| rp1ac.f.html | |
| Source file: rp1ac.f | |
| Directory: /Users/rjl/git/rjleveque/clawpack-4.x/doc/sphinx/example-acoustics-1d | |
| Converted: Fri Dec 28 2012 at 15:50:55 using clawcode2html | |
| This documentation file will not reflect any later changes in the source file. |
c
c
c =====================================================
subroutine rp1(maxm,meqn,mwaves,mbc,mx,ql,qr,auxl,auxr,
& wave,s,amdq,apdq)
c =====================================================
c
|
|
CLAWPACK Riemann solver
for constant coefficient acoustics in 1 space dimension.
\[ q_t + A q_x = 0. \]
where
\[ q(x,t) = \vector{ p(x,t)\\ u(x,t)} \]
and the coefficient matrix is
\[ A = \begin{matrix}
0 & K\\
1/\rho & 0
\end{matrix}.
\]
The parameters $\rho = $ density and $K =$ bulk modulus are set in setprob.data [.html] and the sound speed $c$ and impedance $Z$ are determined from these in setprob.f [.html]. On input:
Note that the i'th Riemann problem has left state qr(i-1,:) and right state ql(i,:). From the basic clawpack routine step1, rp1 is called with ql = qr = q. On output:
For additional documentation on Riemann solvers rp1, see [claw/doc/rp1] For details on solution of the Riemann problem for acoustics, see Chapter 3 of FVMHP .
|
c
c
c
implicit double precision (a-h,o-z)
c
dimension wave(1-mbc:maxm+mbc, meqn, mwaves)
dimension s(1-mbc:maxm+mbc, mwaves)
dimension ql(1-mbc:maxm+mbc, meqn)
dimension qr(1-mbc:maxm+mbc, meqn)
dimension apdq(1-mbc:maxm+mbc, meqn)
dimension amdq(1-mbc:maxm+mbc, meqn)
c
c local arrays
c ------------
dimension delta(2)
c
c # density, bulk modulus, and sound speed, and impedence of medium:
c # (should be set in setprob.f)
common /cparam/ rho,bulk,cc,zz
c
c
|
|
Split the jump in $Q$ at each interface into waves.
First find $\alpha^1$ and $\alpha^2$, the coefficients of the
2 eigenvectors:
\[ \delta = \alpha^1 \vector{ -Z \\ 1} +
\alpha^2 \vector{ Z \\ 1} \]
Note that the eigendecomposition of $A$ is $A = R \Lambda R^{-1}$, with \[ R = \begin{matrix} -Z & Z \\ 1 & 1 \end{matrix}, \quad \Lambda = \begin{matrix} -c & 0 \\ 0 & c \end{matrix}, \quad R^{-1} = \frac{1}{2Z} \begin{matrix} -1 & Z \\ 1 & Z \end{matrix}, \quad \] |
c
do 20 i = 2-mbc, mx+mbc
delta(1) = ql(i,1) - qr(i-1,1)
delta(2) = ql(i,2) - qr(i-1,2)
a1 = (-delta(1) + zz*delta(2)) / (2.d0*zz)
a2 = (delta(1) + zz*delta(2)) / (2.d0*zz)
c
c # Compute the waves.
c
wave(i,1,1) = -a1*zz
wave(i,2,1) = a1
s(i,1) = -cc
c
wave(i,1,2) = a2*zz
wave(i,2,2) = a2
s(i,2) = cc
c
20 continue
c
c
|
|
Compute the leftgoing and rightgoing fluctuations:
For this problem we always have $s^1 =-c \lt 0$ and $s^2 = c\gt 0$, so \[ \A^-\Delta Q = s^1\W^1, \quad \A^+\Delta Q = s^2\W^2. \] |
c
do 220 m=1,meqn
do 220 i = 2-mbc, mx+mbc
amdq(i,m) = s(i,1)*wave(i,m,1)
apdq(i,m) = s(i,2)*wave(i,m,2)
220 continue
c
return
end