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Copyright and Usage Restrictions:

This software is made available for research and instructional use only. You may copy and use
this software without charge for these non-commercial purposes, provided that the copyright notice
and associated text is reproduced on all copies. For all other uses (including distribution of modified
versions), please contact the authors.

This software is made available ”as is” without any assurance that it will work for your purposes.
The software may in fact have defects, use the software at your own risk.

Copyright by the authors, 1995-2002.

Status:

This documentation is being revised during the summer of 2002. Some changes are also being made
in CLAWPACK and Version 4.1 should be available by the end of the summer.

There are only a few changes in the one-dimensional and two-dimensional routines. More substantial
changes are being made in the basic three-dimensional routines to fix some bugs. A three-dimensional
version of AMRCLAW is also being developed, and some bugs are being fixed in the two-dimensional
AMRCLAW.

Check back later this summer for updates and refinements of this documentation.
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Chapter 1

The basic CLAWPACK software

1.1 Introduction

CLAWPACK (Conservation LAWs PACKage) is a package of Fortran subroutines for solving time-dependent
hyperbolic systems of partial differential equations in 1, 2, and 3 space dimensions, including nonlinear
systems of conservation laws. The software can also be used to solve nonconservative hyperbolic systems
and systems with variable coefficients, as well as systems including source terms. The package includes
an MPI version in which the domain can be distributed among multiple processors, and adaptive mesh
refinement versions (AMRCLAW) in two and three space dimensions.

These notes describe many features of the software and ways in which it can be used, but only
briefly review the numerical methods employed. A detailed description of the methods, with the same
notation used here, can be found in the book Finite Volume Methods for Hyperbolic Problems [8]. This
book also contains a general discussion of hyperbolic problems arising in several particular applications
areas. Numerous examples using CLAWPACK are presented in the book and source code for each can be
found via the webpage

http://www.amath.washington.edu/~claw/book.html
Other applications of CLAWPACK can be found via the webpages
http://www.amath.washington.edu/"claw/apps.html
In most cases the easiest way to apply CLAWPACK to a problem of interst is to find an existing application
to a similar problem, copy the relevant files to your own computer, and adapt them to your problem.
The webpages above contain pointers to many directories that can be downloaded as tar files and
contain everything needed for particular applications.

1.2 Other references

The one- and two-dimensional wave-propagation algorithms are described in the paper [7]. The three-
dimensional algorithms are developed and analyzed in [5]. The ideas are presented for the relatively
simple case of the advection equation in two and three dimensions in [6].

The adaptive mesh refinement routines used in amrclaw were developed with Marsha Berger. These
are based on her work on adaptive refinement for conservation laws, particularly the Euler equations, [4],
[1], [2]. Some of the issues involved in coupling these codes together with CLAWPACK, and generalizing
them to allow nonconservative systems, can be found in the paper [3].

If you successfully use CLAWPACK in research that results in publications, please cite the webpage

http://www.amath.washington.edu/~claw/
and relevant papers on these algorithms. If you would like your publications, codes, or links listed on
the usage webpage, please send email to rjl@amath.washington.edu.

7
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1.3 Versions

Version 4.0 of CLAWPACK was introduced in 2000 with many substantial changes over previous versions.
Version 4.1 should be available soon — see page 3.
Older versions can still be found at

http://www.amath.washington.edu/~rjl/clawpack/
Some applications that were implemented in earlier versions have never been converted to more recent
versions, so this may still be of some value.

1.4 Basic framework

In one space dimension, the CLAWPACK routine clawl (or the simplified version clawlez) can be used
to solve a system of equations of the form

H(z)qt +f(q)$ :¢(q7$at)7 (11)
where ¢ = g(z,t) € R™. The standard case of a homogeneous conservation law has k =1 and ¢ = 0,
@+ f(q)z =0. (1.2)

The flux function f(g) can also depend explicitly on = and ¢ as well as on g. Hyperbolic systems
that are not in conservation form, e.g.,

can also be solved.

The basic requirement on the homogeneous system is that it be hyperbolic in the sense that a
Riemann solver can be specified that, for any two states Q;—1 and @Q;, returns a set of M,, waves
wr /> and speeds st /o satisfying

M.y,

ZWf_l/g =Qi — Qi—1=AQi_1/2-

p=1

The Riemann solver must also return a left-going fluctuation A~AQ;_; /2 and a right-going fluctuation
ATAQ;_1/2. In the standard conservative case (1.2) these should satisfy

ATAQi—1/2 + ATAQ;_12 = f(Qi) — f(Qi-1) (1.4)
and the fluctuations then define a “flux-difference splitting” as described in Section ?7. Typically
A_AQi—l/Z = Z(Sf_l/z)_wf_l/za -A+AQ1'—1/2 = Z(sf_l/z)+wf_1/2’ (15)
P P
where s~ = min(s,0) and sT = max(s,0). In the nonconservative case (1.3), there is no “flux function”

f(q), and the constraint (1.4) need not be satisfied.
Only the fluctuations are used for the first-order Godunov method, which is implemented in the
form introduced in Section 1.4,

At
Qi =QF = 1 [ATAQin12 + ATAQi1 ] (1.6)

assuming k = 1.
The Riemann solver must be supplied by the user in the form of a subroutine rp1, as described
below. Typically the Riemann solver first computes waves and speeds and then uses these to compute
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ATAQ;_; s2 and A”AQ;_;/, internally in the Riemann solver. The waves and speeds must also be
returned by the Riemann solver in order to use the high-resolution methods described in Chapter 6 of
[8]. These methods take the form

At At -~ .
QI =Qf - [-A AQi—1)2 + ATAQit1/2] — E(Fi+1/2 —Fi_1)2) (1.7)

where

Fi1)2 = Z|51 1/2| (1_ |57 1/2|> ’Vzp 1/2° (1.8)

Here W “1/2 represents a limited version of the wave Wp 129 obtained by comparing W _1)2 to W _3/2
1fsp>00rtoW+l/21fs < 0.
When a capacity function x(z) is present, the Godunov method becomes

At

Qn+1 QF — P [-A AQi—1/2 + A” AQ1+1/2] (1.9)
See Chapter 6 of [8] for discussion of this algorithm and its extension to the high-resolution method.
If the equation has a source term, a routine srcl must also be supplied that solves the source term
equation ¢; = ¥(g, k) over a time step. A fractional step method is used to couple this with the homo-
geneous solution, as described in Chapter 17 of [8]. Boundary conditions are imposed by setting values
in ghost cells each time step, as described in Chapter 7 of [8]. A few standard boundary conditions are
implemented in the library routine claw/clawpack/1d/1ib/bcl.f, but this can be modified to impose

other conditions.

1.5 Obtaining CLAWPACK

The latest version of CLAWPACK can be downloaded from the web, at
http://www.amath.washington.edu/~claw/
Go to “download software” and select the portion you wish to obtain. At a minimum, to get started
with the one-dimensional routines you will need
claw/clawpack/1d.
You might want to also download the 2d and 3d versions at this time, in which case you can select all
of
claw/clawpack.
If you plan to use MATLAB to plot results (see Chapter 2), some useful scripts are in
claw/matlab.
Other plotting packages can also be used, but you will have to figure out how to properly read in the
solution produced by CLAWPACK.
The basic CLAWPACK directories 1d, 2d, and 3d each contain one or two examples in directories such
as
claw/1d/examplel
that illustrate the basic use of CLAWPACK. Many other examples can be found via the webpages
mentioned in Section 1.1.

