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Abstract

Brinson’s one-dimensional constitutive modeling for shape memory alloy (SMA) is extended to consider the

asymmetric tensile and compressive behavior as well as the torsional behavior. The incremental finite element method

using linear Timoshenko beam elements is formulated by the total Lagrangian approach for the superelastic, large

deformation analysis of SMA helical springs. The NiTi helical springs are analyzed and the calculated results are

compared with the experimental results to show the validity of the present computational procedure in actual design of

SMA actuators.
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1. Introduction

The use of shape memory alloys (abbreviated to

SMA) has been growing in recent years. It is expected

that computational tool will be used more widely in the

design of SMA-based actuators. The shape memory

alloy has the superelastic effect as well as the shape

memory effect. Brinson [1,2] formulated one-dimen-

sional constitutive equation for SMA and applied it to

the finite element analysis. Kawai et al. [3], Trochu and

Qian [4], Auricchio and Taylor [5], Keefe et al. [6],

Tokuda and Sittner [7], Qidwai and Lagoudas [8] also

formulated constitutive equations for SMA and some of

them were applied to the finite element analysis of SMA

devices. However, the computational method has not yet

been established for the superelastic, large deformation

analysis of SMA helical springs, which are used and

expected as actuator devices [9,10].
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Brinson’s constitutive equation [1], which is relatively

simple and phenomenological, is extended to consider the

asymmetric tensile and compressive behavior by using

Drucker–Prager equivalent stress as in Auricchio and

Taylor [5]. It is also extended to the torsional behavior

which governs the deformation of helical springs. The

incremental finite element formulation by the total

Lagrangian approach [11,12] is carried out for the layered

linear Timoshenko beam element [12] equipped with the

extended Brinson’s constitutive equation. The calculated

results for TiNi helical springs under tensile loading and

unloading are compared with the experimental results

given by the CIMS (Center for Intelligent Materials and

Systems) at the University ofWashington [13] to show the

validity of the present method.
2. Constitutive equation for shape memory alloy

The mechanical property of SMA is schematically

shown in Fig. 1 [1]. Fig. 1(a) and (b) are the relation

between critical transformation stress and temperature
ed.
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Fig. 1. Mechanical property of shape memory alloys: (a) crit-

ical stresses for transformation versus temperature and (b) su-

perelastic stress–strain behavior.
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and the superelastic stress–strain behavior respectively,

in which the following symbols are used: T , temperature;

r, stress; e, strain; rcr
f and rcr

s , critical finishing and

starting stress of martensite transformation; CM and CA,

slope for the relation between critical transformation

stress and temperature; Mf and Ms, critical finishing and

starting temperature of martensite transformation; As

and Af , critical starting and finishing temperature of

austenite transformation. The loading and unloading at

the temperature higher than Af occur the superelastic

stress–strain behavior as shown in Fig. 1(b).

The one-dimensional stress–strain relation is gener-

ally written as

r� r0 ¼ Eðe� e0Þ þ XðnS � nS0Þ þ hðT � T0Þ ð1Þ

where E is the Young’s modulus; X the transformation

coefficient; nS the stress-induced martensite volume

fraction, h the thermal elastic coefficient; T the temper-

ature. The subscript ‘0’ indicates the initial values. X is

expressed as

X ¼ �eLE ð2Þ

where eL is the maximum residual strain. Young’s

modulus E is a function of the martensite volume frac-

tion n, which is given by
E ¼ Ea þ nðEm � EaÞ ð3Þ

where Em and Ea are Young’s modulus of austenite

phase and martensite phase, respectively. The total

martensite volume fraction n is expressed as

n ¼ nS þ nT ð4Þ

where nT is the temperature-induced martensite volume

fraction. n, nS and nT are functions of the temperature T
and the stress r. To consider the difference between

tensile and compressive behavior, von Mises equivalent

stress re in the evolution equations of n, nS and nT is

replaced with Drucker–Prager equivalent stress rDP
e de-

fined as

rDP
e ¼ re þ 3bp ð5Þ

where b is the material parameter and p is the hydro-

static pressure given by

p ¼ 1

3
ðrx þ ry þ rzÞ ð6Þ

In one-dimensional case, the equivalent stress in Eq. (5)

is expressed as

rDP ¼ jrj þ br ð7Þ

The effect of using Drucker–Prager equivalent stress

instead of von Mises equivalent stress was demonstrated

by Toi et al. [9], in which the small deformation, su-

perelastic bending behavior of a Ni–Ti–10%Cu alloy

beam subjected to 4-point bending are analyzed by using

both Drucker–Prager and von Mises equivalent stress.

