
CLAWPACK Version 4.0
User’s Guide

Randall J. LeVeque
University of Washington

DRAFT VERSION
November 18, 1999

http://www.amath.washington.edu/ claw/

c©R. J. LeVeque, 1999

http://www.amath.washington.edu/~claw/


2

Authors.

Most of the one-dimensional and two-dimensional clawpack routines were written by

R. J. LeVeque
University of Washington
Department of Applied Mathematics
Box 352420
Seattle, WA 98195-2420

The three-dimensional routines were written by

Jan Olav Langseth
Norwegian Defence Research Establishment
PO Box 25
N-2007 Kjeller
Norway

The adaptive mesh refinement part of amrclaw was written by

Marsha Berger
Courant Institute, NYU
251 Mercer St.
New York, NY 10012

Acknowledgements.

Numerous students and other users have contributed towards this software, by finding bugs, sug-
gesting improvements, and exploring its use on new applications.

Development of this software has been supported in part by

NSF Grants DMS-8657319, DMS-9204329, DMS-9303404, and DMS-9505021, DMS-96226645,
DOE Grants DE-FG06-93ER25181, DE-FG03-96ER25292, DE-FG02-88ER25053,

DE-FG02-92ER25139,
AFOSR grant F49620-94-0132,
The Norwegian Research Council (NFR) through the program no. 101039/420.
The Scientific Computing Division at the National Center for Atmospheric Research (NCAR).

Copyright and Usage Restrictions:

This software is made available for research and instructional use only. You may copy and use
this software without charge for these non-commercial purposes, provided that the copyright notice
and associated text is reproduced on all copies. For all other uses (including distribution of modified
versions), please contact the authors.

This software is made available ”as is” without any assurance that it will work for your purposes.
The software may in fact have defects, use the software at your own risk.



Contents

1 The basic clawpack software 5
1.1 Version 4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Problem format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Obtaining clawpack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Local users at amath.washington.edu . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 From the web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.3 Anonymous ftp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Getting started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.1 Creating the directories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.2 Environment variables for the path . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.3 Compiling the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.4 Makefiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5.5 matlab graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 A guide through example1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6.1 The main program (driver.f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6.2 The initial conditions (qinit.f) . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.3 The claw1ez routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.5 The Riemann solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6.6 Other user-supplied routines and files . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.7 The input file claw1ez.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Auxiliary arrays and setaux.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.8 An acoustics example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.9 Two space dimensions (claw2ez.f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9.1 Riemann solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.10 Three space dimensions (claw3ez.f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.11 Plotting results with matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.12 Other applications in claw/applications . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Adaptive Mesh Refinement and amrclaw 21
2.1 The input file amr2ez.data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Plotting results with matlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 The adaptive algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5 Error estimation and regridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.6 Comments and warnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



4 CONTENTS



Chapter 1

The basic clawpack software

CLAWPACK (Conservation LAWs PACKage) is a package of Fortran subroutines for solving time-dependent
hyperbolic systems of partial differential equations in 1, 2, and 3 space dimensions. This includes non-
linear systems of conservation laws, but one can also solve nonconservative hyperbolic systems and
systems with variable coefficients, as well as systems including source terms.

1.1 Version 4.0

This version is still being developed. Check the webpage
http://www.amath.washington.edu/ claw/changes.html for recent changes, particularly if you are using
the version on the amath system and your code stops working.

The basic clawpack algorithms in Version 4.0 are the same as in previous versions. The primary
differences are:

• A new set of routines claw1ez, claw2ez, claw3ez are included which should make it easier to
apply clawpack to standard problems. These driver routines read in parameters from a data
file that is assumed to be in a standard form and make the appropriate call to the clawpack

routines. It is still possible to call the lower-level clawpack routine directly as before, although
the calling sequences have changed slightly.

• When using the ez routines, it is assumed that the user-supplied subroutines have standard names,
e.g., the one-dimensional Riemann solver should be called rp1, since these names are no longer
passed in by the user.

• Subroutines setprob and setaux are assumed to exist, which set up problem-specific parameters
and the aux array respectively. Versions in the library which do nothing can be used if these are
not needed.

• A new routine b4step1 is assumed to exist by the routine claw1 (even if claw1ez is not being
used). This routine is called every time step before the routine step1 is called. Similarly in two
dimensions.

• Output is produced in a standard format which can be used by a set of matlab routines for
graphical display, called plotclaw1 and plotclaw2.

• The adaptive mesh refinement code amrclaw is now included and has been modified to expect
essentially the same input and user subroutines as clawpack. Output produced by amrclaw is
in the same format and can be viewed with the same set of matlab routines. This makes it very
easy to convert a code running in clawpack to use the adaptive mesh refinement version.

5

http://www.amath.washington.edu/~claw/changes.html


6 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

1.2 References

The one- and two-dimensional wave-propagation algorithms are described in the paper [?]. Familiarity
with this paper is assumed. The three-dimensional algorithms are developed and analyzed in [?]. The
ideas are presented for the relatively simple case of the advection equation in two and three dimensions
in [?]. Other papers where these algorithms are described or further developed include [?], [?], [?].

The adaptive mesh refinement implemented in the amrclaw routines were developed with Marsha
Berger, based on her work on adaptive refinement for conservation laws, particularly the Euler equa-
tions, [?], [?], [?]. Some of the issues involved in coupling these codes together with clawpack, and
generalizing them to allow nonconservative systems, can be found in the paper [?].

Please cite the relevant paper(s) in publications where clawpack has been used.

1.3 Problem format

In one space dimension, the routine claw1 can be used to solve a system of equations of the form

κ(x)qt + f(q)x = ψ(q, κ) (1.1)

where q = q(x, t) ∈ lRm. The standard case of a homogeneous conservation law has κ ≡ 1 and ψ ≡ 0,

qt + f(q)x = 0. (1.2)

The flux function f(q) can also depend explicitly on x and t as well as on q. Hyperbolic systems
that are not in conservation form, e.g.,

qt +A(q, x, t)qx = 0, (1.3)

can also be solved.
The basic requirement on the homogeneous system is that it be hyperbolic in the sense that a

Riemann solver can be specified that, for any two states Qi−1 and Qi, returns a set of Mw waves Wp
i

and speeds λpi satsifying

Mw∑
p=1

Wp
i = Qi −Qi−1 ≡ ∆Qi.

The Riemann solver must also return a left-going fluctuation A−∆Qi and a right-going fluctuation
A+∆Qi. In the standard conservative case (1.2),

A−∆Qi +A+∆Qi = f(Qi)− f(Qi−1) (1.4)

must be satisfied, and the fluctuations define a “flux-difference splitting”. Typically

A−∆Q =
∑
p

(λpi )
−Wp

i , A+∆Q =
∑
p

(λpi )
+Wp

i , (1.5)

where λ− = min(λ, 0) and λ+ = max(λ, 0). In the nonconservative case (1.3), there is no “flux function”
f(q), and the constraint (1.4) need not be satisfied.