1.6 Getting started

The discussion here assumes you are using the Unix (or Linux) operating system. The Unix prompt is
denoted by unix>.
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Creating the directories

The files you download will be gzipped tar files. Before installing any of CLAWPACK, you should create
a directory named <path>/claw where the pathname <path> depends on where you want these files to
reside and the local naming conventions on your computer. You should download any CLAWPACK files
to this directory. After downloading any file of the form name.tar.gz, execute the following commands
in the directory <path>/claw:

unix> gunzip name.tar
unix> tar -xvf name.tar

This will create the appropriate subdirectories within <path>/claw.

Environment variables for the path

You should now set the environment variable CLAW in Unix so that the proper files can be found:
unix> setenv CLAW <path>/claw

You might want to put this line in your .cshrc file so it will automatically be executed when you login

or create a new window. Now you can refer to $CLAW/clawpack/1d, for example, and reach the correct

directory.

Compiling the code

Go to the directory claw/clawpack/1d/examplel. There is a file in this directory named compile,
which should be executable so that you can type

unix> compile
This should invoke £77 to compile all the necessary files and create an executable called xclaw. To run
the program type

unix> xclaw
and the program should run, producing output files that start with fort. In particular, fort.q0000
contains the initial data and fort.q0001 the solution at the first output time. The file fort.info has
some information about the performance of CLAWPACK.

Makefiles

The compile file simply compiles all of the routines needed to run CLAWPACK on this example. This is
simple, but if you make one small change in one routine then everything has to be recompiled. Instead
it is generally easier to use a Makefile that specifies what set of object files (ending with .o) are needed
to make the executable, and which Fortran files (ending with .f) are needed to make the object files.
If a Fortran file is changed then it is only necessary to recompile this file rather than everything.
To use the Makefile, simply type
unix> make

instead of compile.

A complication arises since the examplel directory only contains a few of the necessary Fortran
files, the ones specific to this particular problem. All the standard CLAWPACK files are in the directory
claw/clawpack/1d/1ib. You should first go into that directory and type make to create the object files
for these library routines. This only needs to be done once if these files are never changed. Now go to
the examplel directory and also type make. Again an executable named xclaw should be created. See
the comments at the start of the Makefile for some other options. In particular, if you type

unix> make program
a single file clawlprogram.f will be generated that contains the main program driver.f and all
subroutines, giving a self-contained file. This may be useful for moving a program elsewhere, or to run
some debuggers that cannot deal with source code scattered between different files and directories.
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1.6.1 MATLAB graphics

If you wish to use MATLAB to view the results, you should download the directory claw/matlab and
then set the environment variable
unix> setenv MATLABPATH ".:\$CLAW/matlab"
before starting MATLAB, in order to add this directory to your MATLAB search path. This directory
contains the plotting routines plotclawl.m and plotclaw2.m for plotting results in 1 and 2 dimensions
respectively.
With MATLAB running in the examplel directory, type
>> plotclawl
to see the results of this computation. You should see a pulse advecting to the right with velocity 1,
and wrapping around due to the periodic boundary conditions applied in this example.
See Chapter 2 for more information on the use of MATLAB for visualization, and about the format
of output files that may be useful if using other graphics packages.

1.7 Using CLAWPACK — A guide through examplel
The program in claw/clawpack/1d/examplel solves the advection equation
gt +ugz =0

with constant velocity v = 1 and initial data consisting of a Gaussian hump
q(x,0) = exp(—B(z — 0.3)?). (1.10)

The parameters © = 1 and 8 = 200 are specified in the file setprob.data. These values are read in by
the routine setprob.f described in Section 1.8

1.7.1 The main program (driver.f)

The main program for examplel is located in the file driver.f. It simply allocates storage for the
arrays needed in CLAWPACK and then calls clawlez, described below. Several parameters are set and
used to declare these arrays. The proper values of these parameters depends on the particular problem.
They are:

maxmx: The maximum number of grid cells to be used. (The actual number mx is later read in from the
input file clawlez.data and must satisfy mx < maxmx.)

meqn: The number of equations in the hyperbolic system, e.g., meqn = 1 for a scalar equation, meqn =
3 for the Euler equations.

mwaves: The number of waves produced in each Riemann solution, called M,, in the text. Often mwaves
= meqn but not always.

mbc: The number of “ghost cells” used for implementing boundary conditions, as described in Chapter 7
of [8]. Setting mbc = 2 is sufficient unless changes have been made to the CLAWPACK software
that result in a larger stencil.

mwork: A work array work of dimension mwork is used internally by CLAWPACK for various purposes.
The size of this array depends on the other parameters:
mwork > (maxmx + 2*mbc) * (2 + 4*meqn + mwaves + megn*mwaves)
If the value of mwork is set too small, CLAWPACK will halt with an error message telling how much
space is required.

maux: The number of “auxiliary” variables needed for information specifying the problem. This is used
in declaring the dimensions of the array aux (see below).
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Three arrays are declared in driver.f:

q(1-mbc:maxmx+mbc, meqn): This array holds the approximation QF (a vector with meqn components)
at each time t,,. The value of 7 ranges from 1 to mx where mx < maxmx is set at run time from
the input file. The additional ghost cells numbered (1-mbc):0 and (mx+1) : (mx+mbc) are used in
setting boundary conditions.

work (mwork): Used as work space.

aux (1-mbc :maxmx+mbc, maux): Used for auxiliary variables if maux > 0. For example, in a variable-
coefficient advection problem the velocity in the ith cell might be stored in aux(i,1). See Sec-
tion 1.9 for an example and more discussion.

If maux = 0 then there are no auxiliary variables and aux can simply be declared as a scalar or
not declared at all since this array will not be referenced.

1.7.2 The initial conditions (qinit.f)

The subroutine ginit.f sets the initial data in the array q. For a system with meqn components,
q(i,m) should be initialized to a cell average of the m’th component in the i’th grid cell. If the data is
given by a smooth function then it may be easiest to just evaluate this function at the center of the cell.
This gives a value that agrees with the cell average to O((Ax)?2). The left edge of the cell is at xlower
+ (i-1)#*dx and the right edge is at xlower + i*dx. It is only necessary to set values in cells i =
1:mx, not in the ghost cells. The values of xlower, dx, and mx are passed into qinit.f from clawlez.

1.7.3 The clawlez routine

The main program driver.f sets up array storage and then calls the subroutine clawlez, which is
located in claw/clawpack/1d/1ib, along with other standard CLAWPACK subroutines described below.
The clawlez routine provides an easy way to use CLAWPACK and should suffice for many applications. It
reads input data from a file clawlez.data, which is assumed to be in a standard form described below.
It also makes other assumptions about what the user is providing and what type of output is desired.
After checking the inputs for consistency, clawlez calls the CLAWPACK routine clawl repeatedly to
produce the solution at each desired output time.

The clawl routine (located in claw/clawpack/1d/1ib/clawl.f) is much more general and can be
called directly by the user if more flexibility is needed. See the documentation for this routine in the
source code.

1.7.4 Boundary conditions

Boundary conditions must be set before each time step and clawl calls a subroutine bc1 to accomplish
this. The manner in which this is done is described in detail in Chapter 7 of [8]. For many problems
the choice of boundary conditions provided in the default routine claw/clawpack/1d/1ib/bcl.f will
be sufficient. For other boundary conditions the user must provide an appropriate routine. This can be
done by copying the bcl. f routine to the application directory and modifying it to insert the appropriate
boundary conditions at the points indicated.

When using clawlez, the clawlez.data file contains parameters specifying what boundary condi-
tion is to be used at each boundary (see Section 1.7.6 where the mthbc array is described).