The stress–strain relations are assumed, based on the

tensile test result [5]. The calculated load–displacement

curve by using Drucker–Prager equivalent stress, in

which b ¼ 0:15 is assumed, agrees much better with the

experimental curve given by Auricchio and Taylor [5]

than the result with von Mises equivalent stress.

Substituting Eq. (7) into the evolution equations of n,
nS and nT given by Brinson [1], the evolution equations

for the transformation to martensite phase and austenite

phase are expressed as follows:

(i) transformation to martensite phase

T > Ms and rcr
s ð1þ bÞ þ CMð1þ bÞðT �MsÞ < rDP

< rcr
f ð1þ bÞ þ CMð1þ bÞðT �MsÞ:

nS ¼
1� nS0

2
cos

p
rcr
s ð1þ bÞ � rcr

f ð1þ bÞ

�

� ½rDP � rcr
f ð1þ bÞ � CMð1þ bÞðT �MsÞ�

�

þ 1þ nS0
2

ð8Þ

nT ¼ nT 0 �
nT 0

1� nS0
ðnS � nS0Þ ð9Þ



Fig. 2. Layered linear Timoshenko beam element.
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T < Ms and rcr
s ð1þ bÞ < rDP < rcr

f ð1þ bÞ:

nS ¼
1� nS0

2
cos

p
rcr
s ð1þ bÞ � rcr

f ð1þ bÞ

�

� ½rDP � rcr
f ð1þ bÞ�

�
þ 1þ nS0

2
ð10Þ

nT ¼ nT0 �
nT0

1� nS0
ðnS � nS0Þ þ DT n ð11Þ

where Mf < T < Ms and T < T0

DT n ¼
1� nT0

2
cos½aMðTf �MfÞ� þ 1g ð12Þ

otherwise

DT n ¼ 0 ð13Þ

(ii) transformation to austenite phase

T > As and CAð1þ bÞðT � AfÞ < f < CAð1þ bÞ
ðT � AsÞ:

n ¼ n0
2

cos aA T
���

� As �
f

CAð1þ bÞ

��
þ 1

�
ð14Þ

nS ¼ nS0 �
nS0
n0

ðn0 � nÞ ð15Þ

nT ¼ nT0 �
nT0
n0

ðn0 � nÞ ð16Þ

where aM and aA are given by the following equa-

tions:

aM ¼ p
Ms �Mf

; aA ¼ p
Af � As

ð17Þ

It is assumed for simplicity that the superelastic shear

deformation behavior is qualitatively similar to the

normal deformation behavior and both are independent

with each other [14]. The evolution equations for the

martensite volume fractions due to the shear stress ns,
nSs and nT s are used for the shear deformation.

ffiffiffi
3

p
jsj is

employed instead of rDP in Eq. (7). The shear stress–

shear strain relation is expressed by the following

equation:

s� s0 ¼ Gðc� c0Þ þ XsðnSs � nSs0Þ ð18Þ

where G is the shear modulus, Xs the shear transfor-

mation constant, nSs; shear stress-induced martensite

volume fraction, and T the temperature. The sub-

script ‘0’ indicates the initial value. Xs is expressed as

follows:

Xs ¼ �cLGs ð19Þ
where cL is the maximum residual strain. The shear

modulus G is a function of the martensite volume frac-

tion ns, which is given by

Gs ¼ Ga þ nsðGm � GaÞ ð20Þ
where Gm and Ga are the elastic shear modulus of

martensite phase and austenite phase, respectively. The

total martensite volume fraction ns is expressed as

ns ¼ nSs þ nT s ð21Þ

where nT s is the temperature-induced martensite volume

fraction. ns, nSs and nT s are functions of the temperature

T and the shear stress s.ffiffiffi
3

p
jsj is used as the equivalent stress to express the

evolution equations of the martensite volume fractions

due to shear, which are given by the following replace-

ments in Eqs. (8)–(17):

f !
ffiffiffi
3

p
jsj; b ¼ 0; n ! ns; n0 ! ns0;

nS ! nSs; nS0 ! nSs0; nT ! nT s; nT0 ! nT s0;

DT n ! DT sn

ð22Þ
3. Finite element formulation

3.1. Incremental constitutive equation

The layered linear Timoshenko beam element [12] as

shown in Fig. 2 is used in the finite element analysis of

SMA helical springs. The superelastic behavior is as-

sumed for the normal stress (r)–normal strain (e)
behavior associated with the axial and bending defor-

mation as well as the shear stress (s)–shear strain (c)
behavior associated with the torsional deformation. The

shear deformation associated with the bending defor-

mation is assumed to be elastic and the shear strain

energy due to bending is treated as a penalty term be-

cause the effect of bending is smaller than torsion in

helical springs.
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The total stress–total strain equations given in Eqs.