Only the fluctuations are used for the first-order Godunov method, which is implemented in the
form

Qn+1
i = Qni −

∆t
∆x

[
A+∆Qi +A−∆Qi+1

]
, (1.6)

assuming κ ≡ 1. The waves and speeds are used for high-resolution methods, which take the form

Qn+1
i = Qni −

∆t
∆x

[
A+∆Qi +A−∆Qi+1

]
− ∆t

∆x
(F̃i+1 − F̃i) (1.7)



1.4. OBTAINING CLAWPACK 7

where

F̃i =
1
2

m∑
p=1

|λp|
(

1− ∆t
∆x
|λp|

)
W̃p
i . (1.8)

Here W̃p
i represents a limited version of the wave Wp

i , obtained by comparing Wp
i to Wp

i−1 if λp > 0 or
to Wp

i+1 if λp < 0.
When a capacity function κ(x) is present, the Godunov method becomes

Qn+1
i = Qni −

∆t
κi∆x

[
A+∆Qi +A−∆Qi+1

]
, (1.9)

See [?] for discussion of this algorithm and its extension to the high-resolution method.
The Riemann solver must be supplied by the user in the form of a subroutine rp1. If applicable, a

routine src1 must also be supplied that solves the source term equation qt = ψ(q, κ) over a time step
A fractional step method is used to couple this with the homogeneous solution. Boundary conditions
are imposed by setting values in ghost cells each time step. A few standard boundary conditions are
implemented in a library routine, but this can be modified to impose other conditions.

In two space dimensions, the general form is

κ(x, y)qt +A(q, x, y, t)x +B(q, x, y, t)y = ψ(q, κ), (1.10)

where q(x, y, t) ∈ lRm. The comments above for the one-dimensional case apply in general in two
dimensions as well. In two dimensions it is necessary to provide two Riemann solvers, rpn2 and rpt2,
one in the direction normal to the interface and the other in the transverse direction. See [?].

The equations (1.10) are solved on a uniform Cartesian grid, but more general curvilinear grids can
be handled if there is a smooth coordinate transformation to a uniform grid. The capacity function
κ(x, y) is then used for the Jacobian of the grid mapping.

1.4 Obtaining clawpack

The discussion here assumes you are using the Unix operating system. The Unix prompt is denoted by
unix>.

1.4.1 Local users at amath.washington.edu

If you are running on the Applied Math computer system at the University of Washington, you can find
everything mentioned below in the directory ~claw. You will have to copy an application directory
(e.g., claw/clawpack/1d/example1) over to your account in order to run the code and produce output,
but you can refer to the library routines from claw/clawpack/1d/lib without having to copy over
everything.

1.4.2 From the web

The easiest way to download clawpack is probably from the web, at
http://www.amath.washington.edu/ claw/ Go to “download software” and select the portion you wish
to obtain. At a minimum, to get started with the one-dimensional routines you will need

claw/clawpack/1d

You might want to also download the 2d and 3d versions at this time, in which case you can select all
of

claw/clawpack

http://www.amath.washington.edu/~claw/


8 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

If you plan to use matlab to plot results, some useful scripts are in

claw/matlab

Other plotting packages can also be used, but you will have to figure out how to properly read in the
solution produced by clawpack.

The basic clawpack directories 1d, 2d, and 3d each contain one or two examples in directories such
as

claw/1d/example1

which illustrate the basic use of clawpack.
Various applications of clawpack can be found in

claw/applications.

See Section ?? for a partial list, or consult the web for the current list.

1.4.3 Anonymous ftp

If you have trouble obtaining these files using a web browser, they are also available by anonymous ftp
from amath.washington.edu:

unix> ftp amath.washington.edu
[ log in as anonymous ]
ftp> cd pub/claw
ftp> get claw1d.tar.gz
ftp> quit

1.5 Getting started

1.5.1 Creating the directories

The files you download will be gzipped tar files. If you download the 1d files, for example, you will
obtain the file claw1d.tar.gz and you need to execute the commands

unix> gunzip claw1d.tar
unix> tar -xvf claw1d.tar

This will create a directory claw and the appropriate subdirectories, or add to claw if it already exists.
Make sure you are in the directory where you want claw to appear. You should now have a directory
named <path>/claw where <path> is the pathname to this directory which depends on where you put
it and the local naming conventions on you file system.

1.5.2 Environment variables for the path

You should now set the environment variable CLAW in Unix so that the proper files can be found:

unix> setenv CLAW <path>/claw

For example, if you are working on the AMath system, you can type

unix> setenv CLAW /home/claw

(You might want to put this line in your .cshrc file so it will automatically be executed when you
login or create a new window.) Now you can refer to $CLAW/clawpack/1d, for example, and reach the
correct directory.



1.6. A GUIDE THROUGH EXAMPLE1 9

1.5.3 Compiling the code

Go to the directory claw/clawpack/1d/example1. There is a file in this directory named compile,
which should be executable so that you can type

unix> compile

This should invoke f77 to compile all the necessary files and create an executable called xclaw. To run
the program type

unix> xclaw

and the program should run, producing output files that start with fort. In particular, fort.q0000
contains the initial data and fort.q0001 the solution at the first output time. The file fort.info has
some information about the performance of clawpack.

1.5.4 Makefiles

The compile file simply compiles all of the routines needed to run clawpack on this example. This is
simple but if you make one small change in one routine then everything has to be recompiled. Instead
it is generally easier to use a Makefile which specifies what set of object files (ending with .o) are
needed to make the executable, and which fortran files (ending with .f) are needed to make the object
files. If a fortran file is changed then it is only necessary to recompile this one rather than everything.
This is done simply by typing

unix> make

A complication arises since the example1 directory only contains a few of the necessary fortran
files, the ones specific to this particular problem. All the standard clawpack files are in the directory
claw/clawpack/1d/lib. You should first go into that directory and type make to create the object files
for these library routines. This only needs to be done once if these files are never changed. Now go to
the example1 directory and also type make. Again an executable named xclaw should be created. See
the comments at the start of the Makefile for some other options.

1.5.5 matlab graphics

If you wish to use matlab to view the results, you should download the directory claw/matlab and
then set the environment variable

unix> setenv MATLABPATH ".:$CLAW/matlab"

before starting matlab, in order to add this directory to your matlab search path. This directory
contains the plotting routines plotclaw1.m and plotclaw2.m for plotting results in 1 and 2 dimensions
respectively.

With matlab running in the example1 directory, type

Matlab> plotclaw1

to see the results of this computation. You should see a pulse advecting to the right with velocity 1,
and wrapping around due to the periodic boundary conditions applied in this example.

