Bibliography of papers using
CLAWPACK
or related wavepropagation methods
 [App97]

J. R. Appel.
Sensitivity calculations for conservation laws with application to
discontinuous fluid flow.
PhD thesis, Virginia Polytechnic Institute, 1997.
 [ARTW00]

J. D. Au, D. Reitebuch, M. Torrilhon, and W. Weiss.
The Riemannproblem in extended thermodynamics.
In H.~{Freist\"uhler} and G.~Warnecke, editors, Proc. 8'th Intl. Conf. on
Hyperbolic Problems, pages 7988. {Birkh\"auser}, 2000.
 [AvLU05]

L. Andersson, H. van Elst, E. C. Lim, and C. Uggla.
Asymptotic silence of generic cosmological singularities.
arXiv:grqc/0402051, 2005.
 [AvU04]

L. Andersson, H. van Elst, and C. Uggla.
Gowdy phenominology in scaleinvariant variables.
Class. Quantum Grav., 21:S29S57, 2004.
 [Bal02]

D. S. Bale.
Wave propagation algorithms on curved manifolds with applications to
relativistic hydrodynamics.
PhD thesis, University of Washington, 2002.
{\\ \verb+http://faculty.washington.edu/rjl/people.html+}.

[BB02]

J. M. Bardeen and L. T. Buchman.
Numerical tests of evolution systems, gauge conditions, and boundary
conditions for 1D colliding gravitational plane waves.
Phys. Rev. D, 65:0640371, 2002.
 [BEM00]

A. Berezovski, J. Engelbrecht, and G. A. Maugin.
Thermoelastic wave propagation in inhomogeneous media.
Arch. Appl. Mech., 70:694706, 2000.
 [BH00]

D. S. Bale and C. Helzel.
Crossflow instabilities in the approximation of detonation
waves.
In H.~{Freist\"uhler} and G.~Warnecke, editors, Proc. 8'th Intl. Conf. on
Hyperbolic Problems, pages 119128. {Birkh\"auser}, 2000.
 [BH02]

M. J. Berger and C. Helzel.
Grid aligned hbox methods for conservation laws in complex
geometries.
In R.~Herbin and D.~{Kr\"oner}, editors, Finite Volumes for Complex
Applications III, Porquerolles, France, pages 277284, London, 2002.
Hermes Penton Ltd.
 [BHL03]

M. J. Berger, C. Helzel, and R. J. LeVeque.
Hbox methods for the approximation of onedimensional conservation
laws on irregular grids.
SIAM J. Numer. Anal., 41:893918, 2003.
 [BJ02]

D. Bond and H. Johari.
Numerical simulation of unsteady axisymmetric jets.
In 3rd Theoretical Fluid Mechanics Meeting, pages AIAA 20023081,
2002.
 [BL00]

D. Bale and R. J. LeVeque.
Wave propagation algorithms for hyperbolic systems on curved
manifolds.
In H.~{Freist\"uhler} and G.~Warnecke, editors, Proc. 8'th Intl. Conf. on
Hyperbolic Problems. {Birkh\"auser}, 2000.

[Bli]

R. Blikberg.
Nested parallelism applied to AMRCLAW.
In Proc. EWOMP'02, Fourth European Workshop on OpenMP.

[Bli03]

R. Blikberg.
Nested parallelism in Open{MP} with application to adaptive mesh
refinement.
PhD thesis, University of Bergen, Norway, 2003.
 [BLMR02]

D. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith.
A wavepropagation method for conservation laws and balance laws with
spatially varying flux functions.
SIAM J. Sci. Comput., 24:955978, 2002.
 [BM01]

A. Berezovski and G. A. Maugin.
Simulation of thermoelastic wave propagation by means of a composite
wavepropagation algorithm.
J. Comput. Phys., 168:249264, 2001.
 [Bre03]

R. E. Breidenthal.
The vortex as a clock.
Symposium on Advances in Fluid Mechanics, 2003.

[Buc02]

N. Bucciantini.
Pulsar bowshock nebulae II. hydrodynamic simulation.
Astron. Astrophys., 387:10661073, 2002.
 [Cal99]

D. Calhoun.
A Cartesian grid method for solving the streamfunctionvorticity
equations in irregular geometries.
PhD thesis, University of Washington, 1999.
 [Cal02]