1.7.5 The Riemann solver

The file claw/clawpack/1d/examplel/rplad.f contains the Riemann solver. If clawlez is used, then
this subroutine must be named rp1. (More generally the name of the subroutine can be passed as
an argument to clawl). The Riemann solver is the crucial user-supplied routine that specifies the



1.7. USING CLAWPACK — A GUIDE THROUGH EXAMPLE1 13

Qi
" /
Qi1
Ti—1/2

Figure 1.1: The states used in solving the Riemann problem at the interface z;_; /2.

hyperbolic equation being solved. The input data consists of two arrays ql and qr. The value q1(i,:)
is the value QF at the left edge of the i’th cell, while qr(i,:) is the value QF at the right edge
of the i’th cell, as indicated in Figure 1.1. Normally q1 = qr and both values agree with Q7, the
cell average. More flexibility is allowed because in some applications, or in adapting CLAWPACK to
implement different algorithms, it is useful to allow different values at each edge. For example, we
might want to define a piecewise linear function within the grid cell as illustrated in Figure 1.1 and
then solve the Riemann problems between these values. This approach to high-resolution methods is
discussed in Section 77.
Note that the Riemann problem at the interface z;_; /o between cells ¢ — 1 and ¢ has data

left state: QF, =qr(i —1,:),

! (1.11)
right state: @Q; = ql(i,:).

This notation is rather confusing since normally we use ¢; to denote the left state and g, to denote
the right state in specifying Riemann data. The routine rp1 must solve the Riemann problem for each
value of i, and return the following:

amdq(i,1:meqn) The vector A~AQ;_;/; containing the left-going fluctuation as described in Sec-
tion 1.4.

apdq(i,1:meqn) The vector ATAQ;_;/2 containing the right-going fluctuation as described in Sec-
tion 1.4.

wave(i,1:meqn,p) The vector Wf:l /2 representing the jump in g across the p’th wave in the Riemann
solution at x; /9, forp = 1, 2, ..., mwaves. (In the code mw is typically used in place of p.)

s(i,p) The wave speed sf_l/z for each wave.

For Godunov’s method, only the fluctuations amdq and apdq are actually used, and the update
formula (1.6) is employed. The waves and speeds are only used for high-resolution correction terms
(1.8) as described in Chapter 6 of [8].

For the advection equation, the Riemann solver in examplel returns

wave(i, 1,1) = ql(i) —qr(i — 1)
s(i,1)=u

amdq(i, 1) = min(u, 0)*wave(i, 1, 1)
apdq(i, 1) = max(u, 0)*wave(i, 1,1)

Sample Riemann solvers for a variety of other applications can be found in claw/applications.
Often these can be used directly rather than writing a new Riemann solver.



14 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

1.7.6 The input file clawlez.data

The clawlez routine reads data from a file named clawlez.data. Take a look at
claw/clawpack/1d/examplel/clawlez.data, which is a typical input file. One or more values is read
from each line of this file. Any text following these values on each line is not read and is there simply
as documentation. The values read are:

mx: The number of grid cells for this computation. (Must have mx < maxmx, where maxmx is set in
driver.f.)

nout: Number of output times at which the solution should be written out.

outstyle: There are three possible ways to specify the output times. This parameter selects the desired
manner to specify the times, and affects what is required next.

outstyle = 1: The next line contains a single value tfinal. The computation should proceed
to this time and the nout outputs will be at times t0 + (tfinal - t0)/nout, where the
initial time tO is set below.

outstyle = 2: The next line(s) contain a list of nout times at which the outputs are desired.
The computation will end when the last of these times is reached.

outstyle = 3: The next line contains two values
nstepout, nsteps
A total of nsteps time steps will be taken, with output after every nstepout time steps.
The value of nout is ignored. This is most useful if you want to insure that time steps of
maximum length are always taken with a desired Courant number. With the other output
options, the time steps are adjusted to hit the desired times exactly. This option is also
useful for debugging if you want to force the solution to be output every time step, by
setting nstepout = 1.

dtv(1): The initial value of At used in the first time step. If method(1) = 0 below, then fixed size
time steps are used and this is the value of At in all steps. In this case At must divide the time
increment between all requested outputs an integer number of times.

dtv(2): The maximum time step At to be allowed in any step (in the case where method(1) = 1 and
variable At is used). Variable time steps are normally chosen based on the Courant number,
and this value can simply be set to some very large value so that it has no effect. For some
problems, however, it may be necessary to restrict the time step to a smaller value based on other
considerations, e.g., the behavior of source terms in the equations.

cflv(1): The maximum Courant number to be allowed. The Courant number is calculated after all
the Riemann problems have been solved by determining the maximum wave speed seen. If the
Courant number is no larger than cf1v(1) then this step is accepted. If the Courant number is
larger, then:

method (1)=0: (fixed time steps), the calculation aborts.

method (1)=1: (variable time steps), the step is rejected and a smaller time step is taken.
Usually c£f1v(1) = 1 can be used.

cflv(2): The desired Courant number for this computation. Used only if method(1)=1 (variable time
steps). In each time step, the next time increment At is based on the maximum wave speed found
in solving all Riemann problems in the previous time step. If the wave speeds do not change
very much then this will lead to roughly the desired Courant number. It’s typically best to take
cf1lv(2) to be slightly smaller than cf1v(1), say cf1lv(2) = 0.9.
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nv(1): The maximum number of time steps allowed in any single call to clawl. This is provided as a
precaution to avoid too-lengthy runs.

method(1): Tells whether fixed or variable size time steps are to be used.

method (1)

method (1) 1: cLAWPACK will automatically select the time step as described above based on
the desired Courant number.

0: A fixed time step of size dtv(1) will be used in all steps.

method (2): The order of the method.

method (2)
method (2)

1: The first-order Godunov method (1.6) is used.

2: High-resolution correction terms (1.8) are also used.

method (3): This parameter is not used in one space dimension. In two and three dimensions it is used
to further specify which high-order correction terms are applied.

method(4): This controls the amount of output printed by clawl on the screen as CLAWPACK progresses.

method (4)
method (4)

0: Information is printed only when output files are created.

1: Every time step the value At and Courant number are reported.

method (5): Tells whether there is a source term in the equation. If so, then a fractional step method
is used as described in Chapter 17 of [8]. Time steps on the homogeneous hyperbolic equation are
alternated with time steps on the source term. The solution operator for the source terms must
be provided by the user in the routine srci.f.

method(5) = 0: There is no source term. In this case the default routine
claw/clawpack/1d/1lib/srcl.f can be used which does nothing, and in fact this routine
will never be called.

method(5) = 1: A source term is specified in srcl.f and the “first order (Godunov)” fractional
step method should be used.

method(5) = 2: A source term is specified in srcl.f and a Strang splitting is used.

The Godunov splitting is generally recommended rather than the Strang splitting for reasons
discussed in Chapter 17.

method(6): Tells whether there is a “capacity function” in the equation, as introduced discussed in [7]
and [8].

method(6) = 0: No capacity function, kK =1 in (1.1).

method(6) = mcapa > 0: There is a capacity function and the value of « in the i’th cell is given
by aux(i,mcapa), i.e., the mcapa component of the aux array is used to store this function.
In this case “capacity-form differencing” is used, as described in Chapter 6 of [8].

method(7): Tells whether there are any auxiliary variables stored in an aux array.

method(7) = 0: No auxiliary variables. In this case the array aux is not referenced and can be a
dummy variable.

method(7) = maux > 0: There is an aux array with maux components. In this case the array
must be properly declared in driver.f.