1.6 A guide through example1

The program in claw/clawpack/1d/example1 solves the advection equation

qt + uqx = 0



10 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

with constant velocity u = 1 and initial data consisting of a Gaussian hump

q(x, 0) = exp(−β(x− 0.3)2). (1.11)

The parameters u = 1 and β = 200 are specified in the file data.problem. These values are read in by
the routine setprob.f described in Section ??

1.6.1 The main program (driver.f)

The main program is located in the file driver.f. It simply allocates storage for the arrays needed in
clawpack and then calls claw1ez, described below. Several parameters are set and used to declare
these arrays. The proper values of these parameters depends on the particular problem. They are:

maxmx: The maximum number of grid cells to be used. (The actual number mx is later read in from the
input file claw1ez.data and must satisfy mx ≤ maxmx.)

meqn: The number of equations in the hyperbolic system, e.g., meqn = 1 for a scalar equation, meqn =
2 for the acoustics equations in one dimension, etc.

mwaves: The number of waves produced in each Riemann solution. Often mwaves = meqn but not
always.

mbc: The number of “ghost cells” used for implementing boundary conditions, as described in Sec-
tion ??. Setting mbc = 2 is sufficient unless changes have been made to the clawpack software
resulting in a larger stencil.

mwork: A work array of dimension mwork is used internally by clawpack for various purposes. How
much space is required depends on the other parameters:

mwork ≥ (maxmx + 2*mbc) * (2 + 3*meqn + mwaves + meqn*mwaves)

If the value of mwork is set too small, clawpack will halt with an error message telling how much
space is required.

maux: The number of “auxiliary” variables needed for information specifying the problem, which is
used in declaring the dimensions of the array aux (see below).

Three arrays are declared in driver.f:

q(1-mbc:maxmx+mbc, meqn): This array holds the approximation Qni (a vector with meqn components)
at each time tn. The value of i ranges from 1 to mx where mx <= maxmx is set at run time from
the input file. The additional “ghost cells” numbered (1-mbc):0 and (mx+1):(mx+mbc) are used
in setting boundary conditions.

work(mwork): Used as work space.

aux(1-mbc:maxmx+mbc, maux): maux > 0: This array is used to hold auxiliary variables used to define
a particular problem. For example, in a variable-coefficent advection problem the velocity
at xi−1/2 might be stored in aux(i,1). See Section ?? for an example and more discussion.

maux = 0: There are no auxiliary variables and aux can simply be declared as a scalar or not
declared at all since this array will not be referenced.



1.6. A GUIDE THROUGH EXAMPLE1 11

1.6.2 The initial conditions (qinit.f)

The subroutine qinit.f sets the initial data in the array q. For a system with meqn components,
q(i,m) should be initialized to a cell average of the m’th component in the i’th grid cell. In the data is
given by a smooth function then it may be simplest to simply evaluate this function at the center of the
cell, which agrees with the cell average to O((∆x)2). The left edge of the cell is at xlower + (i-1)*dx
and the right edge is at xlower + i*dx. It is only necessary to set values in cells i = 1:mx, not in the
ghost cells. The values of xlower, dx, and mx are passed into qinit.f, having been set in claw1ez.

1.6.3 The claw1ez routine

The main program driver.f sets up array storage and then calls the subroutine claw1ez, which is
located in claw/clawpack/1d/lib, along with other standard clawpack subroutines described below.
The claw1ez routine provides an easy way to use clawpack which should suffice for many applications.
It reads input data from a file claw1ez.data, which is assumed to be in a standard form described below.
It also makes other assumptions about what the user is providing and what type of output is desired.
After checking the inputs for consistency, claw1ez calls the clawpack routine claw1 repeatedly to
produce the solution at each desired output time.

The claw1 routine (located in claw/clawpack/1d/lib/claw1.f) is much more general and can be
called directly by the user if more flexibility is needed.

1.6.4 Boundary conditions

Boundary conditions must be set in every time step and claw1 calls a subroutine bc1 in every step to
accomplish this. The manner in which this is done is described in Section ??. For many problems the
choice of boundary conditions provided in the default routine claw/clawpack/1d/lib/bc1.f will be
sufficient. For other boundary conditions the user must provide an appropriate routine. This can be
done by copying the bc1.f routine to the application directory and modifying it to insert the appropriate
boundary conditions at the points indicated.

When using claw1ez, the claw1ez.data file contains parameters specifying what boundary condi-
tion is to be used at each boundary (see Section ?? where the mthbc array is described).

1.6.5 The Riemann solver

The file claw/clawpack/1d/example1/rp1ad.f contains the Riemann solver, a subroutine which should
be named rp1 if claw1ez is used. (More generally the name of the subroutine can be passed as an
input to claw1). The Riemann solver is the crucial user-supplied routine which specifies the hyperbolic
equation being solved. The input data consists of two arrays ql and qr. The value ql(i,:) is the value
QLi at the left edge of the i’th cell, while qr(i,:) is the value QRi at the right edge of the i’th cell,
as indicated in Figure 1.1. Normally ql = qr and both values agree with Qni , the cell average. More
flexibility is allowed because in some applications, or in adapting clawpack to implement different
algorithms, it is useful to allow different values at each edge. For example, we might want to define
a piecewise linear function within the grid cell as illustrated in Figure 1.1 before solving the Riemann
problems. Also, in the adaptive mesh refinement algorithms of amrclaw this feature is needed in
applying corrections at the edges of refined patches (see [?]).

Note that the Riemann problem at the interface xi−1/2 between cells i− 1 and i has data

left state: QRi−1 = qr(i− 1, :)

right state: QLi = ql(i, :).
(1.12)

This notation is rather confusing since normally we use ql to denote the left state and qr to denote
the right state in specifying Riemann data. The routine rp1 must solve the Riemann problem for each
value of i, and return the following:



12 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

Figure 1.1: The states used in solving the Riemann problem at the interface xi−1/2.

amdq(i,1:meqn) The vector A−∆Qi containing the left-going fluctuation.

apdq(i,1:meqn) The vector A+∆Qi containing the right-going fluctuation.

wave(i,1:meqn,p) The vectorWp
i−1/2 representing the jump in q across the p’th wave in the Riemann

solution at xi−1/2, for p = 1, 2, ..., mwaves. (In the code mw is used in place of p.)

s(i,p) The wave speed λpi−1/2 for each wave.

For Godunov’s method, only the fluctuations amdq and apdq are actually used, and the update
formula (1.6) is employed. The waves and speeds are only used for high-resolution correction terms
(1.8).

For the advection equation, the Riemann solver in example1 returns

wave(i, 1, 1) = ql(i)− qr(i− 1)
s(i, 1) = u

amdq(i, 1) = min(u, 0)∗wave(i, 1, 1)
apdq(i, 1) = max(u, 0)∗wave(i, 1, 1)

Sample Riemann solvers for a variety of other applications can be found in claw/book and claw/applications.
Often these can be used directly rather than writing a new Riemann solver.