D. Calhoun.
A Cartesian grid method for solving the twodimensional
streamfunctionvorticity equations in irregular regions.
J. Comput. Phys., 176:231275, 2002.
 [CL00]

D. Calhoun and R. J. LeVeque.
Solving the advectiondiffusion equation in irregular
geometries.
J. Comput. Phys., 156:138, 2000.
 [CL03]

D. Calhoun and R. J. LeVeque.
An accuracy study of mesh refinement on mapped grids.
In T.~Plewa, editor, Adaptive Mesh Refinement  Theory And Applications:
Proceedings of The Chicago Workshop On Adaptive Mesh Refinement Methods,
volume~41 of Lecture Notes in Computational Science and Engineering,
pages 91102. Springer Verlag, 2003.

[CL05]

A. A. Coley and W. C. Lim.
Asymptotic analysis of spatially inhomogeneous stiff and ultrastiff
cosmologies, 2005.
 [CM05]

A. Costa and G. Macedonio.
Numerical simulation of lava flows based on depthaveraged
equations.
arXiv:physics/0504049, 2005.
 [CRS04]

A. J. Christlieb, J. A. Rossmanith, and P. Smereka.
The Broadwell model in thin channel.
Comm. Math. Sci., 2:448476, 2004.
 [Dei]

R. Deiterding.
Construction and application of an amr algorithm for distributed memory
computers.
In T.~Plewa, editor, Proc. of Chicago Workshop on Adaptive Mesh
Refinement, volume~41 of Lecture Notes in Computational Science and
Engineering. Springer Verlag.
 [FB98]

H. Forrer and M. Berger.
Flow simulations on Cartesian grids involving complex moving
geometries.
In R.~Jeltsch, editor, Proc. 7'th Intl. Conf. on Hyperbolic Problems,
pages 315324. {Birkh\"auser Verlag}, 1998.
 [Fel02]

W. Fellin.
Numerical computation of nonlinear inelastic waves in soil.
Pure Appl. Geophys., 159:17371748, 2002.
 [FJ98]

H. Forrer and R. Jeltsch.
A higherorder boundary treatment for Cartesiangrid methods.
J. Comput. Phys., 140:259277, 1998.
 [FL98]

T. Fogarty and R. J. LeVeque.
Highresolution finite volume methods for acoustics in a
rapidlyvarying heterogeneous medium.
In J.~A. {DeSanto}, editor, Mathematical and Numerical Aspects of Wave
Propagation, Proc. Fourth Int. Conf. on Wave Propagation, Golden, CO,
pages 603605. SIAM, 1998.
 [FL99]

T. Fogarty and R. J. LeVeque.
Highresolution finite volume methods for acoustics in periodic or
random media.
J. Acoust. Soc. Am., 106:1728, 1999.
 [FL03]

R. Fazio and R. J. LeVeque.
Moving mesh methods for onedimensional conservation laws using \sc
clawpack.
Comp. Math. Appl., 45:273298, 2003.
 [Fog97]

T. Fogarty.
Wavepropagation algorithms for acoustics in a rapidly varying
heterogeneous medium.
Masters' thesis, University of Washington, 1997.
\\ ({\tt ftp://amath.washington.edu/pub/rjl/students/fogarty:masters.ps.gz}).
 [Fog01]

T. R. Fogarty.
Finite volume methods for elasticplastic wave propagation in
heterogeneous media.
PhD thesis, University of Washington, 2001.
{\\ \verb+http://faculty.washington.edu/rjl/people.html+}.
 [For97]

H. Forrer.
Boundary Treatments for CartesianGrid Methods.
PhD thesis, ETHZurich, 1997.

[FR02]

E. Fried and B. C. Roy.
Gravityinduced segregation of cohesionless granular mixtures.
Lecture Notes in Mechanics, in press, 2002.
 [Geo04]

D. L. George.
Numerical approximation of the nonlinear shallow water equations with
topography and drybeds: A GodunovType scheme.
Master's thesis, University of Washington, 2004.