Note that we must always have maux > mcapa. The value of method(7) specified here must
agree with the value of maux set in driver.f.
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meqn: The number of equations in the hyperbolic system. The value set in clawlez.data should agree
with the value set in driver.f.

mwaves: The number of waves in each Riemann solution. This is often equal to meqn but need not be.
The value set in clawlez.data should agree with the value set in driver.f.

mthlim(1:mwaves): The limiter to be applied in each wave family as described in Chapter 6. Several
different limiters are provided in CLAWPACK (see Chapter 6 of [8]):

mthlim(mw) = 0: No limiter (“Lax-Wendroff”)
mthlim(mw) = 1: Minmod
mthlim(mw) = 2: Superbee
mthlim(mw) = 3: van Leer
mthlim(mw) = 4: MC (monotonized centered)

Other limiters can be added by modifying the routine
claw/clawpack/1d/1ib/philim.f, called by claw/clawpack/1d/lib/limiter.f.

t0: The initial time.

xlower: The left edge of the computational domain.

xupper: The right edge of the computational domain.

mbc: The number of ghost cells used for setting boundary conditions. Usually mbc = 2 is used.

mthbc (1): The type of boundary condition to be imposed at the left boundary. See Chapter 7 of [§]
for more description of these and how they are implemented. The following values are recognized:

mthbc (1) = 0: The user will specify a boundary condition. In this case you must copy the
file claw/clawpack/1d/1ib/bcl.f to your application directory and modify it to insert the
proper boundary conditions in the location indicated.

mthbc (1)
mthbc (1)

mthbc (1) = 3: Solid wall boundary conditions. This set of boundary conditions only makes
sense for certain systems of equations; see Chapter 7 of [8].

1: Zero-order extrapolation.

2: Periodic boundary conditions. In this case you must also set mthbc(2) = 2.

mthbc(2): The type of boundary condition to be imposed at the right boundary. The same values are
recognized as described above.

1.8 Other user-supplied routines and files

Several other routines may be provided by the user but are not required. In each case there is a default
version provided in the library claw/clawpack/1d/1ib that does nothing but return. If you wish to
modify this code to do something more interesting, copy the library version to the application directory,
modify it as required, and also modify the Makefile to point to the modified version rather than to
the library version.

setprob.f The clawlez routine always calls setprob at the beginning of execution. The user can
provide a subroutine that sets any problem-specific parameters or does other initialization.

As an example, for the advection problem solved in examplel, this is used to set the advection
velocity u. This value is stored in a common block in setprob.f that is also accessible from
the Riemann solver rplad.f, where the value is needed. Similarly, the parameter beta is stored
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in a common block that is accessible from qinit.f, where it is used in setting the initial data
according to (1.10).

When clawlez is used, a setprob subroutine must always be provided. If there is nothing to be
done, the default subroutine claw/clawpack/1d/1ib/setprob.f can be used, which does nothing
but return.

setaux.f The clawlez routine calls a subroutine setaux before the first call to clawl. This routine
should set the array aux to contain any necessary data used in specifying the problem. For the
example in examplel no aux array is used (maux = O in driver.f) and the default subroutine
claw/clawpack/1d/1lib/setaux.f is specified in the Makefile. See Section 1.9.

b4stepl.f Within clawl there is a call to a routine b4step1 before each call to stepl (the CLAWPACK
routine that actually takes a single time step). The user can supply a routine b4step1 in place of
the default routine claw/clawpack/1d/1ib/b4stepl.f in order to perform additional tasks that
might be required each time step. One example might be to modify the aux array values each
time step, as described in Section 1.9.

srcl.f If the equation includes a source term % as in (1.1), then a routine src1 must be provided in
place of the default routine claw/clawpack/1d/1ib/src1.f. This routine must solve the equation
q: = ¥ over one time step. Often this requires solving an ordinary differential equation in each
grid cell. In some cases a partial differential equation must be solved. For example, if diffusive
terms are included with v = ¢, then the diffusion equation must be solved over one time step
in the routine srcl.f.

1.9 Auxiliary arrays and setaux.f

The array q(i,1:meqn) contains the finite-volume solution in the #’th grid cell. Often other arrays
defined over the grid are required to specify the problem in the first place. For example, in a variable-
coefficient advection problem

¢ +u(r)ge =0

the Riemann solution at any cell interface x; ;2 depends on the velocities u;—1 and u;. The aux array
can be used to store these values and pass them into the Riemann solver. In the advection example we
need only one auxiliary variable so maux = 1 and we store the velocity u; in aux(i,1). See Chapter 9
of [8] for more discussion of variable-coefficient problems.

Of course one could hard-wire the specific function u(z) into the Riemann solver or pass it in using
a common block, but the use of the auxiliary arrays gives a uniform treatment of such data arrays. This
is useful in particular when adaptive mesh refinement is applied, in which case there are many different
q grids covering different portions of the computational domain and it is very convenient to have an
associated aux array corresponding to each.

The clawlez routine always calls a subroutine setaux before beginning the computation. This
routine, normally stored in setaux.f, should set the values of all auxiliary arrays. If maux = O then the
default routine claw/clawpack/1d/1lib/setaux.f can be used, which does nothing. For some examples
of the use of auxiliary arrays, see

claw/clawpack/applications/advection/1d/conservative/examplel
claw/clawpack/applications/acoustics/1d/varying/interface

In some problems the values stored in the aux arrays must be time-dependent, for example in an
advection equation of the form ¢; + u(z,t)q, = 0. The routine setaux is called only once at the
beginning of the computation and cannot be used to modify values later. The user can supply a routine
béstepl in place of the default routine claw/clawpack/1d/1ib/b4stepl.f in order to modify the aux
array values each time step. The setaux routine was originally designed to be called only at the initial
time, and so the current time is not passed into this routine. If the value of time is required in setaux,
it should be passed in a common block from b4stepl.
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1.10 An acoustics example

The directory claw/clawpack/1d/example2 contains a sample code for the constant-coefficient acous-
tics equations

pt—i—Kuz:O

1.12
put + py = 0. ( )

The parameters p and K are the density and bulk modulus of the material, respectively. The variables
p and u are the pressure perturbation and velocity in an acoustic wave. The value of the density and
bulk modulus are set in setprob.f (where they are read in from a data file setprob.data). In this
routine the sound speed ¢ and impedance Z = pc are also computed and passed to the Riemann solver
in a common block, since these are used in the eigenvalues and eigenvectors:

)\1:—0, )\2:C
. [ -2 s [ 2 (1.13)
S e

Solving the Riemann problem between states Q; ; and Q; gives « = R~1(Q; — Q;_1) with compo-
nents

o' = (—(pi — pi—1) + Z(u; — wi—1))/2Z, (1.14)
o® = ((pi — pi-1) + Z(u;i — ui—1))/22,

and the waves are W! = a!r! and W? = o?r%.

1.11 Two space dimensions (claw2ez.f)

In two space dimensions the equation (1.1) is extended to
K@, y)a + () + 9(0)y = ¥(g,7,y,1), (1.15)

where ¢ = q(z,y,t) € R™. The standard case of a homogeneous conservation law has k = 1 and ¢ = 0,

@+ f(@)s +9(g)y =0 (1.16)

Again hyperbolic systems that are not in conservation form, e.g.,
gt + A(z,y,t)gs + B(z,y,t)gy =0, (1.17)

can also be solved.
The programs in claw/clawpack/2d are organized in roughly the same way as in claw/clawpack/1d.
An example can be found in claw/clawpack/2d/examplel, which uses the routine claw/clawpack/2d/1ib/claw2ez.f
to solve a nonlinear scalar equation in two dimensions. The data file claw2ez.data is very similar to
the one-dimensional data files with a few additional parameters:

my: The number of grid cells in the y-direction for this computation. (Must have my < maxmy, where
maxmy is set in driver.f.)

method (3): If this parameter is negative then dimensional splitting is used.

method(3) = -1: Dimensional splitting with the Godunov splitting. In each step an z-sweep is
applied and then a y-sweep.
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method(3) = -2: Dimensional splitting with the Strang splitting. In each step an z-sweep is
applied with time step At/2, then a y-sweep with time step At, and finally another z-sweep
is applied with time step A¢/2. In most cases this is not recommended.