1.6.6 Other user-supplied routines and files

setprob.f The claw1ez routine always calls setprob at the beginning of execution. The user can
provide a subroutine which sets any problem-specific parameters or does other initialization. For
the advection problem solved in example1, this is used to set the advection velocity u. This value
is stored in a common block so that it can be passed into the Riemann solver, where it is required.
The parameter beta is also set and passed into the routine qinit.f for using in setting the initial
data according to (1.11).

When claw1ez is used, a setprob subroutine must always be provided. If there is nothing to be
done, the default subroutine claw/clawpack/1d/lib/setprob.f can be used, which does nothing
but return.

setaux.f The claw1ez routine calls a subroutine setaux before the first call to claw1. This routine
should set the array aux to contain any necessary data used in specifying the problem. For the
example in example1 no aux array is used (maux = 0 in driver.f) and the default subroutine
claw/clawpack/1d/lib/setaux.f is specified in the Makefile. This routine does nothing but
return.

b4step1.f The routine claw1 calls b4step1 just before every call to step1. This routine can be
supplied by the user to perform any actions that are desired at the start of every time step. For
example, if the aux array contains variable coefficients which are time dependent, they will have
to be reset every timestep and this can be done in the b4step1 routine. In some applications it
may be desirable to print out the value of the solution at some point every time step (e.g., at
one of the boundaries) and this routine could also be used for this purpose. Note: If a time
step must be retaken with a smaller ∆t when using variable time steps (method(1)=1) then the
routine b4step1 will be called again at the same time before this new step. The default subroutine
claw/clawpack/1d/lib/b4step1.f does nothing but return.



1.6. A GUIDE THROUGH EXAMPLE1 13

1.6.7 The input file claw1ez.data

The claw1ez routine reads data from a file named claw1ez.data. Figure 1.2 shows the file from
example1. Typically one value is read from each line of this file. Any text following this value on each
line is not read and is there simply as documentation. The values read are:

mx: The number of grid cells for this computation. (Must have mx < maxmx, where maxmx is set in
driver.f.)

nout: Number of output times at which the solution should be written out.

outstyle: There are three possible ways to specify the output times. This parameter selects the desired
manner to specify the times, and affects what is required next.

outstyle = 1: The next line contains a single value tfinal. The computation should proceed
to this time and the nout outputs will be at times (tfinal - t0)/nout, where the initial
time t0 is set below.

outstyle = 2: The next line(s) contain a list of nout times at which the outputs are desired.
The computation will end when the last of these times is reached.

outstyle = 3: The next line contains two values
nstepout, nsteps

A total of nsteps time steps will be taken, with output after every nstepout time steps.
This is most useful if you want to insure that time steps of maximum length are always taken
with a desired Courant number. With the other output options the time steps are adjusted
to hit the desired times exactly. With this option, the value of nout is ignored.

dtv(1): The initial value of ∆t used in the first time step. If method(1) = 0 below, then fixed size
time steps are used and this is the value of ∆t in all steps. In this case ∆t must divide the time
increment between all requested outputs an integer number of times.

dtv(2): The maximum time step ∆t to be allowed in any step (in the case where method(1) = 1 and
variable ∆t is used). Variable time steps are normally chosen based on the Courant number,
and this value can simply be set to some very large value so that it has no effect. For some
problems, however, it may be necessary to restrict the time step to a smaller value based on other
considerations, e.g., the behavior of source terms in the equations.

cflv(1): The maximum Courant number to be allowed. The Courant number is calculated after all
the Riemann problems have been solved by determining the maximum wave speed seen. If the
Courant number is no larger than cflv(1) then this step is accepted. If the Courant number is
larger, then:

method(1)=0: (fixed time steps), the calculation aborts.

method(1)=1: (variable time steps), the step is rejected and a smaller time step is taken.

Usually cflv(1) = 1 can be used.

cflv(2): The desired Courant number for this computation. Used only if method(1)=1 (variable time
steps). In each time step, the next time increment ∆t is based on the maximum wave speed found
in solving all Riemann problems in the previous time step. If the wave speeds do not change
very much then this will lead to roughly the desired Courant number. It’s typically best to take
cflv(2) to be slightly smaller than cflv(1), say cflv(2) = 0.9.

nv(1): The maximum number of time steps allowed in any single call to claw1. This is provided as a
precaution to avoid too-lengthy runs.

method(1): Tells whether fixed or variable size time steps are to be used.



14 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

method(1) = 0: A fixed time step of size dtv(1) will be used in all steps.

method(1) = 1: clawpack will automatically select the time step as described above based on
the desired Courant number.

method(2): The order of the method.

method(2) = 1: The first-order Godunov’s method is used.

method(2) = 2: High-resolution correction terms are also used.

method(3): This parameter is not used in one space dimension. In two and three dimensions it is used
to further specify what correction terms are applied, and for dimensional splitting.

method(4): This controls the amount of output printed on the screen as clawpack progresses.

method(4) = 0: No output.

method(4) = 1: Every time step the value ∆t and Courant number are reported.

method(5): Tells whether there is a source term in the equation. If so, then a fractional step method
is used. Time steps on the homogeneous hyperbolic equation are alternated with time steps on
the source term. The solution operator for the source terms must be provided by the user in the
routine src1.f.

method(5) = 0: There is no source term. In this case the default routine claw/clawpack/1d/lib/src1.f
can be used which does nothing, and in fact this routine will never be called.

method(5) = 1: A source term is specified in src1.f and the “first order (Godunov)” fractional
step method should be used.

method(5) = 2: A source term is specified in src1.f and a Strang splitting is used.

The Godunov splitting is generally recommended rather than the Strang splitting.

method(6): Tells whether there is a “capacity function” in the equation.

method(6) = 0: No capacity function, κ ≡ 1 in (??).

method(6) = mcapa > 0: There is a capacity function and the value of κ in the i’th cell is given
by aux(i,mcapa), i.e., the mcapa component of the aux array is used to store this function.
In this case “capacity-form differencing” is used, as described in [?].

method(7): Tells whether there are any auxiliary variables stored in an aux array.

method(7) = 0: No auxiliary variables. In this case the array aux is not referenced and can be a
dummy variable.

method(7) = maux > 0: There is an aux array with maux components. In this case the array
must be properly declared in driver.f.