[GGH02]

C. L. Gardner, A. Gelb, and J. Hernandez.
A comparison of modern hyperbolic methods for semiconductor device
simulation: NTK central scheme vs. CLAWPACK.
VLSI Design, 15:721728, 2002.
 [HBL05]

C. Helzel, M. J. Berger, and R. J. LeVeque.
A highresolution rotated grid method for conservation laws with
embedded geometries.
SIAM J. Sci. Comput., 26:785809, 2005.
 [Hel00]

C. Helzel.
Numerical Approximation of Conservation Laws with Stiff Source Term for
the Modelling of Detonation Waves.
PhD thesis, OttovonGuerickeUniversit{\"a}t Magdeburg, 2000.
 [HGGS05]

Y. Ha, C. L. Gardner, A. Gelb, and C.W. Shu.
Numerical simulation of high mach number astrophysical jets with
radiative cooling.
J. Sci. Comput., 24:2944, 2005.
 [HHL99]

R. Holdahl, H. Holden, and K. A. Lie.
Unconditionally stable splitting methods for the shallow water
equations.
BIT, 39:451472, 1999.
 [Hin98]

R. C. A. Hindmarsh.
Drumlinization and drumlinforming instabilities: viscous till
mechanisms.
J. Glaciology, 44:293314, 1998.
 [HLW00]

C. Helzel, R. J. LeVeque, and G. Warnecke.
A modified fractional step method for the accurate approximation of
detonation waves.
SIAM J. Sci. Comput., 22:14891510, 2000.

[HN03]

C. Homescu and I. M. Navon.
Optimal control of flow with discontinuities.
J. Comput. Phys., 187:660682, 2003.
 [HO]

C. Helzel and F. Otto.
Multiscale simulations for suspensions of rodlike molecules.
J. Comput. Phys., to appear.
 [Hor96]

J. Horne.
Effects of LiquefactionInduced Lateral Spreading on Pile
Foundations.
PhD thesis, University of Washington, 1996.
 [HS98]

S. D. Hern and J. M. Stewart.
The Gowdy T3 cosmologies revisited.
Classical Quant. Grav., 15:15811593, 1998.
 [JFA03]

A. Jannelli, R. Fazio, and D. Ambrosi.
A 3D mathematical model for the prediction of mucilage
dynamics.
Computers \& Fluids, 32:4757, 2003.
 [JR03]

K. D. Jarman and T. F. Russell.
Eulerian moment equations for 2D stochastic immiscible flow.
Multiscale Model. Simul., 1:598608, 2003.
 [KB98]

J. Kevorkian and D. L. Bosley.
Multiplescale homogenization for weakly nonlinear conservation laws
with rapid spatial fluctuations.
Stud. Appl. Math., 101:127183, 1998.
 [KP97]

A. C. Kuo and L. M. Polvani.
Timedependent fullynonlinear geostrophic adjustment.
J. Phys. Ocean., 27:1614, 1997.
 [Lan96]

J. O. Langseth.
Wave Propagation Schemes, Operator Splittings, and Front Tracking for
Hyperbolic Conservation Laws.
PhD thesis, Department of Informatics, University of Oslo, 1996.
 [Lan01]

J. O. Langseth.
3D visualization of shock waves using volume rendering.
In E.~F. Toro, editor, Godunov Methods: Theory and Applications, pages
549556. Kluwer/Plenum, 2001.
 [LC01]

R. J. LeVeque and D. Calhoun.
Cartesian grid methods for fluid flow in complex geometries.
In L.~J. Fauci and S.~Gueron, editors, Computational Modeling in Biological
Fluid Dynamics, volume 124 of IMA Volumes in Mathematics and its
Applications, pages 117143. SpringerVerlag, 2001.
 [Lee02]

L. Lee.
Immersed interface methods for incompressible flow with moving
interfaces.
PhD thesis, University of Washington, 2002.
 [LeV96]

R. J. LeVeque.
Highresolution conservative algorithms for advection in incompressible
flow.
SIAM J. Numer. Anal., 33:627665, 1996.
 [LeV97]

R. J. LeVeque.
Wave propagation algorithms for multidimensional hyperbolic
systems.
J. Comput. Phys., 131:327353, 1997.
 [LeV98]

R. J. LeVeque.
Balancing source terms and flux gradients in highresolution Godunov
methods: The quasisteady wavepropagation algorithm.
J. Comput. Phys., 146:346365, 1998.
 [LeV01]

R. J. LeVeque.
Some traffic flow models illustrating interesting hyperbolic
behavior.
\\ \verb+http://faculty.washington.edu/rjl/pubs/traffic/+, 2001.