(1) and (18) are expressed in a differential form as fol-

lows:

dr ¼ dEðe� e0Þ þ Edeþ dXðnS � nS0Þ þ Xdns þ hdT

¼ dE
dn

on
or

dr

�
þ on
oT

dT
�
ðe� e0Þ þ Ede

þ dX
dE

dE
dn

on
or

dr

�
þ on
oT

dT
�
ðnS � nS0Þ

þ X
onS
or

dr

�
þ onS

oT
dT

�
þ hdT ð23Þ

and

ds ¼ dGðc� c0Þ þ Gdcþ dXsðnSs � nSs0Þ þ XsdnSs

¼ dG
dns

ons
os

ds

�
þ ons

oT
dT

�
ðc� c0Þ þ Gdc

þ dXs

dG
dG
dns

ons
os

ds

�
þ ons

oT
dT

�
ðnSs � nSs0Þ

þ Xs
onSs
os

ds

�
þ onSs

oT
dT

�
ð24Þ

The incremental stress–strain relations are expressed as

follows

1

�
� dE

dn
on
or

ðe� e0Þ �
dX
dE

dE
dn

on
or

ðnS � nS0Þ � X
onS
or

�
dr

¼ Edeþ dE
dn

on
oT

ðe
�

� e0Þ þ
dX
dE

dE
dn

on
oT

ðnS � nS0Þ

þ X
onS
oT

þ h

�
dT ð25Þ

and

1

�
� dG
dns

ons
or

ðc� c0Þ �
dXs

dG
dG
dns

ons
os

ðnSs � nSs0Þ

� Xs
onSs
os

�
ds

¼ Gdcþ dG
dns

ons
oT

ðc
�

� c0Þ þ
dXs

dG
dG
dns

ons
oT

ðnSs � nSs0Þ

þ Xs
onSs
oT

�
dT ð26Þ

Therefore the incremental stress–strain relation for the

analysis of helical springs is written in the following

form:

fDrg ¼ ½Dse�ðfDeg � fDesegÞ ð27Þ
where

fDrg ¼

Dr

Dsxz

Dsyz

Ds

8>>>><
>>>>:

9>>>>=
>>>>;
; ½Dse� ¼

Ese 0 0 0

0 G 0 0

0 0 G 0

0 0 0 Gse

2
66664

3
77775;

fDeg ¼

De

Dcxz
Dcyz

Dc

8>>>><
>>>>:

9>>>>=
>>>>;
; fDeseg ¼

Dese

0

0

Dcse

8>>>><
>>>>:

9>>>>=
>>>>;

ð28Þ

in which sxz and syz (cxz and cyz) are the shear stresses

(strains) due to bending. The final form of Eq. (27) is

given in Refs. [9,10].

3.2. Incremental stiffness equation

The effect of large deformation is taken into account

by using the incremental theory by the total Lagrangian

approach in which the non-linear terms with respect to

the displacement in the axial direction are neglected. The

strain increments in the large deformation analysis are

given by the following equations [15]:

De ¼ dDx
dz

� x
dDhy
dz

þ y
dDhx
dz

þ du
dz

dDu
dz

þ dv
dz

dDv
dz

þ 1

2

dDu
dz

� �2
"

þ dDv
dz

� �2
#

ð29Þ
Dcxz ¼
dDu
dz

� Dhy ð30Þ
Dcyz ¼
dDv
dz

þ Dhx ð31Þ
Dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p dDhzz
dz

� xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p du
dz

Dhz

� xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p hz
dDu
dz

� yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p dv
dz

Dhz

� yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p hz
dDv
dz

xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p Dhz
dDu
dz

� yffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p Dhz
dDv
dz

ð32Þ

where u, v, w are the translational displacements in the x,
y, z-direction, respectively. hx, hy hz are the rotational

displacements about the x, y, z-axis, respectively. Then,
the incremental relation between strains and nodal dis-

placements is written in a matrix form as follows:

fDeg ¼ ½B�fDug ¼ ð½B0� þ ½BL�ÞfDug ð33Þ

where the following symbols are used: ½B�; the strain–

nodal displacement matrix, ½B0�; the strain–nodal dis-
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placement matrix without the initial displacements, ½BL�;
the strain–nodal displacement matrix containing the

initial displacements, fDug; the nodal displacement

increment vector (buc ¼ bu1v1w1hx1hy1hz1u2v2w2hx2hy2
hz2c).

