
Design of Ferromagnetic Shape
Memory Alloy Composites

MASAHIRO KUSAKA* AND MINORU TAYA

Department of Mechanical Engineering

Center for Intelligent Materials and Systems

University of Washington

Box 352600, Seattle, WA, 98195-2600, USA

(Received April 17, 2003)
(Revised September 12, 2003)

ABSTRACT: Ferromagnetic shape memory alloy (FSMA) composites composed of
a ferromagnetic material and a shape memory alloy (SMA) are key material systems
for fast-responsive and compact actuators.
The function of ferromagnetic material is to induce magnetic force which is then

used to induce the stress in the SMA, resulting in the stress-induced martensite
transformation (SIM), i.e. change in the Young’s modulus, stiff (austenite) to soft
(martensite). This SIM-induced phase change causes larger deformation in the SMA,
which is often termed as ‘‘superelastic’’.
This paper discusses a simple model by which the stress and strain field in the

FSMA composites subjected to bending and torsion loading are computed with
the aim of identifying the optimum geometry of FSMA composites. The results of
the present analytical study are utilized to design torque actuator (bending of FSMA
composite plate) and spring actuator (torsion of helical FSMA composite spring).

KEY WORDS: shape memory alloy, ferromagnetic material, stress-induced
martensite transformation, superelasticity, bending plate, coil spring.

INTRODUCTION

R
ECENTLY, FERROMAGNETIC SHAPE memory alloys (FSMAs) attract strong attention
as a fast responsive actuator material. There are three actuation mechanisms

identified in FSMAs, (1) magnetic field-reduced phase transformation, (2) martensite
variant rearrangement and (3) hybrid mechanism by magnetic field gradient [1,2]. The first
mechanism often requires large magnetic field, thus necessitating the design of large
electromagnetic driving unit, not suited for compact actuators, while the second
mechanism can provide large strain but at low stress level. Therefore, use of the hybrid
mechanism is the most effective to design high-force actuators, yet at fast speed.
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The hybrid mechanism is a sequence of chain reaction events, applied magnetic field
gradient, magnetic force in a FSMA, stress-induced phase transformation from stiff
austenite to softer martensite, resulting in a large deformation, yet large stress can be
realized due to superelastic plateau in the stress–strain curve of a FSMA. In the hybrid
mechanism, the magnetic force F is given by

F ¼ �0VM
@H

@x
ð1Þ

where �0 is the magnetic permeability in vacuum, V is the volume of a ferromagnetic
material, M is the magnetization vector and H is the magnetic field, thus F
is proportional to both magnetization vector and magnetic field gradient. It is noted
that the magnetic force F influences the internal stress field within a FSMA, i.e., the
larger F is, the larger stress field is induced in FSMA. It is also here that use of a
portable electromagnet or permanent magnet can provide large magnetic field gradient,
resulting in larger magnetic force, thus larger stress-induced martensite phase
transformation.

The cost of processing FSMAs such as FePd [2] is usually very expensive. Superelastic
shape memory alloys (SMAs) have high mechanical performances, large transformation
strain and stress capability. But, the speed of superelastic SMAs by changing temperature
is usually slow. If a FSMA composite composed of a ferromagnetic material and a
superelastic SMA can be developed, cost-effective and high-speed actuators can be
designed. In the design of this composite, the requirements are: no plastic deformation
of the ferromagnetic material and large transformation strain in superelastic SMA.
It is necessary to design the optimum microstructure (cross-section) of composite with
high performance (high load capacity and large deformability) while satisfying these
requirements. In order to obtain the optimum microstructure of FSMA composites with
high performance, one needs to use either numerical models such as finite element method
(FEM), or analytical model. There have been a number of works on finite element analysis
(FEA) of SMA structures [3–7]. The FEA which uses commercial FEM is time consuming
in the preliminary design. It would be easier for a designer to use a simple analytical
model to obtain the optimal microstructure of FSMA composite, if the simple analytical
model provides closed form solutions. We made a preliminary model for FSMA
composites [8]. The analytical model in this paper is a further extension of our preliminary
model, and it is aimed at detailed modeling of the superelastic behavior of a SMA in a
FSMA composite.