[LeV02a]

R. J. LeVeque.
Finite Volume Methods for Hyperbolic Problems.
Cambridge University Press, 2002.
 [LeV02b]

R. J. LeVeque.
Finite volume methods for nonlinear elasticity in heterogeneous
media.
Int. J. Numer. Meth. Fluids, 40:93104, 2002.

[LeV04]

R. J. LeVeque.
The dynamics of pressureless dust.
J. Hyperbolic Differential Equations, 1:315327, 2004.
 [LL00]

J. O. Langseth and R. J. LeVeque.
A wavepropagation method for threedimensional hyperbolic conservation
laws.
J. Comput. Phys., 165:126166, 2000.
 [LL03]

L. Lee and R. J. LeVeque.
An immersed interface method for incompressible NavierStokes
equations.
SIAM J. Sci. Comput., 25:832856, 2003.
 [LM02]

R. J. LeVeque and S. Mitran.
Wavepropagation methods and software for complex
applications.
In R.~Herbin and D.~{Kr\"oner}, editors, Finite Volumes for Complex
Applications III, Porquerolles, France, pages 107118, London, 2002.
Hermes Penton Ltd.
 [LMDM98]

R. J. LeVeque, D. Mihalas, E. Dorfi, and E. M\"uller.
Computational Methods for Astrophysical Fluid Flow.
SaasFee Advanced Course 27, (A. Gautschy and O. Steiner, editors)
SpringerVerlag, 1998.
 [LS01]

H. Lin and A. J. Szeri.
Shock formation in the presence of entropy gradients.
J. Fluid Mech., 431:161188, 2001.
 [LW03]

R. Liska and B. Wendroff.
Comparison of several difference schemes on 1D and 2D test problems for
the Euler equations.
SIAM J. Sci. Comput., 25:9961017, 2003.
 [LY02]

R. J. LeVeque and D. H. Yong.
Phase plane behavior of solitary waves in nonlinear layered
media.
In T.~Hou and E.~Tadmor, editors, Hyperbolic Problems: Theory, Numerics,
Applications, Proc. 9'th Intl. Conf. on Hyperbolic Problems, pages
4351. Springer, 2002.
 [LY03]

R. J. LeVeque and D. H. Yong.
Solitary waves in layered nonlinear media.
SIAM J. Appl. Math., 63:15391560, 2003.

[LZ95]

R. J. LeVeque and C. Zhang.
Finite difference methods for wave equations with discontinuous
coefficients.
In S.~Sture, editor, Proc. 1995 ASCE Engineering Mechanics Conference,
Boulder, CO, 1995.
\\ ({\tt ftp://amath.washington.edu/pub/rjl/papers/rjlzhang:asce95}).
 [MM01]

K. Murawski and J. K. Michalczyk.
Numerical simulations by godunovtype schemes of airpollutant
dynamics.
TASKQuarterly, 5:207208, 2001.
 [MNP01]

K. Murawski, V. M. Nakariakov, and E. N. Pelinovsky.
Fast magnetoacoustic waves in a randomly structured solor
corona.
Astron. Astrophys., 366:306310, 2001.
 [MP00]

K. Murawski and E. N. Pelinovsky.
The effect of random flow on solar acoustic waves.
Astron. Astrophys., 359:759765, 2000.

[MT04]

K. Murawski and M. Tarnowski.
Sound waves in a wave noise.
Task Quart., 8:103108, 2004.
 [Nor04]

M. L. Norman.
The impact of AMR in numerical astrophysics and cosmology.
\verb+http://xxx.lanl.gov/abs/astroph/0402230+, 2004.
 [Pel05]

M. Pelanti.
Wave Propagation Algorithms for Multicomponent Compressible Flows with
Applications to Volcanic Jets.
PhD thesis, University of Washington, 2005.
 [PFB02]

A. Y. Poludnenko, A. Frank, and E. G. Blackman.
Hydrodynamic interaction of strong shocks with inhomogeneous media. I.
Adiabatic case.
Astrophys. J., 576:832848, 2002.
 [PFM03a]

A. Y. Poludnenko, A. Frank, and S. Mitran.
Clumpy flows in protoplanetary and planetary nebulae, 2003.
http://xxx.lanl.gov/abs/astroph/0310286.
 [PFM03b]

A. Y. Poludnenko, A. Frank, and S. Mitran.
Strings in the Eta Carinae nebula: Hypersonic radiative cosmic
bullets, 2003.
http://xxx.lanl.gov/abs/astroph/0310007.
 [PLar]