If method(3) is nonnegative, then the unsplit algorithm described in [7] and Chapter 21 of [8] is
used. In this case this parameter indicates what type of transverse propagation is applied:

method(3) = 0: No transverse propagation. In this case rpt2 is not called. This method is
generally stable only for Courant numbers less than 1/2.

method(3) = 1: Transverse propagation of increment waves only.

method(3) = 2: Transverse propagation of correction waves also.
ylower: The bottom edge of the computational domain.
yupper: The top edge of the computational domain.

mthbc (3): The type of boundary condition to be imposed at the bottom boundary. The same values
are recognized as described above for mthbc (1).

mthbc (4): The type of boundary condition to be imposed at the top boundary. The same values are
recognized as described above for mthbc (1).

1.11.1 Riemann solvers

Two Riemann solvers must now be provided, as described in [7] and Chapter 21 of [8]. The transverse
solver rpt2 is called only if method(3) > 0 and a dummy routine could be provided otherwise.

rpn2: Solves the Riemann problem normal to a cell interface, analogous to rpl. The CLAWPACK routine
flux2 calls this routine repeatedly with a single slice of data along a row or column of grid cells in
the two-dimensional domain. The parameter ixy indicates whether the slice is in the z-direction
or in the y-direction:

ixy = 1: Slice is in the z-direction and this routine should return the solution to the Riemann
problem ¢; + A(z,y,t)g, = 0 from (1.17).

ixy = 2: Slice is in the y-direction and this routine should return the solution to the Riemann
problem ¢; + B(z,y,t)g, = 0 from (1.17).

rpt2: Solves the Riemann problem in the transverse direction. The input is an array asdq along a
slice of the grid, where asdq represents one of the fluctuations amdq or apdq which came out of the
normal Riemann solver rpn2. This fluctuation must be split into an up-going portion bpasdq and
a down-going portion bmasdq. (Here “up” refers to larger values of i or j on the grid, “down” to
smaller values.)

Again the parameter ixy indicates whether the slice is in z or y. In addition, a parameter imp
indicates whether asdq represents amdq or apdq:

imp = 1: asdq represents amdqg, the fluctuation that is propagating into the cell to the left of the
interface.

imp = 2: asdq represents apdq, the fluctuation that is propagating into the cell to the right of
the interface.

This information may be needed for problems with variable coefficients depending on x and y.
Such coefficients might be stored in the aux arrays. The slice of the aux array corresponding to
the slice of the grid on which we are currently working is passed into rpt2 in the array aux2. In
addition the slice from the row “below” is passed in aux1, and the slice from the row “above” is
passed in aux3. Values from the adjacent rows may be needed to compute the portion of asdq
which propagates up or down into the neighboring cells.
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1.12 Three space dimensions (claw3ez.f)

The three-dimensional CLAWPACK routines are found in claw/clawpack/3d/1ib. This is a fairly direct
extension of the two-dimensional routines with obvious extensions to the third dimension and corre-
sponding additional parameters required in the input file claw3ez.data. The main changes from two
dimensions are the following:

method(3): Setting method(3) = -1 gives dimensional splitting with the Godunov splitting, i.e., a full
time step is taken in x, then y, and then z. Strang splitting is not currently implemented in three
dimensions.

In three dimensions, dimensional splitting is often much more efficient than the unsplit methods
obtained with other choices of method(3). To obtain good results with the unsplit method it
is often necessary to use full transverse and double-transverse propagation of all waves (i.e.,
method(3) = 22), which results in a large number of transverse Riemann problems being solved
in each grid cell every time step. For some problems this is worth doing, but often better results
can be obtained with equal computational work by using dimensional splitting on a finer grid.

Setting method (3) = 0 gives the unsplit method but with no transverse splitting. This method
is only first-order accurate and generally gives poor results.

If method(3) > 0 then the routine rpt3 is required and is used to do transverse splitting. In
three dimensions the value of method(3) > 0 should be a two-digit integer. The first digit is 1 or
2 and specifies whether the just the increment wave or both increment and correction wave are
transversely propagated. This digit plays the same role as the value of method(3) does in two
dimensions.

In three dimensions one might want to apply “double-transverse” corrections as well as transverse
corrections, as described in [5]. For example, waves arising from solving the Riemann problem in z
may be split into transverse waves in y to update the cells above and below, but these waves may
be further split into waves in the z-direction to give the proper corner coupling. This is indicated
by the second digit of method(3). This digit takes the value 0, 1, or 2 depending on whether no
wave, just the increment wave, or both increment and correction waves should be propagated in
the double-transverse sense.

To summarize, if method(3) > 0 then it should take one of the following values. (Note that some

of these choices lead to unconditionally unstable methods and are not recommended.)

method(3) = 10: Transverse propagation of the increment wave as in 2D. This method is uncon-
ditionally unstable.

method(3) = 11: Corner transport upwind of the increment wave. This method is uncondition-
ally unstable.

method(3) = 20: Both the increment wave and the correction wave propagate as in the 2D case.
Only to be used with method(2) = 2.

method(3) = 21: Corner transport upwind of the increment wave, and the correction wave prop-
agates as in 2D. Only to be used with method(2) = 2.

method (3) = 22: 3D propagation of both the increment wave and the correction wave. Only to
be used with method(2) = 2.

zlower: The front edge of the computational domain.
zupper: The back edge of the computational domain.

zlower. The

mthbc (5): The type of boundary condition to be imposed at the boundary =z
same values are recognized as described above for mthbc (1).

mthbc(6): The type of boundary condition to be imposed at the boundary z = zupper. The
same values are recognized as described above for mthbc (1).
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rpn3: Solves the Riemann problem normal to a cell interface, analogous to rpn2. The parameter ixyz
= 1,2,3 indicates whether the slice is in the z- y- or z-direction.

rpt3: Solves the Riemann problem in the transverse directions, but now for each coordinate direction
there are two orthogonal axes. The parameter ixyz indicates what direction the slice of data lies
in, as in rpn3.

The parameter icoor indicates which of the transverse directions is to be used for the transverse

splitting:

ixyz=1, icoor=2: Data is in z, split in y.

ixyz=1, icoor=3: Data is in z, split in z.

ixyz=2, icoor=2: Data is in y, split in z.

ixyz=2, icoor=3: Data is in y, split in z.

ixyz=3, icoor=2: Data is in z, split in z.

ixyz=3, icoor=3: Data is in 2z, split in y.

As in two dimensions, a parameter imp indicates whether asdq represents amdq or apdq:

imp = 1: asdq represents amdqg, the fluctuation that is propagating into the cell to the left of the
interface.

imp = 2: asdq represents apdq, the fluctuation that is propagating into the cell to the right of

the interface.