In this study, two cases of loading, bending and the twist modes of the composites
are considered with emphasis on how the geometry and the mechanical properties of
the components influence the superelastic SMA behavior of the composite. First, the
bending deformation of the composite plate with application to torque actuators [9] is
theoretically analyzed. That is, the relation between the curvature and the bending
moment for the composite plate. Next, the spring of the composite wire with the
rectangular section form is designed in consideration of application to spring actuators
[10], and the deformation characteristic of the spring is examined. For both models of
bending and torsion of FSMA composites, the optimized microstructures of the
composites are identified with the aim of maximizing force and deformation of FSMA
composite actuators.
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SUPERELASTIC BEHAVIOR OF BENDING COMPOSITE PLATE

Analytical Model

For bending type actuation, the laminated composite plate composed of a ferromagnetic
material layer and superelastic SMA layer as shown in Figure 1(a), is examined. The
composite plate is subject to bending moment M induced by the magnetic force generated
by the ferromagnetic material. After the maximum bending stresses on the plate surface of
SMA layer reach the transformation stress (onset of superelastic plateau in the upper loop
of the stress–strain curve, Figure 2(b)), the phase transformation proceeds from the plate
surface as shown in Figure 1(b). The stress in the transformed region remains constant due
to the superelastic behavior of SMA. It is assumed throughout in this paper to facilitate
the analysis that the superelastic loop of SMA is ‘‘flat’’ i.e. no working–hardening type
slope allowed, and the Young’s modulus of the austenite is the same as that of the
martensite. These assumptions allow us to obtain simple closed form solutions in the
present model, although the predictions are still to the first order approximation. The aim
of using this simple model is to identify the best thickness ratio of a ferromagnetic layer
and SMA layer in the composite plate.

Then, the relation between the bending moment and the curvature is theoretically
calculated by using stress–strain curves of the constituent materials. Figure 2(a) shows the

M

hf

h

ρ

Superelastic SMA layer

Ferromagnetic layer

Plate width; b

St
re

ss

Strain

Ferromagnetic layer
 Young's modulus; Ef

Yield stress;σf

Superelastic SMA layer
 Young's modulus; ESMA

f

Onset stess for SIM;σ0

Onset stess for Reverse Transformation;σ1

(a) (b)

σ

Figure 2. Material properties and model for the theoretical examination: (a) plate bending model; (b) stress–
strain relations for ferromagnetic material and superelastic SMA.
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Figure 1. Composite plate for bending mode actuation: (a) material composition; (b) stress distribution in
cross section.
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analytical model. Radius of curvature of the composite plate subject to bending moment
M is �, the thickness of the composite plate is h, the thickness of the ferromagnetic layer is
hf, and the plate width is b. Figure 2(b) shows the stress–strain curves of the ferromagnetic
material and the superelastic SMA, where the Young’s modulus of the ferromagnetic
material is Ef, that of the SMA are ESMA, the yield stress of the ferromagnetic material is
�f, and only elastic portion of the ferromagnetic material is shown. The onset stress for
phase transformation of superelastic SMA is �0, the onset stress for reverse transformation
is �1 in the superelastic loop portion of SMA. As a result, the relation between the bending
moment and the curvature of the composite plate also is expected to exhibit the
superelastic loop if properly designed. This superelastic loop of the FSMA composites is
indeed desired.

The curvature which reaches yield stress �f in a ferromagnetic layer and the curvature
which reaches transformation stress �0 in superelastic SMA layer are strongly influenced
by the mechanical properties and the thickness of both materials. Stress distribution is
classified into the following three cases because of the relation between the transformation
stress in the SMA layer and the yield stress of a ferromagnetic layer.

Case 1 The stress in a ferromagnetic layer reaches the yield stress �f, before reaching
the transformation stress �0 in the superelastic SMA layer.

The stress distribution of this case upon loading and unloading is shown in Figure 3,
where the bending stress by elastic deformation is illustrated in each material.

Case 2 The stress in a ferromagnetic layer reaches the yield stress, after SMA layer
reaching the transformation stress in some part.

