuator-magnetic field set-up is more critical.  A part of the work supplied through a magnetic field by an electric 
source is, of course, dissipated.  However, the energy dissipated can be supplied by a proper arrangement of a set-up and 
a sufficiently strong power source.  It is noted that the existence of energy dissipation accompanies hysteresis in a strain-
magnetic field relationship.  Stress induced transformation from austenite to martensite in Fe-Pd involves less energy 
dissipation.  Thus, the exploration of this process, by properly choosing an alloy composition and temperature, is better 
suited for designing a reversible actuator based on Fe-Pd system.  
 

4. SUMMARY 
 

A micromechanics approach is proposed to calculate the stress-strain relationship of a polycrystalline Fe-Pd 
ferromagnetic shape memory alloy.  It is modeled as consisting of spherical grains, which are grouped according to their 
orientations with respect to the loading axis.  Therefore, the internal stress and elastic energy are accumulated as 
straining proceeds due to the strain differences between differently oriented grains, using the mean field method.  It has 
been shown that the maximum strain is different for tension and compression.  The energy dissipation of the interface 
movement is also considered and it is estimated based on dislocation theory.  Furthermore, a stress-magnetic field-
temperature phase transformation diagram was presented as a key performance diagram to FSMA actuator designs..  
Although the magnetic field induced phase transformation and martensite variant change are very small, the alloy still 
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can be utilized as a new actuator material by the hybrid mechanism: the magnetic field gradient induced force (or 
moment), force induced stress-induced martensitic transformation which leads to large deformation.  This mechanism is 
based on the large magnetization value of Fe-Pd and magnetic field gradient.  Moreover, the actuation based on the 
hybrid mechanism is reversible and very fast1. 
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