It is necessary to check the value of imp only if the transverse Riemann solution procedure is
different to the left and right of the interface, e.g., if spatially-varying parameters stored in the
aux arrays are used in solving the Riemann problem.
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Chapter 2

Program output and graphics using
MATLAB

The CLAWPACK routines clawNez.f (for N= 1,2, 3) are set up to call corresponding output routines
outN.f at each time when output is desired. The output times are specified in the clawNez.data files,
as described in Section 1.4. The default output routines located in claw/clawpack/Nd/1ib write out
the solution in a form that is suitable for use with the MATLAB graphics routines described later in this
chapter. As with any CLAWPACK routine, you can customize the output routine for your own needs if
the default version is not adequate (copy the library version to your application directory, modify it as
desired, and modify the Makefile to point to the modified version). For example, you might want to:

e Change the format of the output to meet the requirements of some other graphics package.

Print out more (or fewer) digits of the solution.

Print out only some components of the solution rather than all meqn components. This may be
desirable for a large system if only some components are of interest (in order to save disk space).

Print out the solution only over part of the domain rather than everywhere.

Print out some quantities derived from the solution values rather than the components of q itself.
For the Euler equations, for example, you might want to print out density, velocity, and pressure
rather than the conserved quantities. (Alternatively, there is a provision in the MATLAB routines
to specify a function to apply to the solution values before plotting, so that the pressure can be
computed from the conserved quantities, for example. See Section 77.)

2.1 One-dimensional output

The default version of out1.f produces two files at each output time. These are called fort.tXXXX and
fort.qXXXX, where XXXX gives the frame number, 0000 for to the initial data, 0001 at the first output
time, etc. Typical output files have the following form:

fort.t0000:
0.00000000E+00 time
2 megn
1 ngrids

The file fort.t0000 has only three lines giving the output time, the number of solution values
printed from each grid cell, and the number of distinct grids at this time. When using the basic
CLAWPACK routines, ngrids = 1. With AMRCLAW there may be multiple grids at each output time,

23
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one or more at each Level (see Chapter 3). The value of meqn is used in plotclawN so if you modify
the output routine to print out only some solution values, this value should be changed accordingly.

fort.q0000:
1 grid_number
1 AMR_level
200 mx

0.00000000E+00 xlow
0.50000000E-01 dx

0.00000000E+00 1.00000000E+00
0.00000000E+00 1.00000000E+00
etc (198 more lines)

The file fort.q0000 contains the solution on all grids at time ¢ = 0. In the example above, there
is only one grid. Information about this grid is contained in the first 5 lines and then the megqn = 2
solution values at each of the mx = 200 points on this grid are printed on the next 200 lines. Note that
only the values at the interior points i = 1, 2, ..., mx are printed, not the values in the ghost cells.

When AMRCLAW is used, there may be several grids at each output time. The values from each
grid are all output to the same fort.qXXXX file. The data from each grid is preceded by 5 lines of
information about this grid, in the same form as the first 5 lines of the sample fort.q0000 file given
above. Each grid has a distinctive grid_number. The AMR_level is the Level as described in Chapter 3.
mx gives the number of cells on this particular grid, with mesh width dx. This grid starts at £ = xlow
and ends at £ = xlow + mx*dx.

The fortran format 4e16.8 is used for printing the values. So roughly nine significant figures are
printed, with at most 4 values per line. If meqn > 4 then the data from each grid cell will occupy more
than one line of the file. Before printing the values, any value that is less than 1d-99 is reset to zero.
Otherwise fortran will not print the E in the floating point number and MATLAB will not properly parse
the file when reading it.

2.2 Two-dimensional output

The default routine out2.f behaves similarly. Again two files fort.tXXXX and fort .qXXXX are produced
at each output time. The former is identical to what is described above. The latter file is essentially
the same but also includes the parameter values my, ylow, and dy in the header information for each
grid. This header is followed by mx*my lines of data, and each line has the meqgn solution values from
one grid cell.

2.3 Plotting results using plotclawN.m

To plot results in MATLAB, use plotclawN for N = 1,2, 3. This invokes the m-file in claw/matlab/plotclawN.m
Hitting <return> at the plotclaw prompt causes the next frame to of data to be read into MATLAB
and plotted. Alternatively, one of several characters can be typed at the plotclaw prompt:

k Keyboard input. Type any MATLAB commands you wish to execute
at the resulting K>> prompt.
Type the word return at the prompt to return to plotclaw execution.
r Redraw current frame. You might want to do this after resetting some
plot parameters using keyboard input, for example.
j Jump to a particular frame. You will then be prompted for the frame number.
i Print info about plotting parameters and the solution at the current time.
q Quit out of plotclaw.
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Various parameters used in plotclawN are initialized in the corresponding file setplotN.m. If no
such file exists in the current working directory, then the default file claw/matlab/setplotN.m is used.
The parameters are listed and documented in this file. Values can be changed by creating a modified
version in your own directory, or dynamically during execution of plotclaw by typing k at the plotclaw
prompt and then entering a new value.

See Section 3.1.3 for some additional information on using plotclaw2 with AMRCLAW.
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Chapter 3

Adaptive Mesh Refinement and the
AMRCLAW Routines

CLAWPACK 4.1 contains the adaptive mesh refinement routines of AMRCLAW developed with Marsha
Berger, based on her codes for the Euler equations. These have been extended to handle general systems
of equations based on Riemann solvers in exactly the same form as required by the basic CLAWPACK
routines. Other user-supplied routines such as qinit.f, setprob.f, setaux.f and source term routines
also have exactly the same form as in CLAWPACK.

These routines are now available in both 2 and 3 space dimensions. The basic AMRCLAW routines
can be found in claw/amrclaw/Nd/1ib, for N= 2, 3.

The boundary condition routine that sets ghost cell values is slightly more complicated for AM-
RCLAW, as described in Section 3.1.2, but the standard boundary conditions handled automatically
in CLAWPACK (extrapolation, periodic, solid walls) are also implemented in the AMRCLAW routines
claw/amrclaw/Nd/lib/bcNamr.f in such a way that the user need only specify appropriate values for
the mthbc array in the data file, just as in CLAWPACK (see Section 3.1.1).

As a result, it should be quite easy to convert a running CLAWPACK code to AMRCLAW and take
advantage of adaptive mesh refinement. In simple cases only the input data file and the Makefile need
to be changed.

3.1 Two dimensions

The basic two-dimensional routines can be found in claw/amrclaw/2d/1ib. You must first do a make
in this directory in order to create .o files for each library routine. For an example of the use of
AMRCLAW see the directory claw/clawpack/2d/examplel/amr. This solves the same problem as in
claw/clawpack/2d/examplel but with adaptive refinement. To use this code you will need to do a
make first in claw/amrclaw/2d/1ib and in claw/clawpack/2d/examplel and then in this directory.
This produces an executable xamr. Results can again be viewed in MATLAB using the plotclaw2 script
(see Section 3.1.3). Note that there are no user-supplied fortran routines in these directories; the
Makefiles refer to the routines in the directory above.

3.1.1 The input file amr2ez.data

The input data file is different and is now called amr2ez.data. This has essentially the same form as
the claw2ez.data file used by claw2ez, but for the adaptive routines some additional parameters must
be specified.