The stress distribution of Case 2 upon loading and unloading is shown in Figure 4.
Under increasing bending moment first elastic stress distribution (a), then the stress in the
SMA layer reaches the transformation stress �0 at the position of y1 (b), and when the
transformation domain advances to y1¼Y1, a ferromagnetic layer reaches the yield stress
�f (c). It is noted in (b)–(e) that Y1 remains constant until y3 reaches Y1. During unloading,
the stress decreases first elastically in all domains (d), next, the stress becomes constant
from the upper part of the SMA layer to the position of y3 where the stress reached reverse
transformation stress �1 (e). In addition, after the stress at location y3¼Y1 reaches �1, the
stress inside portion (y<y2) decreases elastically ( f ). Finally, the stress in the entire SMA
layer decreases elastically when the stress in the SMA on the top surface becomes small
than �1 (g).

Case 3 The stress in a ferromagnetic layer reaches the yield stress, after the entire
domain of the superelastic SMA layer reaching the transformation stress �0.
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Figure 3. Changes in stress distribution in cross section according to load (Case 1).
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The stress distribution of Case 3 upon the loading and the unloading is shown in
Figure 5. In early stage of loading, the stress in a ferromagnetic layer does not reach the
yield stress yet even after the stress in all domains of the SMA layer reaches the
transformation stress �0 (c). A neutral axis position changes with an increase in the load,
and the stress reaches the yield stress �f finally in a ferromagnetic layer (d). The process of
unloading is shown in Figure 5 (e)–(h).

For each stress distribution �x( y) of the three cases, the following equations are valid,
i.e. the equilibrium of force and moment.

Z h

0

�xðyÞbdy ¼ 0 ð2aÞ

M ¼ �

Z h

0

�xðyÞybdy ð2bÞ
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Figure 4. Changes in stress distribution in cross section according to load (Case 2).
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The neutral axis position and the relation between the moment and the curvature are
obtained by solving these equations. Let us focus on the case 2, particularly the stress state
of Figure 4(b). When a neutral axis position is �2, and the transformation stress position is
y1, the stress distribution in each domain becomes

in ferromagnetic layer (0<y<hf)

�ð yÞ ¼ Ef
�2 � y

�
ð3Þ

in SMA layer below the transformation stress �0 (hf< y<y1)

�ð yÞ ¼ ESMA
�2 � y

�
ð4Þ

in the transformation domain of SAM ( y1<y<h)

�ð yÞ ¼ ��0 ð5Þ

By substituting Equations (3), (4), and (5) to Equations (2), unknown �2 and y1 are solved
and they are given by

�2
h
¼ �

Ef

ESMA
� 1

� �
hf

h
þ

�0
ESMA

�

h

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef

ESMA

Ef

ESMA
� 1

� �
hf

h

� �2

þ2
�0

ESMA

�

h
1þ

Ef

ESMA
� 1

� �
hf

h

� �s
ð6Þ

y1

h
¼

�2
h
þ

�0
ESMA

�

h
ð7Þ

Moreover, by substituting Equations (3)–(7) to Equation (2b), the relation between the
normalized bending moment and curvature is obtained as

M

ESMAbh2
¼

h

�

Ef

ESMA

1

3

hf

h

� �3

�
1

2

�2
h

hf

h

� �2
( )

þ
1

3

y1

h

� �3
�

hf

h

� �3
( )"

�
1

2

�2
h

y1

h

� �2
�

hf

h

� �2
( )#

þ
1

2

�0
ESMA

1�
y1

h

� �2� �
ð8Þ

Equation (8) is valid for the range of curvature, i.e. from the curvature with
transformation stress �0 in top ( y¼ h) of SMA layer to the curvature with yield stress
�f at bottom ( y¼ 0) of ferromagnetic layer. This range of the curvature is given by

�0
ESMA

2 1þ ðEf=ESMAÞ � 1ð Þ hf=hð Þ
� 	

1þ ðEf=ESMAÞ � 1ð Þ 2� ðhf=hÞð Þ hf=hð Þ
<

h

�
�

h

�1
ð9Þ
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where

h

�1
¼

�f
Ef

þ
�0

ESMA

� �2
( ),(

�
�f
Ef

Ef

ESMA
� 1

� �
hf

h
�

�0
ESMA

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�f
Ef

Ef

ESMA
� 1

� �
hf

h
�

�0
ESMA

� �2

þ
�f
Ef

þ
�0

ESMA

� �2
Ef

ESMA
� 1

� �
hf

h

� �2
s ) ð10Þ

Similarly, the relations between the bending moment and the curvature for the three cases
of Figures 3–5 can be calculated. The results for Cases 1, 2 and 3 are shown in Appendix.
The conditions under which three cases are valid, are obtained as