Note that we must always have maux ≥ mcapa. The value of method(7) specified here must
agree with the value of maux set in driver.f.

meqn: The number of equations in the hyperbolic system. This is also set in driver.f and the two
should agree.

mwaves: The number of waves in each Riemann solution. This is typically equal to meqn but need not
be. This is also set in driver.f and the two should agree.

mthlim(1:mwaves): The limiter to be applied in each wave family. Several different limiters are pro-
vided in clawpack



1.7. AUXILIARY ARRAYS AND SETAUX.F 15

mthlim(mw) = 0: No limiter (“Lax-Wendroff”)

mthlim(mw) = 1: Minmod

mthlim(mw) = 2: Superbee

mthlim(mw) = 3: van Leer

mthlim(mw) = 4: MC (monotonized centered)

Other limiters are easily added by modifying the routine lib/philim.f.

t0: The initial time.

xlower: The left edge of the computational domain.

xupper: The right edge of the computational domain.

mbc: The number of ghost cells used for setting boundary conditions. Usually mbc = 2 is used. See
Section ??.

mthbc(1): The type of boundary condition to be imposed at the left boundary. See Section ?? for
more description of these and how they are implemented. The following values are recognized:

mthbc(1) = 0: The user will specify a boundary condition. In this case you must copy the
file claw/clawpack/1d/lib/bc1.f to your application directory and modify it to insert the
proper boundary conditions in the location indicated.

mthbc(1) = 1: Zero-order extrapolation.

mthbc(1) = 2: Periodic boundary conditions. In this case you must also set mthbc(2) = 2.

mthbc(1) = 3: Solid wall boundary conditions. This set of boundary conditions only makes
sense for certain systems of equations, such as acoustics, Euler equations, shallow water.

mthbc(2): The type of boundary condition to be imposed at the right boundary. The same values are
recognized as described above.

1.7 Auxiliary arrays and setaux.f

The array q(i,1:meqn) contains the finite-volume solution in the i’th grid cell. Often other arrays
defined over the grid are required to specify the problem in the first place. For example, in a variable-
coefficient advection problem

qt + u(x)qx = 0

the Riemann solution at any cell interface xi−1/2 depends on the velocities ui−1 and ui. The aux array
can be used to store these values and pass them into the Riemann solver. In the advection example we
need only one auxiliary variable so maux = 1 and we store the velocity ui in aux(i,1).

Of course one could hard-wire the specific function u(x) into the Riemann solver or pass it in using
a common block, but the use of the auxiliary arrays gives a uniform treatment of such data arrays. This
is useful in particular when adaptive mesh refinement is applied, in which case there are many different
q grids covering different portions of the computational domain and it is very convenient to have an
associated aux array corresponding to each.

The claw1ez routine always calls a subroutine setaux before beginning the computation. This
routine, normally stored in setaux.f, should set the values of all auxiliary arrays. If maux = 0 then
the default routine claw/clawpack/1d/lib/setaux.f can be used which does nothing.



16 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

50 mx = cells in x direction

11 nout = number of output times to print results
1 outstyle = style of specifying output times
2.2d0 tfinal = final time

0.1d0 dtv(1) = initial dt (used in all steps if method(1)=0)
1.0d99 dtv(2) = max allowable dt
1.0d0 cflv(1) = max allowable Courant number
0.9d0 cflv(2) = desired Courant number
500 nv(1) = max number of time steps per call to claw1

1 method(1) = 1 for variable dt
2 method(2) = order
0 method(3) = not used in one dimension
1 method(4) = verbosity of output
0 method(5) = source term splitting
0 method(6) = mcapa
0 method(7) = maux (should agree with parameter in driver)

1 meqn = number of equations in hyperbolic system
1 mwaves = number of waves in each Riemann solution
3 mthlim(mw) = limiter for each wave (mw=1,mwaves)

0.d0 t0 = initial time
0.0d0 xlower = left edge of computational domain
1.0d0 xupper = right edge of computational domain

2 mbc = number of ghost cells at each boundary
2 mthbc(1) = type of boundary conditions at left
2 mthbc(2) = type of boundary conditions at right

Figure 1.2: A typical claw1ez.data file, from claw/clawpack/1d/example1 for advection.



1.8. AN ACOUSTICS EXAMPLE 17

1.8 An acoustics example

The directory claw/clawpack/1d/example2 contains a sample code for the constant-coefficient acous-
tics equations

pt +Kux = 0
ρut + px = 0.

(1.13)

The parameters ρ and K are the density and bulk modulus of the material, respectively. The variables
p and u are the pressure perturbation and velocity in an acoustic wave. The value of the density and
bulk modulus are set in setprob.f (where they are read in from a data file setprob.data). In this
routine the sound speed c and impedance Z = ρc are also computed and passed to the Riemann solver
in a common block, since these are used in the eigenvalues and eigenvectors:

λ1 = −c, λ2 = c

r1 =
[
−Z
1

]
, r2 =

[
Z
1

]
.

(1.14)

To plot the results in matlab, again use plotclaw1. Note that when prompted “Which component
of q?”, you can respond with either 1 or 2 to view the pressure or velocity respectively, or with the
entire range 1:2 to view both together.

1.9 Two space dimensions (claw2ez.f)

In two space dimensions the programs in claw/clawpack/2d are organized in roughly the same was as in
claw/clawpack/1d. An example can be found in claw/clawpack/2d/example1, which uses the routine
claw/clawpack/2d/lib/claw2ez.f to solve a nonlinear scalar equation in two dimensions. The data
file claw2ez.data is very similar to the one-dimensional data files with a few additional parameters:

my: The number of grid cells in the y-direction for this computation. (Must have my < maxmy, where
maxmy is set in driver.f.)

method(3): If this parameter is negative then dimensional splitting is used.

method(3) = -1: Dimensional splitting with the Godunov splitting. In each step an x-sweep is
applied and then a y-sweep.

method(3) = -2: Dimensional splitting with the Strang splitting. In each step an x-sweep is
applied with time step ∆t/2, then a y-sweep with time step ∆t, and finally another x-sweep
is applied with time step ∆t/2. In most cases this is not recommended.

If method(3) is nonnegative, then the unsplit algorithm is used. In this case this parameter
indicates what type of transverse propagation is applied, as described in [?]:

method(3) = 0: No transverse propagation.
method(3) = 1: Transverse propagation of increment waves only.
method(3) = 2: Transverse propagation of correction waves also.

ylower: The bottom edge of the computational domain.

yupper: The top edge of the computational domain.

mthbc(3): The type of boundary condition to be imposed at the bottom boundary. The same values
are recognized as described above for mthbc(1).

mthbc(4): The type of boundary condition to be imposed at the top boundary. The same values are
recognized as described above for mthbc(1).



18 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE

1.9.1 Riemann solvers

Two Riemann solvers must now be provided, as described in [?].

rpn2: Solves the Riemann problem normal to a cell interface, analogous to rp1. The clawpack routine
flux2 calls this routine repeatedly with a single slice of data along a row or column of grid cells in
the two-dimensional domain. The parameter ixy indicates whether the slice is in the x-direction
or in the y-direction:

ixy = 1: Slice is in the x-direction and this routine should return the solution to the Riemann
problem qt +A(q, x, y, t)x = 0 from (1.10).

ixy = 2: Slice is in the y-direction and this routine should return the solution to the Riemann
problem qt +B(q, x, y, t)y = 0 from (1.10).

rpt2: Solves the Riemann problem in the transverse direction. The input is an array asdq along a slice
of the grid, where asdq represents one of the fluctuations amdq or apdq which came out of the
normal Riemann solver rpn2. This fluctuation must be split into an up-going portion bpasdq and
a down-going portion bmasdq. (Here “up” refers to larger values of i or j on the grid, “down” to
smaller values.)

