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Applications of porous shape memory alloys (SMAs)Applications of porous shape memory alloys (SMAs)

High energy absorbing 
Structure and damping 
devices
Medical implant
Cooling surface
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(A) Shape memory alloys such as NiTi exhibit larger buckling load as compared with other    
structural materials (for example aluminum) (Suzuki, Urushiyama and Taya, 2004)

Displacement (mm)Test specimens after buckling

(B) Increase in buckling load 
by applying side constraint 

σys=131MPa, E=205GPa 
t=2mm, W=20mm
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(1) Combine previous results of (A) and (B) in Background, to design a porous SMA 
such as NiTi which exhibits large energy absorption capacity per weight.

Side 
constraint

(2) Use the large stress-strain characteristics of SMA.

(3) Design composite structure made of porous NiTi and NiTi spring

Micro-pillar with side constraint

Approach to Design Porous SMAApproach to Design Porous SMA
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As = 1.288
Af = 23.823 

800°C under 25MPa, 5 minutes 1313% porous NiTi

As = 18.888
Af = 37.182 

950°C under 50MPa, 5 minutes0Solid NiTi

Transformation 
temperature (°C)

Spark Plasma
Processing Condition

Porosity
(%)

Specimen

SPS equipment

1mm

Uniform microstructure of  
13% porosity NiTi

Porous NiTi SMA fabricated by Spark Plasma Sintering (SPS)Porous NiTi SMA fabricated by Spark Plasma Sintering (SPS)
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Compression tests under room temperature

(a) Before Compression (b) Compression up to 5% 
and unloaded

(c) Compression up to 7% and 
unloaded
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Superelastic response of solid NiTi under 
static compression

Superelastic response of porous NiTi under static 
compression (fp=13%)
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Idealized Stress-Strain CurveIdealized Stress-Strain Curve

1st Stage
100% austenite,

2nd Stage
Austenite 100%       0%
Martensite 0%         100%

3rd Stage
100% martensite, 

4th Stage
Austenite 0%         100%
Martensite 100%        0%
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Model-1:  Stress-strain curve of NiTi with closed poresModel-1:  Stress-strain curve of NiTi with closed pores
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Model-1:  Stress-strain curve of NiTi with closed poresModel-1:  Stress-strain curve of NiTi with closed pores
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Stress-induced martensitic transformation
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Model-2:  Stress-strain curve of NiTi with open poresModel-2:  Stress-strain curve of NiTi with open pores
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Ratio of Eigenstrain in       to  2Ω
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ComparisonComparison
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Composite Design : Porous NiTi Cylinder and NiTi Spring

Compromising position
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Experimental Results of Composite Design
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Model for Composite Design
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Force-Displacement relation after porous NiTi touches the NiTi spring
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A: The spring shrinks 
to the same height 
as of the rod

Loading Curve
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Unloading Curve

E: Start austenite transformation
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1. Successful processing ductile porous TiNi with high specific 
energy absorption capability by SPS

2. Establishment of analytical modeling of porous TiNi by 
micromechanic model

3. Design and demonstration of Composite made of concentric 
porous TiNi-SE and Spring of TiNi-SE grade

ConclusionConclusion