Case 1

�f
�0

<
Ef

ESMA

1þ ðEf=ESMAÞ � 1ð Þ hf=hð Þ
2

1þ ðEf=ESMAÞ � 1ð Þ 2� ðhf=hÞð Þ hf=hð Þ
ð11Þ

Case 2

2
h

hf

�0
ESMA

þ
�0
Ef

hf

h
� 1

� �� �
>

h

�1
ð12Þ

Case 3

2
h

hf

�0
ESMA

þ
�0
Ef

hf

h
� 1

� �� �
�

h

�1
ð13Þ

The maximum normalized curvatures in these cases are given by
Case 1 Case 2 Case 3

h

�
¼

�f
Ef

2 1þ ðEf=ESMAÞ � 1ð Þ hf=hð Þ
� 	
1þ ðEf=ESMAÞ � 1ð Þ hf=hð Þ

2
,

h

�
¼

h

�1
,

h

�
¼ 2

h

hf

�f
Ef

�
�0
Ef

h

hf
� 1

� �� �
ð14Þ

The maximum deformability of the composite plate can be analyzed for a given set of the
mechanical properties and the thickness ratio of materials by using Equation (14).

Analytical Results and Discussion

The relation between the bending moment and the curvature is predicted by the present
model for two types of the composite, i.e. Fe/CuAlMn and FeCoV/CuAlMn. Figure 6(a)
is the idealized stress–strain curves of Fe and CuAlMn. The results of the predicted
relation between the normalized bending moment and the normalized curvature for
thickness ratio hf/h¼ 0.5 are shown in Figure 6(b). The state of the stress for this case
corresponds to Case 1, Figure 3, i.e. the stress in SMA layer is not superelastic plateau,
and thus, the superelastic loop is not observed as evidenced in Figure 6(b). Therefore, the
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composite plate of Fe and CuAlMn is undesirable as effective bending actuator
component.

Next, the FeCoV/CuAlMn composite plate was analyzed by using the mechanical
property data shown in Figure 7(a). Figure 7(b) shows the analytical results for hf/h¼ 0.5,
exhibiting clearly superelastic behavior. By using FeCoV whose yield stress is larger than
Fe, yet its soft magnetic property is better than Fe, we can achieve now the state where
most of the CuAlMn layer becomes a transformation domain, corresponding to almost
the state of Case 3. Moreover, the maximum curvature was 2.22 times larger and the
bending moment was 1.60 times larger than those of the composite with Fe. Therefore, the
FSMA composite so identified is promising as an effective bending actuator component.

Next, we performed a set of parametric studies to examine the effects of material
parameters (�f, Ef, �0, �1, ESMA) and geometrical parameter, i.e., thickness ratio (hf/h).
The predicted results are shown in Figure 8, where (a)–(f) denote the case of changing
parameters, yield stress of ferromagnetic material (�f), the upper plateau stress (�0) and
lower plateau stress (�1) of CuAlMn superelastic loop, and ratio of ferromagnetic plate
(hf) to the composite (h), hf/h, Young’s modulus of ferromagnetic material (Ef) and that of
SMA (ESMA), respectively.
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Figure 6. (a) Stress–strain curve for Fe and CuAlMn; (b) relation between normalized bending moment and
normalized curvature.
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When the yield stress of the ferromagnetic material increases, it is clear from Figure 8(a)
that both bending moment and the curvature increase. When transformation stress �0 of
SMA increases, it is found from Figure 8(b) that the bending moment increases and the
curvature decreases. It can be seen from Figure 8(c), the lower limit of the superelastic loop
decreases if the reverse transformation stress �1 decreases. When the thickness of the
ferromagnetic layer increases, it is clear from Figure 8(d) that the bending moment increases
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Figure 8. Change in superelastic behavior of bending plate influenced by various parameters: (a) yield stress
of Fe; (b) upper transformation stress of SMA; (c) lower transformation stress of SMA; (d) thickness ratio of Fe
to FSMA composite; (e) Young’s modulus of Fe; and (f) Young’s modulus of SMA. (a) �f ; (b) �0 ; (c) �1 ; (d) hf/h ;
(e) Ef ; (f ) ESMA.
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though the curvature decreases. Oppositely, because the thickness of superelastic SMA
layer increases when the thickness of a ferromagnetic layer decreases, the superelasticity
behavior increases. Therefore, the bending moment decreases, and the curvature increases.
From Figure 8(e), the maximum curvature decreases though the bending moment does not
change when the Young’s modulus of the ferromagnetic material increases. Therefore, an
increase in the Young’s modulus of the ferromagnetic material is undesirable as the
composite. From Figure 8(f), the bending moment decreases when the Young’s modulus of
SMA increases. The design of a more high performance FSMA composites becomes
possible by the materials design based on the above analysis.