Again the parameter ixy indicates whether the slice is in x or y. In addition, a parameter imp
indicates whether asdq represents amdq or apdq:

imp = 1: asdq represents amdq, the fluctuation which is propagating into the cell to the left of
the interface.

imp = 2: asdq represents apdq, the fluctuation which is propagating into the cell to the right of
the interface.

This information may be needed for problems with variable coefficients depending on x and y.
Such coefficients might be stored in the aux arrays. The slice of the aux array corresponding to
the slice of the grid on which we are currently working is passed into rpt2 in the array aux2. In
addition the slice from the row “below” is passed in aux1, and the slice from the row “above” is
passed in aux3. Values from the adjacent rows may be needed to compute the portion of asdq
which propagates up or down into the neighboring cells.

1.10 Three space dimensions (claw3ez.f)

The 3d codes haven’t been converted to the new form yet...

1.11 Plotting results with matlab

In one dimension use plotclaw1. In two dimensions use plotclaw2. These can be found in claw/matlab.
Various parameters used in these routines are initialized in the file setplot1.m or setplot2.m. If no

such file exists in the current directory, then the default file claw/matlab/setplot2.m is used. Values
can be changed by modifying this file, or by typing k at the plotclaw prompt and then entering a new
value.

See also Section ??.

1.12 Other applications in claw/applications

The applications directory is organized by particular application. Some of the current (??) subdirecto-
ries are:



1.12. OTHER APPLICATIONS IN CLAW/APPLICATIONS 19

advection — Advection equations

acoustics — Acoustics equations

elastic — Elasticity equations

traffic — Traffic flow equations

burgers — Burgers equation

euler — Euler equations of gas dynamics

isothermal — Isothermal equations of gas dynamics

shallow — Shallow water equations

These are typically further subdivided into 1d, 2d, and sometimes 3d, and then within each of these is
a subdirectory rp which contains the Riemann solver(s) and other subdirectories for solving particular
problems or classes of problems.

See claw/applications/index for a list of applications currently available.



20 CHAPTER 1. THE BASIC CLAWPACK SOFTWARE



Chapter 2

Adaptive Mesh Refinement and
amrclaw

clawpack 4.0 contains the adaptive mesh refinement routines of amrclaw developed with Marsha
Berger, based on her codes for the Euler equations. These have been extended to handle general
systems of equations based on Riemann solvers in exactly the same form as required by the basic
clawpack routines. Other user-supplied routines such as qinit.f, setprob.f, setaux.f and source
term routines also have exactly the same form as in clawpack.

The boundary condition routine which sets ghost cell values is slightly more complicated for am-

rclaw, as described in Section ??, but the standard boundary conditions handled automatically in
clawpack (extrapolation, periodic, solid walls) are also implemented in amrclaw in such a way that
the user need only specify appropriate values for the mthbc array in the data file, just as in clawpack

(see Section ??.
As a result, it should be quite easy to convert a running clawpack code to amrclaw and take

advantage of adaptive mesh refinement. In simple cases only the input data file an the Makefile need
to be changed. Currently amrclaw is available only in two space dimensions. A three-dimensional
version is being developed.

The basic two-dimensional routines can be found in claw/amrclaw/2d/lib. You must first do a
make in this directory in order to create .o files for each library routine. For an example of the use
of amrclaw see the directory claw/clawpack/2d/example1/amr. This soves the same problem as in
claw/clawpack/2d/example1 but with adaptive refinement. To use this code you will need to do a make
first in claw/amrclaw/2d/lib and in claw/clawpack/2d/example1 and then in this directory. This
produces an executable xamr. Results can again be viewed in matlab using the plotclaw2 script (see
Section ??). Note that there are no user-supplied fortran routines in these directories; the Makefiles
refer to the routines in the directory above.

2.1 The input file amr2ez.data

The input data file is different and is now called amr2ez.data. This has essentially the same form as the
claw2ez.data file used by claw2ez, but for the adaptive routines some additional parameters must be
specified. An example file is shown in Figure 2.1 and continued in Figure 2.2. The parameters mxnest
and inrat and all those from iousr onwards are required only in the amr2ez.data file. Deleting these
lines would produce the corresponding claw2ez.data file.

21



22 CHAPTER 2. ADAPTIVE MESH REFINEMENT AND AMRCLAW

The new parameters needed by amrclaw are as follows:

mxnest: Maximum number of levels of grid refinement. mxnest = 1 means a single uniform grid will
be used.

inrat(1:mxnest): Refinement ratios for each level. Grids at Level 2 will be finer than the Level 1
grid by a factor of inrat(1) in both x and y. In general grids at Level L will be finer than grids
at level L-1 by a factor inrat(L-1). Only the first mxnest-1 components of inrat are actually
used, but mxnest components are read so that this line can remain in the input file even if mxnest
is set to 1. Each refinement ratio must be an even integer. Values 2 or 4 are typically used.

auxtype(1:maux): If maux > 0 then for each component of the auxiliary a type must be specified from
the following list, depending on what the corresponding component of aux represents:

"leftedge" a value associated with the left edge of the cell.
"bottomedge" a value associated with the bottom edge of the cell.
"center" a cell-centered value.
"capacity" a cell-centered capacity function.

At most one component may have the type "capacity" and the value of mcapa should be set in a
consistent manner. This component is used as a capacity function in capacity-form differencing.

The auxtype array is required for adaptive refinement because auxiliary arrays must be handled
slightly differently at refinement boundaries depending on how these values are used.

iousr: A checkpoint file is dumped every iousr time steps on the coarse grid. These are binary files
with names of the form fort.chkSNUM where SNUM is the step number. The solution and grid
structure is output in a form that can be used to later restart the calculation from this point.
This is useful when doing long runs in case the computer goes down or the algorithm fails at some
point in the calculation. It is also useful if you want to go to some large time and then start doing
frequent outputs in order to examine the time-evolution of the solution more carefully.

In addition to creating a checkpoint file every iousr time steps, a final checkpoint file is created
at the end of the computation. This can be used to restart the calculation from the final time if
you wish to evolve it further.

irest: If irest = T then a restart is performed. Information read in from the file restart.data is
used to resume a previous calculation. This file should be copied from a checkpoint file created
in the previous calculation.

When a restart is performed, other parameters in this amr2ez.data file should be consistent with
values used in the previous calculation, with some exceptions:

• The number of time steps requested nstop or the output times requested tout(1:nout) now
refer to the new calculation.

• The maximum number of refinement levels mxnest can be larger than the number of levels
previous used, but not smaller.