M. Pelanti and R. J. LeVeque.
Highresolution finite volume methods for dusty gas jets and
plumes.
SIAM J. Sci. Comput., to appear.
 [RL00]

J. A. Rossmanith and R. J. LeVeque.
A wave propagation algorithm for the solution of PDEs on the
sphere.
In H.~{Freist\"uhler} and G.~Warnecke, editors, Proc. 8'th Intl. Conf. on
Hyperbolic Problems. {Birkh\"auser}, 2000.
 [Ros02]

J. A. Rossmanith.
A Wave Propagation Method with Constrained Transport for Ideal and
Shallow Water Magnetohydrodynamics.
PhD thesis, University of Washington, 2002.
 [RSW01]

P. Rentrop, S.O. Stoll, and U. Wever.
Sensitivity calculations for 2Doptimization of turbomachine
blading.
In K.H. Hoffmann, I.~Lasiecka, G.~Leugering, J.~Sprekels, and
F.~{Tr\"oltzsch}, editors, Optimal Control of Complex Structures,
volume 139 of Int. Ser. Numer. Math.. {Birkh\"auser}, 2001.
 [SFS05]

F. Sigward, A. Ferrara, and E. Scannapieco.
Suppression of dwarf galaxy formation by cosmic shocks.
Month. Not. Royal Astron. Soc., 358:755, 2005.
 [Shy98]

K.M. Shyue.
An efficient shockcapturing algorithm for compressible multicomponent
problems.
J. Comput. Phys., 142:208242, 1998.
 [Shy99]

K.M. Shyue.
A fluidmixture type algorithm for compressible multicomponent flow
with van der Waals equation of state.
J. Comput. Phys., 156:4388, 1999.
 [Shy01]

K.M. Shyue.
A fluidmixture type algorithm for compressible multicomponent flow
with MieGr\"uneisen equation of state.
J. Comput. Phys., 171:678707, 2001.
 [SMR01]

J. M. Stockie, J. A. Mackenzie, and R. D. Russell.
A moving mesh method for onedimensional hyperbolic conservation
laws.
SIAM J. Sci. Comput., 22:17911813, 2001.
 [Sni03]

J. B. Snively.
Tropospheric forcing as a source of quasimonochromatic gravity waves
observed in the upper mesosphere and lower thermosphere.
Master's thesis, Penn State University, 2003.
 [SPP99]

S. Singh, J. M. Powers, and S. Paolucci.
Detonation solutions from reactive NavierStokes equations.
In 37th AIAA Aerospace Sciences Meeting, pages AIAA990966, 1999.
 [Ste96]

L. G. Stern.
An Explicitly Conservative Method for TimeAccurate Solution of
Hyperbolic Partial Differential Equations on Embedded Chimera Grids.
PhD thesis, University of Washington, 1996.
(\verb+ ftp://www.amath.washington.edu/pub/rjl/students/stern:thesis.ps.gz+).
 [TLM99]

R. Tyson, S. R. Lubkin, and J. D. Murray.
Model and analysis of chemotactic bacterial patterns in a liquid
medium.
J. Math. Bio., 38:359375, 1999.
 [TSL00]

R. Tyson, L. G. Stern, and R. J. LeVeque.
Fractional step methods applied to a chemotaxis model.
J. Math. Biol., 41:455475, 2000.
 [YF03]

A. G. Yeghikyan and H. J. Fahr.
Consequences of the solar system passage through dense interstellar
clouds.
Annales Geophysicae, 21:12631273, 2003.
 [YLAH02]

J. Yi, H. Lin, L. Alvarez, and R. Horowitz.
Stability of macroscopic traffic flow modeling through wavefront
expansion.
In Proc. American Control Conference, Anchorage, pages 14841490,
2002.
 [Zha96a]

C. Zhang.
The immersed interface method for elastic wave propagations in
heterogeneous materials.
Rice University Department of Computational and Applied Mathematics Report
TR9629, 1996.
 [Zha96b]

C. Zhang.
Immersed Interface Methods for Hyperbolic Systems of Partial
Differential Equations with Discontinuous Coefficients.
PhD thesis, University of Washington, 1996.
 [ZL97]

C. Zhang and R. J. LeVeque.
Immersed interface methods for wave equations with discontinuous
coefficients.
Wave Motion, 25:237263, 1997.