SUPERELASTIC BEHAVIOR OF COIL SPRING MODE

OF A COMPOSITE WIRE WITH RECTANGULAR CROSS SECTION

Analytical Model

With the aim of designing a high-speed linear actuator, the superelastic characteristic of
a coiled spring of the ferromagnetic shape memory composite wire with rectangular
section is analyzed. Figure 9 shows the analytical model. The magnetic force is generated
in the ferromagnetic material by the magnetic field gradient, and displacement is generated
in the spring by the hybrid mechanism described in Introduction. The relation between this
spring force and displacement is analyzed.

When axial force P is given to the spring, the wire of the ferromagnetic shape memory
composite is subjected to torque T. The relation between spring force P and torque T is
given by

T ¼ PR cos � ð15Þ

For a twist angle per unit length of the rectangular section wire of !, the total twist angle �
is 2n�R!sec� as the total length of the wire is 2n�R!sec�. Therefore, the displacement of
the spring is calculated by the next equation.

� ¼ �torsion þ �shear ffi �torsion

¼ R� ¼ 2n�R2! sec �
ð16Þ

Figure 9. Analytical model of coil spring with rectangular cross section. D: the diameter of spring (D¼ 2R),
d: the diameter of wire, p: the pitch of one cycle, n: the number of turns, L: the length of spring without load
(L¼np), �: the inclined angle of the wire to the x–y plane.
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It is assumed in the present model that the displacement due to direct shear, �shear is
neglected. This is justified for large ratio of D to a or b. Then, the relation between the
spring force, P and displacement, � can be calculated if the relation between the twist angle
per unit length ! and the torque T of the rectangular section wire is known, which will be
obtained in the following.

Analytical Model for Torsion of Composite Wire with Rectangular Section

To generate large magnetic force by the hybrid mechanism, it is necessary to increase the
area of a ferromagnetic material in the rectangular section, while meeting the requirement
that the ferromagnetic material should not reach its yield stress. The stress field in the
rectangular section can be calculated from the shear strain distribution of the rectangular
section for a given twist angle.

Let us look at the rectangular section of a composite with width 2a and height 2b as
shown in Figure 9. We introduce the assumption that the spring deformation is uniform
along the wire direction (z-axis) and plane displacements u and v are in proportion to z, as
follows;

u ¼ �!yz, v ¼ !xz, w ¼ !’jðx, yÞ ð17Þ

where the function ’(x, y) is the Saint-Venant’s function [11] that satisfies the equilibrium
equation and 2D compatibility equation of strain. For the spring with rectangular cross
section, the shear strain components are expressed as

	zx
!a

¼ �
16

�2

X1
n¼1

�1ð Þ
n�1

2n� 1ð Þ
2

sinh 2n� 1ð Þ�y=2a½ �

cosh 2n� 1ð Þ�b=2a½ �
cos 2n� 1ð Þ�x=2a½ � ð18Þ

	zy
!a

¼
16

�2

X1
n¼1

�1ð Þ
n�1

2n� 1ð Þ
2

1�
cosh 2n� 1ð Þ�y=2a½ �

cosh 2n� 1ð Þ�b=2a½ �

� �
sin 2n� 1ð Þ�x=2a½ � ð19Þ

Therefore, the effective shear strain acting on the rectangular cross section, 	 is
calculated by