• Parameters specifying the method to use, method(1:7), mthlim, mthbc, can be changed.

tol: Tolerance used in flagging grid cells which need to be refined. An estimate of the truncation error
is computed and compared with this value. See Section ??. Smaller values will lead to more
refinement.

tolsp: Another tolerance used in flagging grid cells which need to be refined. This is used in checking
the magnitude of the spatial gradient.

kcheck: Error estimation and regridding is performed every kcheck time steps.



2.2. BOUNDARY CONDITIONS 23

ibuff: Size of the buffer zone around flagged cells. Certain cells are flagged for refinement and then
clustered (see Section ??) into finer grids. In addition to the cells flagged by the error estimation,
all cells within ibuff cells of these are also flagged. This insures that structures in the solution
which require refinement will remain in the refined region for at least ibuff time steps, since the
Courant number must be no greater than 1. The value of ibuff should generally be consistent
with the value of kcheck.

cutoff: Parameter used in the clustering algorithm (see Section ??). Typically 0.7 is a good value.

PRINT option: If true, the solution values on all grids are output in the file fort.amr along with other
information about the time stepping. Usually not used except on very coarse grids for debugging
purposes.

NCAR graphics: If true, the solution is output in fort.ncar in a form suitable for NCAR graphics.

Matlab graphics: If true, the solution is output in the form suitable for viewing with plotclaw2 in
matlab.

Xprint: A number of other values can be set to T if you desire more output to be sent to fort.amr
describing each grid, indicating which points were flagged for refinement, etc. Used primarily for
debugging. An exception is tprint which is useful in general.

2.2 Boundary conditions

The boundary condition routine is somewhat more complicated for the adaptive code, since the edge of a
grid may not be at a physical boundary. A grid might be adjacent to other grids at the same refinement
level or to coarser grids. In either case the AMR routines automatically provide appropriate ghost
cell values. The routine claw/amrclaw/2d/lib/bc2amr.f sets boundary conditions at the physical
boundaries. It recognizes the same set of mthbc values as used in claw2ez, so that if these standard
boundary conditions (extrapolation, periodic, or solid walls) are desired the user need not worry about
this routine. To implement other boundary conditions, the bc2amr.f file can be copied to the user
directory and modified as described in the documentation and following the examples of these standard
boundary conditions.

2.3 Plotting results with matlab

The matlab routine plotclaw2 can be used for viewing the amrclaw output. Note that information
about Frame 1, for example, is stored in fort.t0001 and includes the value ngrids which tells how
many grids exist at this time. The file fort.q0001 contains the solution on each of these grids. The
data for each grid is preceeded by information about this grid: what level it is at and where the lower
left corner is located.

For plotting results from amrclaw the following parameters are useful. These are initialized in the
setplot2.m file in the current directory, or if there isn’t one then by the default file claw/matlab/setplot2.m.

PlotData(k): Data at Level k is plotted only if PlotData(k) > 0. If you want to quickly step through
many frames looking only at a course representation of the solution, this can be used to suppress
time-consuming plotting of the finer grids.

PlotGrid(k): For pcolor plots the grid lines will be plotted on grids at Levels k for which PlotGrid(k)
> 0. You may want to plot the grid lines on coarser grids but suppress them on finer grids where
they would obscure the data.

PlotGridEdge(k): Even if grid lines are not plotted, a box showing the location of each grid will be
plotted for grids at Levels k for which PlotGridEdge(k) > 0.



24 CHAPTER 2. ADAPTIVE MESH REFINEMENT AND AMRCLAW

2.4 The adaptive algorithm

This is a very brief description of the basic steps in adaptive time stepping. First suppose there are
only two grid levels. The algorithm proceeds as follows:

1. All grids at Level 1 (the coarse level) are advanced by the coarse time step. Often there is only
one grid at this level but since there is a limit on the size of each grid, the domain may be
automatically split into more than coarse grid. Before advancing at this level the bc2amr routine
is called to set ghost cells where needed.

2. All grids at Level 2 are advanced by inrat(1) time steps which are each smaller than the coarse
time step by a factor inrat(1). Time steps are refined in the same was as the grid spacing so
that the Courant number is roughly the same at all levels.

Before each time step, ghost cell values must be set. In general there are three types of ghost
cells:

(a) Those which lie within adjacent grids at Level 2, and the values are copied directly from the
adjacent grid,

(b) Those which lie within the physical domain but at a point where there is only a Level 1 grid.
At these points interpolation is used to set the value based on the coarser grid. Since we
have already advanced the coarse grid in time, we can use space-time interpolation to set an
appropriate value since this may be at an intermediate time between coarse time steps as at
an intermediate point relative to the coarse grid.

(c) Those which lie outside the physical domain. For these cells bc2amr must set the appropriate
value based on the physical boundary conditions.

An exception to Type (c) is when periodic boundary conditions are used. In this case the ghost cell
is of Type (a) or (b) depending on the grid structure at the opposite edge of the domain. Ghost
cells of Type (a) and (b) are handled automatically by amrclaw and the bc2amr routine must
only check whether a ghost cell lies outside the physical domain and handle this case properly.

3. Once all grids at Level 2 have been advanced to the same time as the Level 1 grids, the values on
the two sets of grids must be made consistent. For coarse grid cells which are covered by a fine
grid, the fine grid presumably contains more accurate information and so the coarse grid value is
replaced by the average of the fine grid values over all fine cells covering this coarse cell.

4. When a conservation law is being solved, we must insure that conservation is maintained. This
requires some modifications at the edges of the fine grids since different fluxes were used on the
fine grid than on the adjacent coarse grid. This is described in [?].

5. Every kcheck time steps on each level, error estimation and regridding is performed. This is done
as described in Section ??.

If there are more than 2 levels, then this same algorithm is applied recursively at each of the finer
levels. For every time step on Level 2, we take inrat(2) time steps on all Level 3 grids, and so on.

2.5 Error estimation and regridding

Every kcheck time steps on each level, the error is estimated at all cells on grids at this level. Cells
where the error is above some cutoff are flagged for refinement. The norm used to measure the error can
be adjusted, see below. The cells which have been flagged are then clustered into rectangular regions
to form grids at the next level. The clustering is done in light of the tradeoffs between a few large
grids (which usually means refinement of many additional cells which were not flagged) or many small



2.6. COMMENTS AND WARNINGS 25

grids (which typically results in fewer fine grid cells but more grids and hence more overhead and less
efficient looping over shorter rows of cells). The parameter cutoff in amr2ez.data is used to manage
this tradeoff, by requiring that at least this fraction of the fine grid cells were in cells flagged as needing
refinement. cutoff = 0.7 is usually reasonable.

Cells are flagged for refinement in errf1 by one of two possible mechanisms.

1. The spatial gradient of the solution in cell (i, j) is estimated by simply computing the values
q(i+1,j,m)-q(i-1,j,m) and q(i,j+1,m)-q(i,j-1,m) and maximixing over all components m.
A cell is flagged if this is greater than the parameter tolsp in amr2ez.data. This is done in
subroutine errsp where this norm could be adjusted (for example to only look at one particular
component of q or use a different norm).