The following element stiffness equation in an incre-

mental form is obtained by the finite element formula-

tion based on the total Lagrangian approach [11,12]:

ð½k0� þ ½kL� þ ½kG�ÞfDug ¼ fDf g þ ffRg

þ
Z
Ve

½B�T½D�fDehgdV ð0Þ ð34Þ

where

½k0� ¼
Z
V
½B0�T½D�½B0�dV ð0Þ ð35Þ
e

½B� ¼

0 0 � 1
l

bk
2l

hg
2l 0 0 0 1

l � bk
2l � hg

2l 0

� 1
l 0 0 0 � 1�u

2
0 1

l 0 0 0 � 1þu
2

0

0 � 1
l 0 � 1�u

2
0 0 0 1

l 0 � 1�u
2

0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2g2þb2k2

p
0 0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2g2þb2k2

p
2l

2
666664

3
777775 ð38Þ
0 0 0 0 0 �
2L 0
½BL� ¼

dN1

dZ

� 	2
u1 þ dN1

dZ
dN2

dZ u2
dN1

dZ

� 	2
v1 þ dN1

dZ

0 0

0 0

� xffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN1

dZ hZ1 þ N2
dN1

dZ hZ2
� 	

� xffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN1

dZ hZ1 þ
�

2
666666664

0 0 0

0 0 0

0 0 0

0 0 � xffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN1

dZ u1 � yffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN1

dZ
dN1

dZ v1 � xffiffiffiffiffiffiffiffiffi
x2þy2

p N

dN1

dZ
dN2

dZ u1 þ dN2

dZ

� 	
u2

dN1

dZ
dN2

dZ v1 þ dN2

dZ

�
0 0

0 0

� xffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN2

dZ hZ1 þ N2
dN2

dZ hZ2
� 	

� yffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN2

dZ hZ1 þ
�

0 0 0

0 0 0

0 0 0

0 0 � xffiffiffiffiffiffiffiffiffi
x2þy2

p N2
dN1

dZ u1 � yffiffiffiffiffiffiffiffiffi
x2þy2

p N2
dN1

dZ v1 � xffiffiffiffiffiffiffiffiffi
x2þy2

p N2
dN2

dZ
½kL� ¼
Z
Ve

ð½B0�T½D�½BL� þ ½BL�T½D�½B0� þ ½BL�T½D�½BL�ÞdV ð0Þ

ð36Þ

½kG� ¼
Z
Ve

½G�T½S�½G�dV ð0Þ ð37Þ

The following symbols are used: ½k0�, the incremental

stiffness matrix; ½kL�, the initial displacement matrix; ½kG�;
the initial stress matrix; fDf g, the external force incre-

ment vector; ffRg, the unbalanced force vector; ½Dse�, the
superelastic stress–strain matrix; fDeseg, the superelastic
initial strain vector; ½G�; the gradient matrix; ½S�, the

initial stress matrix and Ve, the element volume.

The final forms of the matrices ½B0�, ½BL�, ½G� and ½S�
for the layered linear Timoshenko beam element are

expressed as follows:
dN2

dZ v2 0

0

0

N2
dN1

dZ hZ2
	

0

1
dN2

dZ u2 � yffiffiffiffiffiffiffiffiffi
x2þy2

p N1
dN2

dZ v2

	
v2 0

0

0

N2
dN2

dZ hZ2
	

0

u2 � yffiffiffiffiffiffiffiffiffi
x2þy2

p N2
dN2

dZ v2

3
777777775

ð39Þ



½S� ¼

rZ 0 0 0 0 0
0 rZ 0 0 0 0

0 0 0 0 0 � y

2
ffiffiffiffiffiffiffiffiffi
x2þy2

p shZ

0 0 0 0 x

2
ffiffiffiffiffiffiffiffiffi
x2þy2

p shZ 0

0 0 0 x

2
ffiffiffiffiffiffiffiffiffi
x2þy2

p shZ 0 0

0 0 � y

2
ffiffiffiffiffiffiffiffiffi
x2þy2

p shZ 0 0 0

2
6666666664

3
7777777775

ð40Þ

½G� ¼

dN1

dZ 0 0 0 0 0 dN2

dZ 0 0 0 0 0

0 dN1

dZ 0 0 0 0 0 dN2

dZ 0 0 0 0

0 0 0 0 0 N1 0 0 0 0 0 N2

0 0 0 0 0 �N1 0 0 0 0 0 �N2
dN1

dZ 0 0 0 0 �y dN1

dZ
dN2

dZ 0 0 0 0 �y dN2

dZ

0 dN1

dZ 0 0 0 x dN1

dZ 0 dN2

dZ 0 0 0 x dN2

dZ

2
66666664

3
77777775

ð41Þ
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where l, b and h are the length, the width and the

depth of the beam element respectively, while u, g and

k are the corresponding non-dimensional coordinates

(�16u; g; k6 1). N1 and N2 are the shape functions,

which are given as follows:

N1 ¼
1

2
ð1� uÞ; N2 ¼

1

2
ð1þ uÞ ð42Þ

4. Finite element analysis of SMA helical springs

The finite element formulation described in the pre-

ceding chapter has applied to the analysis of the tensile
Fig. 3. SMA helical spring.

Fig. 4. Assumed stress–strain curves: (a) long stroke and (b)

short stroke.



Table 1

Dimensions and material constants of NiTi helical springs

Dimensions (mm) Material constants (MPa)

5 turns Em ¼ 28500, Ea ¼ 34000

L ¼ 5 (total length) Gm ¼ 10690, Ga ¼ 12753

d ¼ 1 (diameter) rMS ¼ rcr
s þ CMðT �MsÞ ¼ 427:8

D ¼ 7:3 (diameter) rMf ¼ rcr
f þ CMðT �MsÞ ¼ 542:8

rAS ¼ CAðT � AsÞ ¼ 210:5

rAf ¼ CAðT � Af Þ ¼ 110:4

10 turns eL ¼ cL ¼ 0:047

L ¼ 10 (Total length) b ¼ 0:15

d ¼ 1 (diameter)

D ¼ 7:3 (diameter)
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loading and unloading tests of SMA helical springs

conducted at the CIMS of the University of Washington

[13]. The numbers of turns of the helical springs tested

are 5 and 10 as shown in Fig. 3. Fig. 4 shows the com-
Fig. 5. Calculated load–stroke curves: (a) 5 turns and (b) 10

turns.
parison between the experimental and the assumed

stress–strain curves for the material of the tested springs

subjected to the long and short stroke. The assumed

material constants are shown in Table 1. Fig. 5 shows

the tensile load–displacement curves for the spring with

5 turns under the stroke of 70 mm and the spring with 10

turns under the stroke of 90 mm. The two springs are

subdivided with 64 and 124 elements respectively. The

numbers of incremental steps used are so large (1060 and

5500, respectively) that the iteration calculation in each

loading step is not done in the present analysis, although

the iteration is effective to improve the accuracy and

efficiency of the incremental analysis as pointed out by

Bathe [12]. The calculated results are in good agreement

with the experimental results, however, there is a little

difference in the shape of curves, which is mainly caused

by the lack of the material test results available under

torsion. The calculated stress–strain curves at some

sampling points in the spring with 5 turns under some

different strokes are shown in Fig. 6. It is seen that the

normal stress–normal strain curves are all elastic while
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Fig. 6. Calculated stress–strain curves: (a) normal stress–nor-

mal strain (5 turns, A) and (b) shear stress–shear strain (5 turns,

A–D).
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the shear stress–shear strain curve are superelastic, be-

cause the torsional shear governs the deformation of

helical springs. Fig. 7 shows the distributions of normal

and shear stress on the cross-section of the spring with 5

turns, in which the line A–B and C–D are indicated in

Fig. 3.
5. Concluding remarks

The finite element formulation has been presented for

the analysis of superelastic behaviors of SMA helical

spring in the present study. Brinson’s one-dimensional

constitutive modeling for SMA has been extended to

consider the asymmetric tensile and compressive

behavior and the torsional deformation. The incremen-

tal finite element analysis program has been developed

by using the layered linear Timoshenko beam element

equipped with the extended Brinson’s constitutive

modeling for SMA.

The developed program has applied to the super-

elastic, large deformation analysis of TiNi helical springs
under tensile loading and unloading. The calculated re-

sults have been compared with the test results given by

the CIMS at the University of Washington. The calcu-

lated results have corresponded well with the experi-

mental results. The material test results under torsion

and the consideration of coupling of the superelastic

behaviors under tension–compression and torsion are

necessary in order to obtain improved results. The

extension to the coupled magneto-superelastic analysis

of ferromagnetic SMA such as FePd is now under way

[16].
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