	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	2
zx þ 	2zy

q
ð20Þ

For a¼ 2 and b¼ 1, the contour line distributions of shear strain component 	zx, 	zy
and effective shear strain 	 divided by a! are shown in Figure 10(a), (b) and (c)
respectively. 	zx becomes 0 at x¼�a and a, and it reaches to the minimum value at y¼ b
on the y axis, and becomes the maximum at y¼�b on the y axis. 	zy reaches to the
minimum value at x¼�2, y¼ 0, and becomes the maximum at x¼ 2, y¼ 0. The
normalized effective shear strain, 	/a! reaches the maximum value 0.930 at the center of
long side edges, and reduces toward the center.

The effective shear stress induced in the ferromagnetic material is calculated by
multiplying 	 by the shear modulus Gf of the ferromagnetic material. The effective shear
stress distribution of the ferromagnetic material in the rectangular section is calculated for
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a given set of twist angle per unit length !, size a and b. Then, the optimum shape of the
ferromagnetic material can be determined from its domain under the condition that the
effective shear stress does not exceed the yield stress in shear 
f of the ferromagnetic
material.

 

(a) 

(b)

 

(c)

Figure 10. Contour line distributions of shear strain in rectangular section: (a) 	zx/a!; (b) 	zy/a! ; and (c) 	/a!,
where a is the length of longer side of a rectangular cross section of a FSMA composite and ! is the twist
angle per unit length.
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If FeCoV (Gf¼ 70GPa, 
f¼ 231MPa) is used as a ferromagnetic material, and
CuAlMn is used as a superelastic SMA, then for !¼ 0.003, a¼ 2, and b¼ 1, 	/!a<0.55 is
obtained from the requirement of Gf 	<
f. Figure 11 shows the optimized rectangular
section of the composite obtained by this design, where the dark area of FeCoV satisfies 	/
!a<0.55.

Next, we examine the relation between the twist angle per unit length ! and the torque T
of the composite wire with rectangular section. The torque is calculated by

T ¼ Mz ¼ PR cos� ¼

Z b

�b

Z a

�a

x
zy � y
zx

 �

dxdy

¼

Z b

�b

Z a

�a

G x	zy � y	zx

 �

dxdy

ð21Þ

Here, we can define three domains in the composite during loading.

Domain 1 Domain of ferromagnetic material
Domain 2 Domain with effective shear stress less than the forward transformation

shear stress of SMA, 
0
Domain 3 Transformation domain of SMA

The effective stress in the ferromagnetic material is obtained by multiplying shear
modulus Gf by the corresponding effective shear strain for the elastic deformation. In
SMA, it is necessary to judge if the effective shear stress 
 is below the forward
transformation shear stress 
0. 
 is obtained by multiplying shear modulus GSMA by 	 if
the effective shear stress of domain 2 is below the forward transformation shear stress 
0.
In domain 3 where the effective shear stress 
 reaches the upper transformation shear
stress 
0, then 
¼ 
0.

Because a shear strain component proportionally increases with an increase in !, by
multiplying the corresponding shear strain component by the modified shear modulus
G¼ 
0/	, the shear stress component for which 
 becomes 
0 is calculated. That is,
Equation (21) is applicable to domain 3 by using Equation (24). Then, torque T

Figure 11. Optimized rectangular section of the composite made of ferromagnetic, FeCoV and superelastic
SMA, CuAlMn.
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corresponding to the twist angle per unit length ! is calculated by Equation (21) by using
the modified shear modulus in each domain according to the following equations.

Domain 1:

	 <

f!

Gf!f

G ¼ Gf

ð22Þ

Domain 2:

	 �

f!

Gf!f
and 	 <


0
GSMA

G ¼ GSMA

ð23Þ

Domain 3:

	 �

f!

Gf!f
and 	 �


0
GSMA

G ¼

0
	

ð24Þ

where, !f is input data, and it is the maximum twist angle per unit length when the cross
section is optimized, !f¼ 0.0015 for cross section shape of Figure 11.