2. A estimate of the error which would be incurred on the present grid is obtained by doing two
computations and comparing the errors:

• The equations are advanced by two time steps on the current grid with the current ∆t.
• The equations are advanced by one time step on a grid that is twice as coarse (half as many

points in each direction) with time step 2∆t.

Richardson extrapolation is then performed on these two solutions to obtain an estimate of the
error on the present grid at time 2∆t. Any cell where this estimate is above the value of tol
specified in amr2ez.data is flagged for refinement. This procedure is performed in errest and
the Richardson extrapolation is done in errf1. Coarsening by a factor of 2 is done rather than
refining since this is cheaper to perform. (For this reason the initial grid must have an even
number of cells in each direction.)

In general the Richardson extrapolation procedure should give a better indication of which cells
need refinement, but can fail in some cases and so the simple spatial gradient estimate is also used.

In the procedure errf1 it is indicated how to allow refinement at each level only in some regions
of the domain and not elsewhere. This is useful if you wish to zoom in on some structure in a known
location but don’t want the same level of refinement elsewhere. Points are flagged only if one of the
errors is greater than the corresponding tolerance and also allowed(x,y,level) has the value .true..

2.6 Comments and warnings

For many problems the adaptive code should work immediately when a clawpack code converted.
However, there are several subtleties of the adaptive refinement that can lead to problems. Here are
some comments on things to watch out for.

• Auxiliary arrays. Each time new grids are generated the routine setaux is called to set up
the corresponding auxiliary array (if maux > 0). In clawpack, setaux is called only once at the
initial time, but in amrclaw it is called for every new grid at each regridding time, so it should
be written in a manner that works in this more general context.

If any components of the auxiliary arrays are reset at each time in the subroutine b4step2, this
will happen automatically on the new grids before the first call to step2. In this case the setaux
routine need only set the time-independent values in aux which are not set by b4step2.

• Error estimation time steps. In the error estimation process time steps are taken to estimate
the error which are not part of the main calculation. The routine b4step2 and the source term
routine src2 are called in this process as in any other time step. If the b4step2 routine is used
to adjust values of the solution or do other operations which should only be done once at each
distinct time, this could be a problem.

In the error estimation time steps a fixed time step is used, method(1) = 0, and it is not adjusted
based on the Courant number.



26 CHAPTER 2. ADAPTIVE MESH REFINEMENT AND AMRCLAW

50 mx = cells in x direction
50 my = cells in y direction
3 mxnest = max. number of allowable grid levels
2 2 2 inrat = refinement ratios (1..mxnest)

0 nout = number of output times to print results
3 outstyle = style of specifying output times
15,150 iout,nstop = output interval, total number of steps

0.01d0 dtv(1) = initial dt (used in all steps if method(1)=0)
1.0d99 dtv(2) = max allowable dt
1.0d0 cflv(1) = max allowable Courant number
0.9d0 cflv(2) = desired Courant number
500 nv(1) = max number of time steps per call to claw2

1 method(1) = 1 for variable dt, = 0 for fixed dt
2 method(2) = order
2 method(3) = transverse order
1 method(4) = verbosity of output
0 method(5) = source term splitting
4 method(6) = mcapa
5 method(7) = maux (should agree with parameter in driver)
"center" auxtype(1)
"leftedge" auxtype(2)
"center" auxtype(3)
"capacity" auxtype(4)
"bottomedge" auxtype(5)

1 meqn = number of equations in hyperbolic system
1 mwaves = number of waves in each Riemann solution
3 mthlim(mw) = limiter for each wave (mw=1,mwaves)

0.d0 t0 = initial time
0.0d0 xlower = left edge of computational domain
1.0d0 xupper = right edge of computational domain
0.0d0 ylower = bottom edge of computational domain
1.0d0 yupper = top edge of computational domain

2 mbc = number of ghost cells at each boundary
2 mthbc(1) = type of boundary conditions at left
2 mthbc(2) = type of boundary conditions at right
2 mthbc(3) = type of boundary conditions at bottom
2 mthbc(4) = type of boundary conditions at top

Figure 2.1: A sample amr2ez.data file, Part 1.



2.6. COMMENTS AND WARNINGS 27

F do a restart (input from restart.data)
1000 iousr (how often to checkpoint in fort.chk****)

0.5 tol (tolerance for Richardson estimator)
0.5 tolsp (spatial tolerance for refinement)
2 kcheck (how often to est. error - related to buffer size)
3 ibuff (buffer zone size - add # of flagged pts to add)
.70 cutoff (efficiency cutoff for grid generator)

F PRINT option (if T prints soln. to fort.amr)
F NCAR graphics
T Matlab graphics

F dprint - verbose domain flags
F eprint - error estimation - output the flags
F edebug - even more error est. output
F gprint - grid generation output (bisection, clustering,...)
F nprint - proper nesting output
F pprint - projectiong of tagged pts. output
F rprint - verbose regridding - output new grid summary
F sprint - space (memory) output
T tprint - time step reporting - for each level
F uprint - updating/upbnding reporting

Figure 2.2: A sample amr2ez.data file, Part 2.


	The basic PD1OT1cmrcmrmmnnnscclawpack software
	Version 4.0
	References
	Problem format
	Obtaining PD1OT1cmrcmrmmnnnscclawpack
	Local users at PD1OT1cmrcmrmmnnamath.washington.edu
	From the web
	Anonymous ftp

	Getting started
	Creating the directories
	Environment variables for the path
	Compiling the code
	Makefiles
	PD1OT1cmrcmrmmnnnscmatlab graphics

	A guide through PD1OT1cmrcmrmmnnexample1
	The main program (PD1OT1cmrcmrmmnndriver.f)
	The initial conditions (PD1OT1cmrcmrmmnnqinit.f)
	The PD1OT1cmrcmrmmnnclaw1ez routine
	Boundary conditions
	The Riemann solver
	Other user-supplied routines and files
	The input file PD1OT1cmrcmrmmnnclaw1ez.data

	Auxiliary arrays and PD1OT1cmrcmrmmnnsetaux.f
	An acoustics example
	Two space dimensions (PD1OT1cmrcmrmmnnclaw2ez.f)
	Riemann solvers

	Three space dimensions (PD1OT1cmrcmrmmnnclaw3ez.f)
	Plotting results with PD1OT1cmrcmrmmnnnscmatlab
	Other applications in PD1OT1cmrcmrmmnnclaw/applications

	Adaptive Mesh Refinement and PD1OT1cmrcmrmmnnnscamrclaw
	The input file PD1OT1cmrcmrmmnnamr2ez.data
	Boundary conditions
	Plotting results with PD1OT1cmrcmrmmnnnscmatlab
	The adaptive algorithm
	Error estimation and regridding
	Comments and warnings