A sample file can be found in claw/clawpack/2d/examplel/amr/amr2ez.data. The parameters
mxnest and inrat and all those from iousr onwards are required only in the amr2ez.data file. Deleting
these lines would produce the corresponding claw2ez.data file.
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The new parameters needed by AMRCLAW are as follows:

mxnest: Maximum number of levels of grid refinement. mxnest = 1 means a single uniform grid will
be used. This should give identical answers as the non-adaptive CLAWPACK routines on the same
grid. Checking that this works is a good first step in converting a code to AMRCLAW.

inrat (1:max(mxnest-1,1)): Refinement ratios for each level. Grids at Level 2 will be finer than the
Level 1 grid by a factor of inrat (1) in both  and y. In general, grids at Level L will be finer
than grids at level L-1 by a factor inrat(L-1). Only mxnest—-1 components of inrat are actually
needed, but at least one value is always read so that this line can remain in the input file even
if mxnest is set to 1. Each refinement ratio must be an even integer. Values 2 or 4 are typically
used.

auxtype(1:maux): Ifmaux > O then for each component of the auxiliary array, a type must be specified
from the following list, depending on what the corresponding component of aux represents:

"leftedge"  a value associated with the left edge of the cell.
"bottomedge" a value associated with the bottom edge of the cell.
"center" a cell-centered value.

"capacity"  a cell-centered capacity function.

At most one component may have the type "capacity" and the value of mcapa should be set in a
consistent manner. This component is used as a capacity function in capacity-form differencing.

The auxtype array is required for adaptive refinement because auxiliary arrays must be handled
slightly differently at refinement boundaries depending on how these values are used.

iousr: A checkpoint file is dumped every iousr time steps on the coarse grid. These are binary files
with names of the form fort.chkSNUM where SNUM is the step number. The solution and grid
structure is output in a form that can be used to later restart the calculation from this point.
This is useful when doing long runs in case the computer goes down or the algorithm fails at some
point in the calculation. It is also useful if you want to go to some large time and then start doing
frequent outputs in order to examine the time-evolution of the solution more carefully.

In addition to creating a checkpoint file every iousr time steps, a final checkpoint file is created
at the end of the computation. This can be used to restart the calculation from the final time if
you wish to evolve it further.

restart: If restart = T then a restart is performed. Information read in from the file restart.data
is used to resume a previous calculation. This file should be copied from a checkpoint file created
in the previous calculation.

When a restart is performed, other parameters in this amr2ez.data file should be consistent with
values used in the previous calculation, with some exceptions:
e The number of time steps requested nstop or the output times requested tout(1:nout)
now refer to the new calculation.

e The maximum number of refinement levels mxnest can be larger than the number of levels
previous used, but not smaller.

e Parameters specifying the method to use, method(1:7), mthlim, mthbc, can be changed.
tol: Tolerance used in flagging grid cells which need to be refined. An estimate of the truncation

error is computed and compared with this value, see Section 3.4. Smaller values will lead to more
refinement.
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tolsp: Another tolerance used in flagging grid cells which need to be refined. This is used in checking
the magnitude of the spatial gradient, as computed by central differences. See Section 3.4 for more
information about how tol and tolsp are used and what routines can be modified to change the
refinement criteria.

kcheck: Error estimation and regridding is performed every kcheck time steps.

ibuff: Size of the buffer zone around flagged cells. Certain cells are flagged for refinement and then
clustered (see Section 3.4) into finer grids. In addition to the cells flagged by the error estimation,
all cells within ibuff cells of these are also flagged. This insures that structures in the solution
that require refinement will remain in the refined region for at least ibuff time steps, since the
Courant number must be no greater than 1. The value of ibuff should generally be consistent
with the value of kcheck, with ibuff > kcheck if the Courant number is close to 1.

cutoff: Parameter used in the clustering algorithm (see Section 3.4). Typically 0.7 is a good value.

PRINT option: Logical variable. If T, the solution values on all grids are output in the file fort.amr
along with other information about the time stepping. Usually not used except on very coarse
grids for debugging purposes.

NCAR graphics: Logical variable. If T, the solution is output in fort.ncar in a form suitable for NCAR
graphics.

Matlab graphics: Logical variable. If T, the solution is output in the form suitable for viewing with
plotclaw2 in MATLAB.

Xprint: A number of other values can be set to T if you desire more output to be sent to fort.amr
describing each grid, indicating which points were flagged for refinement, etc. Used primarily for
debugging. An exception is tprint which is useful in general to keep track of how far along the
code has progressed.

3.1.2 Boundary conditions

The boundary condition routine is somewhat more complicated for the adaptive code, since the edge of a
grid may not be at a physical boundary. A grid might be adjacent to other grids at the same refinement
level or to coarser grids. In either case the AMR routines automatically provide appropriate ghost
cell values. The routine claw/amrclaw/2d/lib/bc2amr.f sets boundary conditions at the physical
boundaries. It recognizes the same set of mthbc values as used in claw2ez, so that if these standard
boundary conditions (extrapolation, periodic, or solid walls) are desired the user need not worry about
this routine. To implement other boundary conditions, the bc2amr.f file can be copied to the user
directory and modified as described in the documentation at the beginning of this routine and following
the examples of these standard boundary conditions.

3.1.3 Plotting results with MATLAB

The MATLAB routine plotclaw2 can be used for viewing the AMRCLAW output. Note that information
about Frame 1, for example, is stored in fort.t0001 and includes the value ngrids which tells how
many grids exist at this time. The file fort.q0001 contains the solution on each of these grids. The
data for each grid is preceeded by information about this grid: what level it is at and where the lower
left corner is located.

For plotting results from AMRCLAW the following parameters are useful. These are initialized in the
setplot2.m file in the current directory, or if there isn’t one then by the default file
claw/matlab/setplot2.m.
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PlotData(L): Data at Level L is plotted only if PlotData(L) > 0. If you want to quickly step through
many frames looking only at a course representation of the solution, this can be used to suppress
time-consuming plotting of the finer grids.

PlotGrid(L): For pcolor plots the grid lines will be plotted on grids at Levels L for which PlotGrid (L)
> 0. You may want to plot the grid lines on coarser grids but suppress them on finer grids where
they would obscure the data.

PlotGridEdge(L): Even if grid lines are not plotted, a box showing the location of each grid will be
plotted for grids at Levels L for which PlotGridEdge(L) > O.

3.2 Three dimensions

Coming in CLAWPACK 4.1....

3.3 The adaptive algorithm

This is a very brief description of the basic steps in adaptive time stepping. First suppose there are
only two grid levels. The algorithm proceeds as follows:

1. All grids at Level 1 (the coarsest level) are advanced by the coarse time step. Often there is only
one grid at this level but since there is a limit on the maximum size of each grid, the domain may
be automatically split into more than one coarse grid. Before advancing at this level the bc2amr
routine is called to set ghost cells where needed.

2. All grids at Level 2 are advanced by inrat (1) time steps which are each smaller than the coarse
time step by a factor inrat(1). Time steps are refined in the same way as the grid spacing so
that the Courant number is roughly the same at all levels.

Before each time step, ghost cell values must be set. In general there are three types of ghost
cells:

(a) Those which lie within adjacent grids at Level 2, and the values are copied directly from the
adjacent grid,

(b) Those which lie within the physical domain but at a point where there is only a Level 1 grid.
At these points interpolation is used to set the values based on the coarser grid. Since we
have already advanced the coarse grid in time, we can use space-time interpolation to set
an appropriate value. This is needed since the ghost cell may be at an intermediate time
between coarse time steps as well as at an intermediate spatial point relative to the coarse
grid.

(¢) Those which lie outside the physical domain. For these cells bc2amr must set the appropriate
value based on the physical boundary conditions.

An exception to Type (c) is when periodic boundary conditions are used. In this case the ghost cell
is of Type (a) or (b) depending on the grid structure at the opposite edge of the domain. Ghost
cells of Type (a) and (b) are handled automatically by AMRCLAW and the bc2amr routine must
only check whether a ghost cell lies outside the physical domain and handle this case properly.