Next, the case of unloading is considered. The stress in each domain decreases during
the unloading, but the superelasticity in SMA was generated in Domain 3 where the
effective shear stress reached the transformation stress during the preceding loading, it is
necessary to divide Domain 3 into three sub-domains.

Domain 3-1 
 above the reverse transformation stress 
1
Domain 3-2 
 equal to the reverse transformation stress 
1
Domain 3-3 
 below the reverse transformation stress 
1

For Domain 3-1, the effective shear stress 
 is larger than the reverse transformation
stress 
1. The shear stress component of 
¼ 
0 is calculated by multiplying modified shear
modulus of Equation (24) by the shear strain component, and it decreases from this stress
state elastically in proportion to GSMA in Domain 3. That is, the shear stress component is
calculated by multiplying the modified shear modulus of Equation (26) by the shear strain
component in the range of the effective shear strain of Equation (25).

Domain 3-1

	 >

1

GSMA
and 	 �


0 � 
1ð Þ!

GSMA !f � !ð Þ
ð25Þ

G ¼

0
	
� GSMA ð26Þ

For Domain 3-2, because the effective shear stress reaches the reverse transformation
stress 
1, the shear stress remains constant, i.e. 
¼ 
1. That is, the shear stress is calculated

14 M. KUSAKA AND M. TAYA
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by multiplying the modified shear modulus of Equation (28) by the shear strain in the
range of effective shear strain of Equation (27).

Domain 3-2

	 >

1

GSMA
and 	 >


0 � 
1ð Þ!

GSMA !f � !ð Þ
ð27Þ

G ¼

1
	

ð28Þ

For Domain 3-3, the superelasticity disappears because the effective shear stress lowers
more than 
1. The range of effective shear strain and modified shear modulus are given by

Domain 3-3

	 �

1

GSMA
ð29Þ

G ¼ GSMA ð30Þ

The torque T corresponding to ! can be analyzed from Equation (21) by calculating
effective shear strain of each area using the modified shear modulus corresponding to each
domain defined by Equations (22)–(24), (26), (28) and (30). The relation between the force
and displacement of a spring can be calculated by using Equations (15) and (16).

Analytical Results and Discussion

Based on the above model, we made predictions of the torque (T ) – twist angle (!)
relation, and also of the spring force (P) – displacement (�) relation where the idealized
stress–strain relations of ferromagnetic FeCoV and superelastic CuAlMn shown in
Figure 12 are used.

Figure 13 shows the analytical results for the case of maximum twist angle per unit
length !¼ 0.003 of a composite plate wire with a¼ 2mm (width is 4mm), and b¼ 1mm
(height is 2mm). Figure 13(a) shows the relation between the torque and the normalized
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Figure 12. Idealized stress–strain curves of FeCoV and CuAlMn.
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twist angle, indicating that the torque rises proportionally as the twist angle increases, and
the transformation of SMA begins at !a¼ 0.0025, reaching the transformation stress with
!a¼ 0.0042 in all domain of SMA. After !a reaches 0.006, the superelastic loop exhibits
the reverse transformation corresponding to the unloading.

Figure 13(b) shows the relation between the spring force and the displacement of the coil
spring of length L¼ 100mm, diameter D¼ 25mm, pitch p¼ 5mm and number of turns
n¼ 20. The maximum displacement of this coiled spring was 59.2mm, the spring force
became 78.4N.

We made a parametric study to examine the effects of each parameter on the P–�
relation. Figure 14 shows the analytical results of the P–� relations influenced by various
parameters, (a) GSMA, (b) 
0, (c) Gf, (d) 
f and (e) 
1. From Figure 14(a), it is clear that
shear modulus of superelasticity SMA does not influence the maximum displacement and
the maximum spring force. It is noted from Figure 14(b), that the spring force increases
with an increase in forward transformation shear stress 
0. It is clear from Figure 14(c),
that the spring force does not change and only the maximum displacement increases if the
shear modulus of the ferromagnetic material becomes small resulting in larger
displacement of the spring. It can be seen from Figure 14(d), that both the spring force
and displacement increase the superelastic behavior when the yield stress of the
ferromagnetic material increases. It is noted from Figure 14(e), that the lower limit of
superelastic loop decreases if the reverse transformation stress 
1 decreases.

In summary, larger 
f of the ferromagnetic material and softer ferromagnetic material
will provide a spring actuator with larger displacement. And, to obtain large force of the
spring, use of SMA of larger 
0 is desired.

We are examining two kinds [Fe(Gf¼ 70GPa, 
f¼ 116MPa) and FeCoV(Gf¼ 70GPa,

f¼ 231MPa)] as a ferromagnetic material from the view point of low cost and easiness of
processing. It follows from Figure 14(d) that Fe does not show the superelastic behavior
and the spring force and displacement are small. Therefore, we considered that FeCoV
whose 
f is large was suitable as the ferromagnetic material.

Next, we shall compare the mechanical performance (P–� relation) of a spring between
‘‘rectangular’’ and ‘‘square’’ cross section. To this end, the cross section area of the square
is made equal to that of the rectangular studied earlier (Figure 12). The analytical results
of the optimum square cross section of FeCoV/CuAlMn composite are shown in Figure
15(a), while the P–� relation of the FSMA spring with this square cross section is given in
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Figure 13. Superelastic behavior of Fe/CuAlMn composite spring: (a) relation between torque and normalized
twist angle; (b) spring force (P)–displacement (�) curve.
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Figure 15(b) as a dashed line where the results of the rectangular cross section are also
shown by solid line. A comparison between the square cross section of Figure 15(a) and
the rectangular cross section of Figure 11 reveals that the FSMA composite spring with
square cross section provides larger force capability than that with the rectangular cross
section for the same cross section area. However, the effectiveness of using the spring with
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Figure 14. Effects of various parameters on P–� relation of FMSA composite springs: (a) SMA shear modulus,
GSMA ; (b) forward transformation shear stress, 
0 ; (c) shear modulus of a ferromagnetic material, Gf ; (d) the
yield stress in shear of a ferromagnetic material, 
f ; and (e) reverse transformation shear stress, 
1.
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the square cross section remains to be determined after its effectiveness of inducing large
magnetic force between the neighboring turns of the spring.

CONCLUSION

The predicted results of the bending moment–curvature of a FSMA composite plate
exhibit superelastic behavior of the composite beam while those of the FSMA composite
spring with rectangular cross section show also similar superelastic behavior. The above
superelastic behavior is the performance required for FSMA composite actuators with
high force and displacement capability. The results of the simple model were used
effectively for optimization of the cross section geometry of two types of FSMA
composite, bending and torsion types.
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APPENDIX

Relation Between Bending Moment and Curvature

The relation between the normalized bending moment and the normalized curvature
of the FMSA composite plate is classified into the following eight patterns as shown
Figure A.1.
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Figure 15. Superelastic behavior of Fe/CuAlMn composites: (a) shape of cross section; (b) spring force–
displacement curve.
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Case 1 is constructed with only Pattern 1. (Figure A.1(a))
Case 2 is constructed with Patterns 1 and 2 for the loading, and Patterns 1, 4, 5, and 6

for the unloading. (Figure A.1(b))
Case 3 is constructed with Patterns 1, 2 and 3 for the loading, and Patterns 1, 4, 7, and 8

for the unloading. (Figure A.1(c))
Equations of each pattern are shown as follows.

Pattern 1 (Cases 1–3)
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Figure A1. Relation between normalized bending moment and normalized curvature: (a) Case 1; (b) Case 2;
(c) Case 3.
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Pattern 3 (Case 3)
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where, �5 is the distance of the neutral axis.
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Pattern 6 (Case 2)
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where, �6 is the distance of the neutral axis.
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h
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� 	
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where, �7 is the distance of the neutral axis.
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Pattern 8 (Case 3)
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where, �8 is the distance of the neutral axis.

�8
h
¼
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2
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� 	

USEFUL RANGE

The useful range of the curvature of each pattern is shown as follows.

Case 1

Pattern 1 (Loading and Unloading)

0 �
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�
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�f
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2 1þ ðEf=ESMAÞ � 1ð Þ hf=hð Þ
� 	
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2
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Pattern 6 (Unloading)
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Pattern 7 (Unloading)
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where,
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