3. Once all grids at Level 2 have been advanced to the same time as the Level 1 grids, the values on
the two sets of grids must be made consistent. For coarse grid cells which are covered by a fine
grid, the fine grid presumably contains more accurate information and so the coarse grid value is
replaced by the average of the fine grid values over all fine cells covering this coarse cell.
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4. When a conservation law is being solved, we must insure that conservation is maintained. This
requires some modifications at the edges of the fine grids since different fluxes were used on the
fine grid than on the adjacent coarse grid. This is described in [3].

5. Every kcheck time steps on each level, error estimation and regridding is performed. This is done
as described in Section 3.4.

If there are more than 2 levels, then this same algorithm is applied recursively at each of the finer
levels. For every time step on Level 2, we take inrat (2) time steps on all Level 3 grids. Every kcheck
time steps on Level 2, new Level 3 grids are changed, etc.

3.4 Error estimation and regridding

Every kcheck time steps on each level, the error is estimated at all cells on grids at this level. Cells
where the error is above some cutoff are flagged for refinement. The norm used to measure the error can
be adjusted, see below. The cells which have been flagged are then clustered into rectangular regions
to form grids at the next level. The clustering is done in light of the tradeoffs between a few large
grids (which usually means refinement of many additional cells which were not flagged) or many small
grids (which typically results in fewer fine grid cells but more grids and hence more overhead and less
efficient looping over shorter rows of cells). The parameter cutoff in amr2ez.data is used to control
this tradeoff. At least this fraction of the fine grid cells should result from coarse cells that were flagged
as needing refinement. cutoff = 0.7 is usually reasonable.
Cells are flagged for refinement in errf1 by one of two possible mechanisms.

1. The spatial gradient of the solution in cell (i,5) is estimated by simply computing the values
q(i+1,j,m)-q(i-1,j,m) and q(i,j+1,m)-q(i,j-1,m) and maximixing over all components m.
A cell is flagged if this is greater than the parameter tolsp in amr2ez.data. This is done in
subroutine errsp where this norm could be adjusted (for example to only look at one particular
component of q or use a different norm).

2. An estimate of the error which would be incurred on the present grid is obtained by doing two
computations and comparing the errors:

e The equations are advanced by two time steps on the current grid with the current At.

e The equations are advanced by one time step on a grid that is twice as coarse (half as many
points in each direction) with time step 2At.

Richardson extrapolation is then performed on these two solutions to obtain an estimate of the
error on the present grid at time 2At¢. Any cell where this estimate is above the value of tol
specified in amr2ez.data is flagged for refinement. This procedure is performed in errest and
the Richardson extrapolation is done in errfi. Coarsening by a factor of 2 is done rather than
refining since this is cheaper to perform. (For this reason the initial grid must have an even
number of cells in each direction.)

In general the Richardson extrapolation procedure should give a better indication of which cells
need refinement, but can fail in some cases and so the simple spatial gradient estimate is also used.

In the procedure errf1l it is indicated how to allow refinement at each level only in some regions
of the domain and not elsewhere. This is useful if you wish to zoom in on some structure in a known
location but don’t want the same level of refinement elsewhere. Points are flagged only if one of the
errors is greater than the corresponding tolerance and also allowed(x,y,level) has the value .true..
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3.5 Comments and warnings

For many problems the adaptive code should work immediately when a CLAWPACK code converted.
However, there are several subtleties of the adaptive refinement procedure that can lead to problems.
Here are some things to watch out for.

e Auxiliary arrays. Each time new grids are generated the routine setaux is called to set up

the corresponding auxiliary array (if maux > 0). In CLAWPACK, setaux is called only once at the
initial time, but in AMRCLAW it is called for every new grid at each regridding time, so it should
be written in a manner that works in this more general context.

If any components of the auxiliary arrays are reset at each time in the subroutine b4step2, this
will happen automatically on the new grids before the first call to step2. In this case the setaux
routine need only set the time-independent values in aux that are not set by b4step2.

Error estimation time steps. In the error estimation process, time steps are taken to estimate
the error. This is not part of the main calculation. The routine b4step2 and the source term
routine src2 are called in this process as in any other time step. If the b4step2 routine is used
to adjust values of the solution or do other operations which should only be done once at each
distinct time, this could be a problem.

In the error estimation time steps, a fixed time step is used based on the current time step, and
method (1) = 0 is set. This time step is not adjusted based on the observed Courant number.

Exceeding the CFL limit. If method(1)=1 then CLAWPACK attempts to automatically adjust
the time step to keep the Courant number near the value specified in cf1v(2). If the Courant
number is above the limit specified in cf1v(1), then the initial data for this time step is restored
and a smaller time step is taken. In amrclaw this is only partially true. At the end of each
time step on Level 1 (the coarsest level), the next coarse time step is chosen based on the largest
wave speed seen in the last step (maximizing over what was observed on all levels). If this value
causes the Courant number on the Level 1 step to be larger than cf1v(1), then this coarse step
is retaken with a smaller dt, just as in CLAWPACK. However, once a time step is accepted on the
coarsest level, this same time step, divided by appropriate values of inrat, is used for all the finer
level time steps within this single coarse time step. It may happen that within one of these finer
time steps (i.e., with Level > 1), the Courant number is observed to go above cflv(1). This is
ignored and the computation proceeds, with the time step adjusted only at the start of the next
Level 1 time step. Trying to adjust the time step at a finer level would be difficult as it would
require going back and retaking the coarser steps.
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MPI Versions for multiple
Processors

For users who have access to a parallel computer or cluster of workstations running MPI (Message
Passing Interface), versions of the two- and three-dimensional CLAWPACK routines are available that
use MPI to distribute the computational work between processors. The domain is split into slices or
an array of blocks, and ghost cells are used to pass information between these subdomains at the end
of each time step.

See the documentation in the routines claw/clawpack/Nd/1ib/mpiclawN.£90
for N= 2, 3. Note that the MPI routines are written in Fortran 90 and require an appropriate compiler.

Examples of the use of these routines can be found in

claw/clawpack/Nd/examplel/mpi
Note that all the same user-supplied subroutines are used as needed for the standard CLAWPACK routines.
The only changes are a new Makefile, which links in the appropriate MPI versions of some library
routines, and a slightly-modified clawNez.data file. This file simply has N additional lines added to the
end that indicate how the domain should be partitioned in each of the N dimensions.

Some of the applications in claw/applications also have an mpi subdirectory. Generating the
appropriate files for any other application should be quite easy.

MPI is easy to apply because the explicit methods used for hyperbolic systems on a rectangular grid
are “embarrassingly parallel”. Most of the work takes place in updating the solution on each subdomain,
which can be done based only on the local information on this grid (and its ghost cells), without reference
to the solution on any other subdomain. Communication between subdomains is accomplished by
copying the values from mbc rows of cells near the boundary of each subdomain into the ghost cells for
the neighboring subdomains at the end of each time step. This communication typically has a trivial
cost compared to the cost of applying Godunov-type methods over each subdomain. Because of this
one can typically expect to see speedup by a factor of nearly M when M processors are used.

Note that the MPI version may not apply to some problems if there is a more global coupling
between values. For example, if an advection-diffusion equation is solved by using a fractional step
method with an implicit method for the diffusion “source term”, then the routine srcN.f can not be
applied independently on different subdomains.

There is no MPI version of the AMRCLAW routines, since it is more difficult to combine parallel
processing with adaptive refinement. Users who desire this feature should consider the BEARCLAW
software developed by Sorin Mitran, who also wrote the MPI versions of CLAWPACK. See

http://www.amath.washington.edu/~claw/bearclaw.html
(This is still under development but a test version is available.)
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